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Both lesions of endodontic origin and periodontal diseases involve the host response to bacteria and the

formation of osteolytic lesions. Important for both is the upregulation of inflammatory cytokines that initiate

and sustain the inflammatory response. Also important are chemokines that induce recruitment of leukocyte

subsets and bone-resorptive factors that are largely produced by recruited inflammatory cells. However,

there are differences also. Lesions of endodontic origin pose a particular challenge since that bacteria persist in

a protected reservoir that is not readily accessible to the immune defenses. Thus, experiments in which the host

response is inhibited in endodontic lesions tend to aggravate the formation of osteolytic lesions. In contrast,

bacteria that invade the periodontium appear to be less problematic so that blocking arms of the host response

tend to reduce the disease process. Interestingly, both lesions of endodontic origin and periodontitis exhibit

inflammation that appears to inhibit bone formation. In periodontitis, the spatial location of the inflammation

is likely to be important so that a host response that is restricted to a subepithelial space is associated with

gingivitis, while a host response closer to bone is linked to bone resorption and periodontitis. However, the

persistence of inflammation is also thought to be important in periodontitis since inflammation present during

coupled bone formation may limit the capacity to repair the resorbed bone.
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P
eriapical lesions of endodontic origin and period-

ontitis are two common conditions found in the

oral cavity that share pathologic mechanisms

involving interactions between immune cells and bone.

Lesions of endodontic origin are associated with bacterial

contamination and necrosis of the dental pulp, which

typically progress through four stages: (1) exposure of the

dental pulp to the oral cavity with subsequent bacterial

colonization, (2) inflammation and necrosis of the dental

pulp, (3) the development of inflammation in the

periapical area, and (4) periapical resorption of bone

and formation of granulomas or cysts. Osteolytic lesions

in periodontitis are initiated by bacterial plaque in the

gingival sulcus and on the tooth surface. Periodontitis

similarly occurs in four stages: (1) bacterial accumulation

of a biofilm and presence in the gingival sulcus (coloniza-

tion), (2) bacterial penetration of epithelium and

connective tissue in the gingiva adjacent to tooth surface

(invasion), (3) stimulation of a host response that involves

activation of the acquired and innate immune response

(inflammation), and (4) destruction of connective tissue

attachment to the tooth surface and bone that is

irreversible (irreversible tissue loss). Both oral diseases

demonstrate similar patterns of development, bone

resorption associated with bacteria that adhere to and

invade soft tissue stimulating an inflammatory response

and subsequent osteoclastogenesis.

Lesions of endodontic origin
Endodontic lesions typically develop from exposure of

the pulpal tissue to oral bacteria as a result of deficiencies

in the integrity of a tooth. This may result from carious

lesions that dissolve the mineralized dental tissue, frac-

tures of the tooth structure, as well as iatrogenic and

other circumstances that allow bacteria to penetrate into

the pulpal tissues. In most cases, these events lead to

infection within the dental pulp, which causes the

development of inflammation that spreads from the

exposed area. The inflammation is often followed by

pulpal tissue necrosis, leading to chronic infection, the

(page number not for citation purpose)

�INVITED REVIEW ARTICLE

Journal of Oral Microbiology 2011. # 2011 Dana T. Graves et al. This is an Open Access article distributed under the terms of the Creative Commons
Attribution-Noncommercial 3.0 Unported License (http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1

Citation: Journal of Oral Microbiology 2011, 3: 5304 - DOI: 10.3402/jom.v3i0.5304



spread of inflammation to the tooth apex, and bone

resorption. The inflammatory response involves the

recruitment and activation of leukocytes of both the

innate and adaptive immune responses, with resultant

osteoclastogenesis and formation of an osteolytic lesion

at the apex of the tooth.

Inflammation and resorption of bone at the tooth

apex, in most cases, is a consequence of the interaction

between microbial infection and the host response. The

critical role of bacteria in the development of periapical

lesions has been demonstrated by mechanical exposure of

the dental pulp to the oral cavity in germ-free animals. In

these germ-free animals, pulp exposure heals with an

initial or transitory inflammatory response within the

pulpal tissue, followed by a reparative response from

pulpal cells, and leading to the formation of a new dentin-

like matrix bridging the exposed site. In contrast,

mechanical pulp exposure in animals with normal oral

bacteria causes an infection of the dental pulp, with

pulpal tissue necrosis and chronic infection that prevents

the repair process (1). The infection persists as the

necrotic tissue of the dental pulp is inaccessible to

leukocytes and, hence, represents a protected reservoir

of bacteria (2, 3). The chronic inflammation stimulated

by bacteria and their products in the periapical area of

the tooth leads to localized bone resorption that is

‘uncoupled’ so there is no reparative bone formation

without treatment. The result is formation and expansion

of granulomas or cysts in the apical tissues (4).

Understanding the pathogenic mechanisms underlying

the development of endodontic lesions is confounded by

the persistence of a ‘bacterial reservoir’ that exists in the

pulp canal and necrotic tissue. The bacterial presence

stimulates an inflammatory response to resist infection.

