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Abstract

Pathogen genomic data are increasingly used to characterize global and local transmission patterns of important human patho-
gens and to inform public health interventions. Yet, there is no current consensus on how to measure genomic variation. To test the 
effect of the variant-identification approach on transmission inferences for Mycobacterium tuberculosis, we conducted an experi-
ment in which five genomic epidemiology groups applied variant-identification pipelines to the same outbreak sequence data. We 
compared the variants identified by each group in addition to transmission and phylogenetic inferences made with each variant 
set. To measure the performance of commonly used variant-identification tools, we simulated an outbreak. We compared the per-
formance of three mapping algorithms, five variant callers and two variant filters in recovering true outbreak variants. Finally, we 
investigated the effect of applying increasingly stringent filters on transmission inferences and phylogenies. We found that variant-
calling approaches used by different groups do not recover consistent sets of variants, which can lead to conflicting transmission 
inferences. Further, performance in recovering true variation varied widely across approaches. While no single variant-identification 
approach outperforms others in both recovering true genome-wide and outbreak-level variation, variant-identification algorithms 
calibrated upon real sequence data or that incorporate local reassembly outperform others in recovering true pairwise differ-
ences between isolates. The choice of variant filters contributed to extensive differences across pipelines, and applying increasingly 
stringent filters rapidly eroded the accuracy of transmission inferences and quality of phylogenies reconstructed from outbreak 
variation. Commonly used approaches to identify M. tuberculosis genomic variation have variable performance, particularly when 
predicting potential transmission links from pairwise genetic distances. Phylogenetic reconstruction may be improved by less 
stringent variant filtering. Approaches that improve variant identification in repetitive, hypervariable regions, such as long-read 
assemblies, may improve transmission inference.

DATA SUMMARY
The authors confirm all supporting data, code and protocols 
have been provided within the article or through supplemen-
tary data files. The scripts supporting the conclusions of this 
article are available in the GitHub repository, https://​github.​
com/​ksw9/​mtb_​variant_​identification. The genomic data 

re-analysed in the Pipeline comparison for epidemic data 
[1] is publicly available (ENA Study Accession: PRJEB6945). 
Simulated sequence data and truth VCF files for genome-
wide performance benchmarking, in addition to the outbreak 
phylogeny, multiple sequence alignment and outbreak truth 
VCF file are available in a digital repository: https://​purl.​stan-
ford.​edu/​mr554nj9219.
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BACKGROUND
The continuous evolution of human pathogens creates a 
powerful epidemiological record. Patterns of variation within 
and between populations of pathogens can be used to infer 
substitution rates, phylogenetic and phylogeographic relation-
ships, such as geographic origins and routes of spatial spread, 
population size dynamics, and – if pathogen evolution occurs 
over the same timescale as transmission – transmission patterns 
[2].

Tuberculosis (TB) kills more people than any other infectious 
disease and halting transmission of Mycobacterium tuberculosis 
is essential to reducing the global burden of disease. However, 
in high-incidence settings, it is unknown where and between 
whom the majority of transmission occurs [3] and therefore 
where to focus interventions. Molecular epidemiology studies 
harness genetic and genomic variation to understand patterns 
of transmission and are premised on the idea that M. tubercu-
losis is constantly evolving as it spreads from person to person.  
M. tuberculosis isolates that share a genotype (RFLP, spoligo-
type or MIRU-VNTR) [4–6], or which have whole-genome 
sequences within a given genetic distance [7–10], are considered 
clustered and potentially epidemiologically linked. Phylogenies 
inferred from outbreak variation may reveal patterns of related-
ness within and between clusters [10–12]. Finally, transmission 
trees integrate epidemiological and phylogenetic information to 
capture probable transmission histories, chains of who infected 
whom [13, 14]. Predicted transmission links have been used to 
infer the likely location and/or timing [15, 16] of transmission, 
to identify risk factors for transmission and high-risk popula-
tions [17], to distinguish between acquired (primary) and trans-
mitted drug resistance [18] and to declare an outbreak over [19].

Transmission inferences rely on the high-quality measurement 
of genetic variation from sequence data. However, there is no 
consensus on how to measure pathogen genomic variation 
[20]. Molecular epidemiology studies of M. tuberculosis often 
sequence whole genomes directly from bacterial cultures 
[20, 21]. Sequence data are mapped to a reference genome, 
variants are identified with respect to the reference and vari-
ants are filtered with variant annotation thresholds. The 
choice of mapping and variant-calling algorithms in addition 
to variant filters vary widely across studies. Similarly, there is 
no standard procedure for reference genome selection. While  
M. tuberculosis global diversity falls into seven human-adapted 
lineages, genomic epidemiology studies frequently use refer-
ence genomes from a single lineage, constraining the potential 
to identify variants that occur outside of the reference-genome 
backbone. Genomic epidemiology studies of M. tuberculosis 
may additionally apply regional filters, excluding repetitive 
genes or regions, such as genes in the PE and PPE families [22]. 
Yet there is no standardized set of genes to exclude.

The ad hoc nature of genomic variant calling makes it difficult 
to interpret pathogen variation within a study and to compare 
variation across studies. While many pipelines widely used in M. 
tuberculosis molecular epidemiology were designed or validated 
for antibiotic resistance prediction [22–27], their performance 
in recovering true pairwise differences and the underlying 

phylogenetic structure of outbreak genomes, the metrics used 
for transmission inference, has not been reported. M. tubercu-
losis is slow-growing and only small numbers of substitutions 
may accumulate over the course of an outbreak [27]. Genomic 
investigation of M. tuberculosis outbreaks is thus uniquely chal-
lenging as inferences will be constrained by the sensitivity of 
tools to detect subtle differences between outbreak strains.

Here, we investigate how different variant-identification 
approaches may alter M. tuberculosis transmission inferences. 
First, we tested the effect of the variant-calling pipeline on 
transmission and phylogenetic inferences made from the 
same sequence data. We collected and compared variant calls 
from five research groups for the same sequence data from 
a clonal tuberculosis outbreak in Germany [1]. Second, we 
measured the performance of variant-calling-tool combina-
tions in recovering genome-wide variants and pairwise differ-
ences between outbreak genomes in a simulated TB outbreak 
for which we knew the underlying genomic truth.

RESULTS
Pipeline comparison for epidemic data
To measure the effect of the variant-calling pipeline on 
transmission inference, four independent genomic epide-
miology groups (pipelines A–D) contributed filtered variant 
calls for previously published sequence data from a clonal  
M. tuberculosis outbreak in Hamburg and Schleswig-Holstein, 
Germany from 1997–2006 [1] (Fig.  1). The outbreak was 
identified during routine population-based surveillance and 
86 isolates were cultured and fully sequenced on an Illumina 

Impact Statement

Pathogens continuously evolve as they spread from 
person to person. The accumulation of mutations over 
time can create a valuable epidemiological record that 
may be used to reconstruct outbreak trajectories and 
transmission chains. The informativeness of pathogen 
genomes is contingent on our ability to observe low 
levels of genetic diversity between closely related patho-
gens. However, there is no current consensus on how to 
identify variation within pathogen genomes. We tested 
whether different approaches in identifying variation in 
tuberculosis bacterial genomes altered our predictions 
of potential transmission events. We also measured the 
performance of commonly used tools in recovering true 
outbreak variants. We find that variant-identification 
approaches can substantially alter transmission infer-
ences and that different variant-identification tools vary 
widely in sensitivity and specificity. Our findings suggest 
that further work is needed to optimize existing tools 
for pathogen genomic