During this response a number of cell types present

release cytokines, chemokines, leukotrienes, and prosta-

glandins into the area. These inflammatory mediators

reinforce the recruitment of polymorphonuclear leuko-

cytes (PMNs) and other leukocytes, creating an interest-

ing dichotomy of activity and consequences as to the

essential protective or destructive roles mediated (3). As

would be expected, the host response plays a critical and

protective role in lesions of endodontic origin in limiting

the spread of infection into the fascial planes. Consistent

with this expectation, specific inhibitors of inflammatory

cytokines tend to cause the formation of larger osteolytic

lesions since they compromise the ability of the host to

protect itself from the reservoir of bacteria in the necrotic

pulp. This increase in lesion dimensions occurs even

though the blocked inflammatory cytokines also play an

important role in osteoclastogenesis. The use of inhibitors

or mice with targeted genetic deletions may not necessa-

rily reveal the role of a particular cytokine or cell type

that plays an important role in activating osteoclastogen-

esis since its inhibition or knockout may also increase

susceptibility to bacterial infection. If the impact on

resistant infection is greater, the larger lesion will be

produced even though direct effect on deletion or

inhibition should reduce osteoclast formation. The re-

verse is also true. For example, an enhanced host

response in an animal model for periapical endodontic

lesions demonstrates increased numbers of PMNs and

monocytes with a reduction in the extent of apical bone

resorption, even though the host response may contribute

to the bone resorption (5). In another example, the

deletion of tumor necrosis factor (TNF) or IL-1 receptor

signaling causes larger osteoclast lesion formation even

though both cytokines stimulate bone resorption. This

occurs because deletion of TNF or IL-1 signaling impairs

the antibacterial activity of the host response that is

critical in lesions of endodontic origin (6). In particular,

IL-1 receptor signaling is needed to prevent the spread of

infection from necrotic pulp into fascial planes and to

protect the host from significant morbidity and mortality

that would result (6). Thus, there is considerable complex-

ity in examining the impact of cytokine signaling since

cytokines have both destructive roles as well as an

important protective function in antibacterial defense (6).

The control of the periapical infection seems to be a

critical aspect of this process, since the absence of the

pleiotropic enzyme inducible nitric oxide synthase (iNOS)

also results in larger lesions with the recruitment of a

greater number of inflammatory cells and frequently

associated with periapical abscesses development (7).

This contrasts with periodontal disease, in which a

protected bacterial reservoir does not exist and the use

of inhibitors or mice with targeted deletions of the host

response typically do not compromise the antibacterial

defenses sufficiently to complicate the analysis. Thus,

lesions of endodontic origin appear to be at an increased

susceptibility to bacterial infection with inhibition of the

host response in contrast to periodontal disease.

Leukocytes and endodontic lesions
The initiation of an inflammatory cascade in lesions of

endodontic origin includes the complex interplay of

multiple cell types involving the activation of endothelial

cells, PMNs, macrophages, lymphocytes, and osteoclasts

leading to rapid bone destruction. The complex host

response involves cells of both the innate and adaptive

immune response. The rapid destruction of bone found

with endodontic lesions is initiated by multiple bacteria

or their products including lipopolysaccharides (LPSs)

(3). Bacteria are thought to stimulate resorption through

the induction of proinflammatory cytokines such as IL-

1b, IL-1a, receptor activator of nuclear factor kappa-B

ligand (RANKL), or TNF-a (8, 9). The initial activation

of the host response occurs through stimulation of toll-

like receptors (TLRs) and nucleotide-binding oligomer-

ization domain (NOD) receptors (10). Both TLRs and
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NODs are highly expressed on multiple cell types

associated with the endodontic lesions including mono-

cytes/macrophages, granulocytes, pulp fibroblasts, osteo-

clast precursors, and mesenchymal cells (10, 11).

Activation of these receptors leads to the stimulation of

multiple proinflammatory cytokines, including IL-1,

TNF-a, and IL-6, and has been associated with enhanced

RANKL production, osteoclastogenesis, and bone re-

sorption (10, 11).

Multiple studies have reinforced the concept that the

development of bone resorption in lesions of endodontic

origin involves the adaptive immune response. The

predominant cell types in endodontic lesions in a rat

model were shown to be T-cells followed by B-cells and

monocytes/macrophages (12). Multiple T-cell responses

have been associated with endodontic lesions, including

Th1 (IL-2 and IFN-g), Th2 (IL-4 and IL-5), T-regulatory

cells (Tregs; IL-10 and TGF-b), and Th17 (IL-17A)

lymphocytes (13�15). In fact, the key transcription

factors essential for Th1, Th2, and Tregs differentiation,

T-bet, GATA-3, and FOXp3, respectively, have been

found in periapical lesions (14) as well as IL-17A, the

prototypical cytokine produced by Th17 cells (13).

The importance of the adaptive immune response in

protecting the host during formation of endodontic

lesions has been demonstrated in numerous studies. The

exposure of the dental pulp in severe combined immu-

nodeficient (SCID) mice showed periapical lesions of

similar size to that found in normal control mice (16).

However, approximately one-third of the immunodefi-

cient mice with endodontic lesions developed orofacial

abscesses. Interestingly, two studies identified contrasting

results utilizing nu/nu rats with a deficient T-cell response.

While one study showed greater bone resorption follow-

ing endodontic infections, suggesting a critical protective

role, the other study failed to identify a difference in the

amount of bone resorption (17, 18). Evidence of a

protective role for IFN-g, the prototypical Th1-cytokine,

was demonstrated as the absence of IFN-g resulted in

increased bone resorption compared to wild-type mice

(19). Emerging evidence suggests that the majority of

Th17 cells also express IFN-g, supporting a role for both

Th1 and Th17 proinflammatory responses in the patho-

genesis of periapical periodontitis (13). An examination

of the Th2 response with genetic deletion of IL-4 failed to

identify an effect, suggesting more complex redundancies

or that Th2 responses are not critical in protection or

bone resorption (19). However, the anti-inflammatory

cytokine IL-10 has been demonstrated to be a protective

factor against periapical bone resorption. Periapical

lesions in mice with genetic ablation of IL-10 were

increased in size compared with wild-type mice, consis-

tent with a protective role for IL-10 (19). Furthermore,

IL-10 mRNA levels in human periapical granulomas have

been positively correlated with the expression of proteins,

SOCS1 and SOCS3, which act as negative regulators of

the inflammatory signaling (20). Interestingly, Tregs, as a

potential source of IL-10, were found in the periapical

lesions following endodontic infection consistent with a

regulatory role in lesion development (15, 21).

Cytokines
The initial rapid destruction of bone in the apical area of

the root has been associated with the production of

prostaglandins, in particular PGE2, through the cycloox-

ygenase pathway (22). These findings provide clarifica-

tion to an earlier report that indomethacin reduces the

extent of bone resorption in endodontic lesions (23).

Endodontic lesions have been associated with multiple

proinflammatory cytokines and chemokines. Cytokines

that participate in the formation of osteolytic lesions are

shown in Figs. 1 and 2. Interleukins (IL), particularly IL-

1a and IL-b are produced in periapical lesions by several

types of cells including macrophages, osteoclasts, PMNs,

and fibroblasts (24, 25). The role for IL-1 in stimulating

periapical bone destruction was demonstrated using

interleukin-1 receptor antagonists to show a 60% reduc-

tion in lesion development (26). It appears that much of

the induced osteoclastogenic activity in periapical lesions

is specifically related to the formation of interleukin-1a
(27). However, when IL-1 receptor signaling is completely

deleted there is increased lesion size and systemic

morbidity (5). In addition, TNF-a expression has been

identified in lesions of endodontic origin by cells such as

PMNs, monocytes/macrophages, and fibroblasts and

may contribute to lesion formation (3). The IL-6 has

been observed in exudates from human periapical lesions,

with osteoblasts, fibroblasts, macrophages, PMNs, and

T lymphocytes identified as expressing IL-6 protein (28,

29). IL-6 has been shown to play a protective role since

endodontic lesions in IL-6 deficient animals are increased

in size compared with control mice (30). The role of

cytokines in formation of endodontic and periodontal

osteolytic lesions is shown in Tables 1 and 2.

Neutrophils are active in the development of bone loss

associated with endodontic lesions. This has been demon-

strated in animals with some neutropenia having a

considerable decrease in periapical lesion formation

(31). The recruitment of PMNs with chemokines has

also been implicated in the pathogenesis of periapical

lesions. IL-8/CXCL8 chemokine expression is prominent

in periapical lesions, consistent with heavy infiltration by

PMNs (32).

The recruitment of monocytes is critical in the

antimicrobial defense in lesions of endodontic origin.

Chemokines and chemokine receptors stimulate innate

and adaptive immunity in the periapical environment and

in the development of granulomas associated with these

lesions (33). Genetic deletion of MCP-1/CCL2, identified

in monocytes/macrophages and bone lining cells in
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endodontic lesions, significantly reduces monocytic

infiltrate while increasing the amount of bone resorption

(34, 35). Similarly, the absence of the MCP-1 receptor

(CCR2) or genetic ablation of CC chemokine receptor

five (CCR5) results in an increased amount of apical

bone resorption and is associated with higher levels of the

Fig. 1. RANKL/OPG balance is an important factor in regulating bone resorption in periodontal and periapical environments.

Osteoclast differentiation and activation are driven by the interaction of RANK (receptor activator of nuclear factor-kB) with

its ligand, RANKL. Osteoprotegerin, OPG, is a decoy receptor of RANKL that inhibits RANK-RANKL engagement. In

homeostatic conditions (left side), RANKL and OPG levels are thought to be in balance so that there is limited

osteoclastogenesis and bone resorption. With an inflammatory stimulus, the RANKL/OPG ratio increases in periodontal

and periapical tissues and leads to stimulation of osteoclast activity and pathologic bone resorption.

Fig. 2. Cytokine regulation of matrix degradation and bone resorption in periodontal and periapical environments. The

presence of microbial pathogens in periodontal and periapical environments trigger an initial production of proinflammatory

cytokines, such as TNF-a and IL1b, which stimulate expression and activation of matrix metalloproteinases (MMPs) that

degrade extracellular connective tissue matrix. Cytokines such as TNF-a can stimulate osteoclastogenesis independently while

other cytokines stimulate RANKL expression that leads to formation of osteoclasts and osteoclast activity. The combined

innate and adaptive immune responses are likely to lead to the high levels of inflammation and bone resorption. These

proinflammatory cytokines are thought to generate an amplification loop that contributes to periodontal and periapical lesion

progression. Conversely, cytokines produced by Th2 cells and Tregs, such as IL-4 and IL-10 have the opposite effect, in part,

through stimulating production of tissue inhibitors of matrix metalloproteinases (TIMPs) and OPG as well as restrain

inflammatory cytokine production.
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osteolytic factors, such as RANKL and cathepsin K (19,

36). Interestingly, activation of the MCP-1/CCL2-CCR2

axis appears to play an active role in mediating the

migration of monocytes/macrophages while limiting the

infiltration of PMNs (36).

The RANKL and osteoprotegerin (OPG) expression

demonstrate a heterogeneous pattern in periapical gran-

ulomas, ranging from a high ratio of RANKL to OPG

consistent with bone resorption to a low ratio seen in sites

with minimal bone resorption (37). These disparate

findings in levels of RANKL/OPG ratio may be indica-

tive of an expanding lesion with active bone resorption or

a stable lesion with minimal bone resorption (37, 38). A

description of the role of the RANK-OPG axis in

stimulating osteoclastogenesis and bone resorption is

shown in Fig. 1.

Periodontal diseases
The periodontium is a complex set of tissues that are in

close proximity with a complex biofilm harboring diverse

and numerous bacterial species (39, 40). Periodontal

diseases include gingivitis and periodontitis. While it is

a consensus that periodontal diseases are stimulated

by bacterial adherence to the tooth surface, there is

controversy about which bacteria stimulate the irrever-

sible breakdown of periodontal tissues in periodontitis

(40, 41). Recent evidences from studies that do not rely

upon bacterial culture techniques suggest that there are

Table 1. Cytokine effects on bone lesions associated with endodontic or periapical lesions

Cytokine Effect of deletion or

inhibition Effect of cytokine on osteoclasts Other effects of cytokine

IL-1a Reduction in lesion size Increase in immature osteoclasts and

increase resorption by osteoclasts

Increased levels of MMP’s 1, 3, 9, and 13

IL-1b Increase in lesion size Increased levels of immature osteoclasts

and increase resorption by osteoclasts

Increased expression of RANK, RANKL,

and MMP-9

IL-1 receptor Increased lesion size Increased morbidity and mortality from

endodontic infection

IL-2 Increase in lesion size Unknown Promotes T-cell growth and expansion

and CMI

IL-4 No effect on lesion size Suppresses osteoclast differentiation and

osteoclast bone resorption

Promotes differentiation of CD4� T-cells

into TH2s

TNF-a No effect on lesion size Induces osteoclast differentiation,

osteoclastogenesis, and bone resorption

Proinflammatory effects, promotes CMI

TNF receptor Increased lesion size Greater osteoclast activity and formation

when deleted due to lack of protection

IL-6 Increase in lesion size Increase in number of osteoclasts and

increase resorption

Anti-inflammatory effects, stimulates

release of acute phase proteins

IL-/CXCL8 Unknown Increases osteoclast motility and

decreases resorption

Stimulates PMN/monocyte, basophil,

and T-cell recruitment

IL-10 Deletion results in

increase in lesion size

No effect on osteoclast number, inhibits

osteoclastogenesis

Promotes PMN infiltration

MCP-1 Increase in lesion size Stimulates recruitment of precursors Stimulates protective monocyte/

lymphocyte recruitment

IL-17 Reduced lesion size Increased levels associated with

decreased numbers of osteoclasts

Stimulates monocyte/lymphocyte

recruitment

INF-g No effect on lesion size

Reduced levels of IL-6, IL-10,

IL-12, TNF-a

Decreases osteoclastogenesis Promotes CMI

IL-12 No effect on lesion size Decreases TNF-a and RANKL induced

osteoclastogenesis

Increases IL-18

IL-18 No effect on lesion size Decreases TNF-a induced

osteoclastogenesis

Increases IL-12

Nitric Oxide Increase in lesion size Unknown Induces IL-8, RANK production,

macrophage, and osteoblast apoptosis
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approximately 700 bacterial species in the oral cavity (39).

As a general rule, the bacteria that might cause period-

ontitis have classically been identified as gram-negative

anaerobic bacteria that survive in the gingival sulcus, the

space between the tooth surface and the adjacent gingival

epithelium (42). Much attention has been spent on

Aggregatibacter actinomycetemcomitans and Porphyromo-

nas gingivalis, which have been linked to localized

aggressive ‘juvenile periodontitis’ and ‘adult periodonti-

tis’, respectively (42, 43). However, recent approaches to

bacterial identification have suggested that a reevaluation

of pathogenic species is warranted.

The presence of periodontal pathogens is required but

not sufficient for disease initiation. In fact, studies clearly

demonstrate that cytokines induced by the host response

play a critical role in periodontal tissue breakdown (44�
47). Host-microbe interactions start in the gingival

epithelium and stimulate an inflammatory response that

confers efficient protection against bacteria (i.e. the

systemic consequences of acute infection are rare).

However, the host mediator release results in a clinical

outcome represented by the onset of gingivitis. Because

the gingival epithelium and underlying connective tissue

are chronically exposed to bacteria or their products,

both the innate and the acquired immune response are

chronically activated in connective tissue adjacent to

epithelium lining the gingiva. In most cases, tissue

destruction caused by activation of the host response is

reversible and associated with gingivitis. On the other

hand, under certain conditions that are not fully under-

stood, the disease can progress and cause destruction of

the underlying connective tissue attachment of the

gingiva toward the tooth surface and from tooth to

bone. Indeed, periodontitis is distinguished from gingivi-

tis by the irreversible nature of the attachment loss. One

of the most important uncertainties regarding period-

ontitis is its chronic nature. Periodontitis may represent a

series of brief insults, or ‘bursts’, which accumulate and

appear to be chronic over time with extended periods of

remission. However, the length of time of the ‘burst’ is

unknown. Alternatively, there may be relative constant

stimulation over time, but it is not known how long the

chronic destructive period lasts in the chronic model. In

spite of evidences for both models (48�50), the nature of

periodontal disease progression remains uncertain. This

problem has plagued human studies since it is difficult to

know whether an individual is undergoing active period-

ontal breakdown at any given point in time. Furthermore,

the relative absence of longitudinal studies has made the

interpretation of results with human patients difficult

since relationships between a given variable and irrever-

sible periodontal breakdown are difficult to establish in

cross-section studies.

Animal models have established a clear causal relation-

ship between bacteria and periodontitis. In an animal

model, a ligature is tied around the teeth allowing plaque

accumulation and bacterial penetration, which leads to

subsequent inflammation and alveolar bone resorption

(51). In fact, gnotobiotic rats treated identically do not

exhibit periodontal bone loss (52), demonstrating the

essential role of bacteria in this model. Additional

evidence is provided by the treatment with antibiotics

or topical application of antimicrobial agents, which

reduce bone resorption in the ligature model, while

increased colonization by gram negative bacteria en-

hances bone resorption (51). In other animal models,

the inoculation of periodontal pathogens into the oral

cavity of rodents induces bone loss. In several studies, the

introduction of P. gingivalis by oral lavage stimulates

alveolar bone resorption (51). Similarly, introduction of

A. actinomycetemcomitans in rodents leads to coloniza-

tion and loss of the alveolar bone (43, 51). Thus,

experiments with animal models support human studies

demonstrating the role of bacteria in inflammation onset

and periodontitis.

Since the presence of bacteria is required, but not

sufficient to trigger periodontitis development, the re-

cognition of microbial components as ‘danger signals’ by

host cells and the subsequent production of inflamma-

tory mediators is an essential step in periodontitis

pathogenesis. Indeed, one of the critical components of

the host response to bacteria or their products is a family

of receptors called the toll-like receptors (TLRs). The

TLRs activate the innate immune response binding to

various microbial components (i.e. diacyl lipopeptides,

peptidoglycan, LPS, flagellin, bacterial DNA, etc.) (53).

After TLR activation, an intracellular signaling cascade

Table 2. Comparison of inflammatory component roles in

bone resorption

Deletion/inhibition effects on bone

resorption (lesion size)a

Inflammatory component Endodontic Periodontal

IL-1 Reduced Reduced

IL-1 receptor Increasedb Not tested

TNF-a No effect Reduced

TNF receptor Increased Reduced

IL-6 Increased Reduced

Prostaglandins Reduced Reduced

IFN-g Increased Reduced

PMNs/monocytes Reducedb Increasedc

B- and T-cell (SCID mice) No effectb Reduced

IL-17 No effect Increased

aIncreased bone resorption is consistent with protective effects;

reduced resorption consistent with a net destructive effect.
bWith increased morbidity/mortality noted.
cBased on clinical findings of immunodeficiencies.
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leads to the activation of transcription factors, such as

nuclear factor-k B (NF-kB), activator protein-1 (AP-1),

and subsequent production of various cytokines

and chemokines (53). Recent studies describe a role

for both TLR-2 and TLR-4 in the recognition of

A. actinomycetemcomitans, whose impact range from

stimulating inflammatory cytokine expression and in-

flammatory cell migration to inducing osteoclastogenesis

and alveolar bone loss (54, 55). Besides TLRs, the

nucleotide-binding oligomerization domain (NOD) re-

ceptors and the inflammasome system have been pointed

out as potential accessory molecules that trigger the host

response against periodontal pathogens (56).

Animal models also provided the initial clear evidences

for the role of some host immune inflammatory factors in

the progression of periodontal diseases. When the host

response is altered by treatment with specific inflamma-

tory inhibitors or genetic manipulation, the severity of

periodontal connective tissue and bone loss stimulated by

periodontal bacteria is clearly reduced. The first concrete

evidence that inhibition of an inflammatory response

reduces periodontal diseases was carried out in a dog

model (57) in which the inhibition of prostaglandins

significantly reduced alveolar bone loss. Subsequent

studies have used a number of techniques to demonstrate

that cytokines play an important role in periodontitis.

Non-human primates treated with inhibitors to two

major proinflammatory cytokines, IL-1 and TNF, exhibit

reduced periodontal bone loss and loss of attachment

compared to control animals (44, 45, 58). Similarly,

RANKL inhibition decreases alveolar bone loss in

several models of periodontal disease (46, 59, 60). It is

hypothesized that periodontal disease progression is due

to a combination of several factors, including the

presence of periodontopathic bacteria, high levels

of proinflammatory cytokines and prostaglandins, the

production and activation of MMPs and RANKL, and

relatively low levels of interleukin-10 (IL-10), transform-

ing growth factor-b (TGF-b), tissue inhibitors of metal-

loproteinase (TIMPs), and osteoprotegerin (OPG) (61).

A description of inflammatory cytokines and cell types

that participate in bone resorption and destruction of

connective tissue matrix is shown in Fig. 2.

Inflammatory mediators
The cyclooxygenase enzymes, COX-1 and COX-2, cata-

lyze the conversion of arachidonic acid to prostaglandins.

COX-1 is constitutively expressed and leads to the

generation of prostaglandins that are particularly im-

portant in homeostasis. COX-2 is inducible and leads to

the formation of prostaglandins involved in inflammatory

processes. Prostaglandins (PGs), potent stimulators of

bone formation and resorption, are produced by bone

cells, fibroblasts, gingival epithelial cells, endothelial cells,

and inflammatory cells (62). Prostaglandin E2 produc-

tion is elevated in individuals with periodontitis com-

pared with healthy subjects (63). When applied topically

to the gingival sulcus, prostaglandin E2 induces a marked

increase in osteoclasts. Moreover, it is synergistic with

lipopolysaccharide stimulating osteoclastogenesis (64).

Both PGE-2 and leukotriene B-4 were found in

gingival crevicular fluid of individuals with localized

aggressive periodontitis. Furthermore, P. gingivalis

stimulates increased PGE-2 levels and increased COX-2

expression by infiltrated leukocytes in vivo (65). In an

animal ligature induced periodontitis model, both a non-

selective COX inhibitor and a selective COX-2 inhibitor

reduced osteoclast numbers and alveolar bone loss when

compared to non-treatment (66). Many clinical trials

have explored the use of a COX-2 inhibitor as an adjunct

to periodontal therapy. These inhibitors improved the

clinical outcome after periodontal therapy compared to

periodontal therapy alone (67). However, they are not

clinically used in the treatment of human patients due to

side effects. Lipoxins and resolvins, products of omega-3

fatty acids, induce resolution of inflammation, and to

protect against periodontal bone loss stimulated by

bacteria in animal models (68).

The induction of experimental periodontitis is asso-

ciated with the expression of innate immune cytokines

(69). IL-1 stimulates the expression of proresorptive

cytokines, such as RANKL and TNF-a and proteinases

that participate in periodontal connective tissue destruc-

tion and bone resorption. In the periodontium, IL-1 is

produced by several types of cells including PMNs,

monocytes, and macrophages (70, 71). In patients with

periodontitis, IL-1b expression is elevated in gingival

crevicular fluid at sites of recent bone and attachment

loss (71, 72). The IL-1b is also found to be higher in

gingiva from individuals with a history of periodontitis

than in samples from healthy individuals (72).

Using a non-human primate model, Delima et al.

showed that IL-1 inhibition significantly reduced inflam-

mation, connective tissue attachment loss, and bone

resorption induced by periodontal pathogens when

compared to controls (45). In other studies, IL-1 receptor

deficient mice had less P. gingivalis LPS-induced osteo-

clastogenesis compared to similarly treated wild-type

mice (73). In a different approach, the exogenous

application of recombinant human IL-1b in a rat model

of experimental periodontitis accelerated alveolar bone

destruction and inflammation over a 2-week period (74).

In addition, transgenic mice overexpressing IL-1a in

gingival epithelium developed a periodontitis-like syn-

drome, leading to the loss of attachment and destruction

of periodontal bone (75). Taken together, these studies

strongly support the role of IL-1 in promoting alveolar

bone destruction in periodontitis.

The TNF refers to two associated proteins, TNF-a and

TNF-b. TNF-a levels are upregulated in gingival crevi-
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cular fluid at sites where bone and attachment loss have

recently occurred (71, 76�78). TNF-a was also found to

be higher in diseased periodontal tissue samples than in

tissue samples from healthy individuals (72). A cause and

effect relationship between TNF-a and periodontal bone

loss has been demonstrated. Administration of recombi-

nant TNF-a accelerates periodontal destruction in a rat

periodontitis model (79). On the other hand, P. gingivalis

induced osteoclastogenesis is reduced in TNF receptor-

deficient mice compared to wild-type controls, indicating

that osteoclast formation is dependent on TNF-a regu-

lated pathway as part of the host response to bacterial

challenge (80). Garlet et al. recently showed that TNFR-1

knockout mice developed significantly less inflammation,

indicated by chemokine and chemokine receptors down-

regulation, and less alveolar bone loss in association with

RANKL downregulation in response to A. Actinomyce-

temcomitans oral inoculation (81). Furthermore, mRNA

levels of IL-1b, IFN-g, and RANKL in gingival tissues

were significantly lower in TNFR-1 knockout mice than

in wild-type infected mice. In contrast, A. actinomyce-

temcomitans levels quantified by real-time PCR were

significantly greater in TNF receptor ablated mice than

in wild-type controls and were associated with lower

levels of the PMN-related antimicrobial mediator mye-

loperoxidase in experimental mice (81). Thus, the absence

of TNFR-1 resulted in a lower production of cytokines in

response to A. actinomycetemcomitans infection even in

the presence of higher levels of periodontal pathogens.

Based on similar studies, it can be implied that the local

production of TNF-a plays a role in upregulating the

host response to bacteria and stimulating bone resorption

during periodontitis. It is also possible that oral bacteria

in addition to causing local pathology may contribute to

systemic conditions by enhancing cytokine production

subsequent to bacteremias. Interestingly, P gingivalis LPS

stimulates a strong local inflammatory response but a

weak systemic inflammatory response (82). Inhibition of

IL-1 and TNF-a together significantly reduces the

progression of inflammation toward bone, osteoclasto-

genesis, and periodontal tissue destruction (44). In the

gingiva, a higher expression of IL-6 is found in gingival

crevicular fluid and in the gingiva in mononuclear cells

and T-cells from periodontitis patients than in healthy

controls (83, 84). The LPS from the periodontal pathogen

A. actinomycetemcomitans induces IL-6 expression,

osteoclastogenesis, and bone loss (85). Oral inoculation

of P. gingivalis in mice with genetically deleted IL-6 have

decreased bone loss compared to wild-type mice, suggest-

ing that IL-6 contributes to the progression of bacteria-

induced bone loss (47).

After a host response triggered by microbial recogni-

tion, the spatial orientation of the subsequent leukocyte

infiltration into periodontal tissues is likely to contribute

to periodontal disease. Histologically, the inflammatory

infiltrate is observed even in the presence of minimal

clinical signs of inflammation, but when inflammation is

restricted to the connective tissue closest to the gingival

epithelium, gingivitis is present (86). However, in animal

models, when the inflammatory infiltrate moves closer to

bone, osteoclastogenesis is induced and periodontal bone

loss takes place (44). This suggests that the periodontal

Fig. 3. Spatial relationship between an inflammatory infiltrate and periodontal bone loss. In periodontitis, bacteria attach to the

tooth surface and invade the adjacent epithelium and connective tissue. This causes formation of an inflammatory infiltrate

indicated by the black arrows. If the inflammatory infiltrate is at a distance from bone (left panel), osteoclastogenesis is not

stimulated. However, if the infiltrate moves closer to bone (right panel), osteoclasts are induced and bone resorption occurs.
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disease development might be determined by the progres-

sion of the inflammatory infiltrate toward bone. The

impact of spatial location of the inflammatory infiltrate

on bone resorption is shown in Fig. 3.

Among the mediators potentially involved in leukocyte

diapedesis and subsequent spatial localization in period-

ontal environment, chemokines have been investigated

with special interest in the last decade. Chemokines are

small chemotactic cytokines that stimulate the recruit-

ment of inflammatory cells (33, 87). They are divided into

two major families based on their structure, CC and CXC

chemokines, which basically bind to the two major classes

of receptors, CC chemokine receptors (CCR) and CXC

chemokine receptors (CXCR). Chemokines are produced

by several resident and inflammatory cell types in the

periodontium (33). Some chemokines can stimulate one

or more steps of bone resorption, including the recruit-

ment, differentiation, or fusion of precursor cells to form

osteoclasts or enhance osteoclast survival (33, 87). They

could also affect periodontal bone loss by recruiting cells,

such as neutrophils, which protect against bacterial

invasion.

Chemokines are found in gingival tissue and crevicular

fluid. The IL-8/CXCL8, a chemoattractant of PMNs, is

found at higher levels in gingival crevicular fluid prior to

clinical signs of inflammation following cessation

of tooth brushing. Moreover, in subjects with a history

of periodontitis, IL-8/CXCL8 in gingiva and gingival

crevicular fluid are increased and correlated with disease

severity (88).

One of the most abundant expressed chemokines is

macrophage inflammatory protein-1a (MIP-1a/CCL3),

which is localized in the connective tissue subjacent to

gingival epithelium (89). MIP-1a/CCL3-positive cells

increase with increasing severity of periodontal disease.

It is a ligand for the chemokine receptors CCR1 and

CCR5 and is associated with the recruitment of mono-

cytes/macrophages and dendritic cells via CCR1 and

lymphocytes polarized into Th1 phenotype by CCR5

(90). Thus, MIP-1a/CCL3 has a potential role in

stimulating bone resorption through effects on macro-

phages and Th1 cells. Moreover, CCR1� and CCR5�
cell populations may affect resorption since they include

osteoclast precursors (91, 92). This is consistent with

findings that MIP-1a/CCL3 directly stimulates osteo-

clasts differentiation (93) and stromal-cell derived factor-

1 (SDF1/CXCL12) regulates osteoclast function and is

found in the periodontium (94).

A number of chemokines have been detected in gingiva

or in gingival crevicular fluid including regulated upon

activation normal T-cell expressed and secreted

(RANTES/CCL5). RANTES/CCL5 is found in greater

levels in active periodontal lesions compared to inactive

sites (89, 95). That RANTES/CCL5 may be involved in

periodontal bone resorption is supported by findings that

it binds to CCR1 and CCR5 (91, 96). Monocyte

chemoattractant protein-1 (MCP-1/CCL2) may also

contribute to periodontitis. MCP-1/CCL2 levels are

directly correlated with gingival inflammation (97, 98).

It stimulates monocyte/macrophage recruitment and

activity and has been implicated as a chemoattractant

for osteoclast precursors (91, 96).

RANKL stimulates osteoclastogenesis and bone

resorption. A number of studies have established that

RANKL inhibition decreases periodontal bone resorp-

tion (46, 59, 60) and establishes a role for RANKL in

periodontitis. Osteoprotegerin (OPG) is a molecule that is

also upregulated by inflammatory conditions and blocks

RANKL by binding to it. A high ratio of RANKL/OPG

creates proresorptive conditions while a low RANKL to

OPG ratio is antiresorptive. During bacteria stimulated

periodontal bone loss there is an initial increase in the

ratio of RANKL/OPG (69). After the initial bone loss,

antiresorptive factors are produced including OPG, as

well as IL-4 and IL-10, reducing the RANKL/OPG ratio

(69). This relationship is shown in Fig. 2. The RANKL/

OPG ratio has been examined in gingival tissues or

gingival crevicular fluid. It has been shown that period-

ontitis is associated with an increase in RANKL. The

RANKL/OPG ratio greater than 1 predominates in

chronic periodontitis lesions while a ratio of 0.5 or less

is found in chronic gingivitis lesions (37).

RANKL is upregulated in both pathologic and phy-

siologic bone resorption. In pathologic inflammatory

bone disease, RANKL expression has been shown to

have the highest level in B-cells, followed by T-cells, and

then monocytes (99). This indicates that activated T- and

B-cells can be the cellular source of RANKL for bone

resorption in diseased gingival tissue. In physiologic

bone, remodeling bone-lining cells such as osteoblasts

or their precursors appear to be an important source of

RANKL.

The IFN-g is a lymphokine, produced by lymphocytes

and natural killer cells that has been implicated in

periodontal bone loss. Its expression is associated with

Th1 lymphocytes. Mice with a genetic ablation of IFN-g
have less P. gingivalis induced bone loss compared to

wild-type controls (47). T-cells are an important source of

IFN-g in periodontitis (84) and have been linked to

increased RANKL expression (100).

Lymphocytes also produce cytokines that are anti-

inflammatory, such as IL-4 and IL-10 (101). These

cytokines are associated with a Th2 response and reduce

the severity of experimental periodontitis (102). However,

a direct link between Th1 lymphocytes enhancing period-

ontal disease and Th2 lymphocytes reducing it is not

necessarily straightforward since there are components of

a Th2 response that are also prodestructive (103).

Innate immune cells have been shown to play an

important role in periodontal bone resorption (61, 104).
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Monocytes and macrophages produce several cytokines

and lytic enzymes that stimulate the breakdown of

connective tissue and bone resorption (61). PMNs have

been shown to have both protective and destructive

effects (105). A protective role is inferred from findings

that neutrophil disorders including cyclic neutropenia,

Chédiak-Higashi syndrome, and leukocyte adhesion

deficiency syndrome promote periodontal diseases

(105). The production of reactive oxygen species and

cytokines implicates them in the destructive phase.

Monocytes and PMNs produce a respiratory burst that

generates superoxides, hydrogen peroxide, hydroxyl radi-

cals, hypochlorous acid, and chloramines. These products

contribute to bacterial killing based on evidence that

impaired production of iNOS and MPO are associated

with increased levels of periodontal pathogens (81, 106).

In addition, PMNs and monocytes/macrophages release

elastases and collagenases that break down connective

tissue (107) and are linked to the development of

periodontal lesions (107).

Dendritic cells of monocytic lineage are another group

of innate immune cells that function to present antigen to

lymphocytes and also promote inflammation by the

production of chemokines and cytokines (108). They

have been implicated in periodontal disease (108�111).

Oral bacteria induce dendritic cells to produce cytokines

such as IL-1b, IL-12, IFN-g, TNF-a, and TNF-b (109,

110). Dendritic cells can form to osteoclasts (112). For

example, A. actinomycetemcomitans stimulates dendritic

cells in vitro to form osteoclasts in a RANKL dependent

manner (113).

Oral bacteria stimulate cells of the adaptive immune

response as shown by the presence of activated T- and B-

lymphocytes in periodontal disease tissues (61). As

discussed above, lymphocytes produce cytokines that

promote bone resorption directly through RANKL or

indirectly through IFN-g. There is evidence to suggest

that lymphocytes are involved in mediating bacteria

stimulated periodontal bone resorption. When severe

combined immunodeficient (SCID) mice that lack B-

and T-lymphocytes are challenged with P. gingivalis, there

is considerably less bone resorption than in wild-type

normal mice (114). Moreover, (SCID) mice engrafted with

human CD4(�) T-cells from individuals with aggressive

early onset periodontal disease and subsequently chal-

lenged with A. actinomycetemcomitans exhibit enhanced

periodontal bone loss (46). This bone loss is mediated by

RANKL. Similarly, the adoptive transfer of B-cells from

A. actinomycetemcomitans immunized rats followed by an

injection of A. actinomycetemcomitans into the gingiva,

stimulates greater alveolar bone resorption than control

mice that have received B-cells from non-immunized mice

(59). The increased resorption was shown to be RANKL

mediated (59). The results of these experiments indicate

that cells of the adaptive immune response significantly

contribute to periodontitis.

In addition to Th1 and Th2 CD4� lymphocytes, there

are two other T-cell subsets that have been identified, Th17

and Tregs (regulatory T-cells). The Th17 lymphocytes

produce IL-17, which in turn stimulate RANKL-mediated

osteoclastogenesis (115). They have been implicated in

rheumatoid arthritis, periodontal disease, and loosening

of joint prostheses (115). Under experimental conditions,

IL-17 appears to have an important protective function

since genetic deletion of IL-17 receptors enhance period-

ontal bone loss stimulated by P. gingivalis in vivo (116).

This may be due to the role of IL-17 in stimulating

chemokines that induce recruitment of neutrophils. How-

ever, humans with periodontitis have increased levels of

Th17 cells and IL-17 mRNA, compared to healthy tissues

suggesting but not proving that IL-17 contributes to

the destructive process (117). The Tregs modulate activa-

tion, proliferation, and effector function of conventional

T-cells (118) and have been identified in periodontal

tissues (119�121). Because they are associated with

the production of IL-10, TGF-b, and the inhibitory

molecule CTLA-4, Tregs may reduce periodontal disease

progression (119).

OsteoblastsOsteoclast
formation

Coupled bone 
formation

Uncoupled bone 
formation

Osteoclast
activity

Fig. 4. The role of coupling in periodontal lesion development. Bone formation occurs after bone resorption so that the two

processes are coupled. Thus, the resorption pit is occupied by osteoblasts that form new bone. In a normal healthy individual,

the amount of bone formed equals the amount resorbed. In pathologic bone resorption, the amount of bone that forms is less

than that resorbed so that there is net bone loss. This may be due to the impact of inflammation on bone formation.

Inflammation could potentially interfere with coupling by reducing proliferation of osteoblast precursors, inhibiting

differentiation of osteoblasts, decreasing osteoblast numbers by stimulating apoptosis, or by interfering with the production

of bone matrix.
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Uncoupled bone formation and periodontitis
Bone remodeling involves a process of bone resorption

followed by bone formation, a process referred to as

coupling (122). Bacteria induced bone resorption in a

healthy adult should be followed by an equivalent

amount of bone formation. In periodontitis, there is a

failure to form an adequate amount of new bone

following resorption resulting in net bone loss. Thus, a

critical aspect of periodontitis is uncoupling so that

bacteria induced bone loss is not followed by an

equivalent amount of new bone formation resulting in

net bone loss. The impact of uncoupling on creating net

bone loss is shown in Fig. 4.

The same process that stimulates bone resorption,

inflammation, may be responsible for uncoupling. It is

possible that under conditions where inflammation is in

close proximity to and along the bone, it will affect

osteoblast numbers or function and interfere with the

coupling process. In an experimental model, the injection

of P. gingivalis into connective tissue induces bone

resorption followed by bone formation (123, 124). If

the inflammation is prolonged by induction of the

adaptive immune response, the capacity to form

new bone is diminished and uncoupling occurs (123).

Similarly, prolonged inflammation in diabetic animals

interferes with bone formation in the periodontium

following bacteria stimulated bone resorption (124).

This interpretation is additionally supported by evidence

that the application of cytokines in vivo stimulates bone

resorption but also limits bone formation. Therefore,

several lines of animal experimentation support the

concept that inflammation uncouples bone formation

from bone resorption. Thus, inflammation may not only

stimulate the formation of osteoclasts and bone resorp-

tion, but also affect bone by altering the function of

osteoblasts and limiting reparative bone formation.

Conclusions
Polymicrobial infection in lesions of endodontic origin

stimulates bone resorption by interacting with the

leukocytes of the innate and adaptive immune responses.

In endodontic lesions, the presence of inflammation

suppresses bone formation so that lesion resolution

does not occur until the causal bacteria are entombed

by treatment and the inflammation subsides. Period-

ontitis is caused by a host response to the presence of

bacteria or their products that invade connective tissue.

The host defense, including innate and adaptive immu-

nity, is responsible for combating bacteria invading the

periodontal tissue. In humans, plaque accumulation

occurs even in health so that there is a continuous state

of inflammation in gingival tissue adjacent to teeth. By

using animal models and specific inhibitors, both the

innate and adaptive immune response have been conclu-

sively shown to participate in the formation of period-

ontal lesions. Cytokines generated that induce osteolytic

lesions are shown in Fig. 2 and a comparison of the effect

of cytokine deletion or inhibition in the formation of

lesions of endodontic origin and in periodontitis is shown

in Table 2. It is also possible that the inflammation

associated with periodontal bone resorption affects

coupled bone formation contributing to net bone loss

(see Fig. 4).
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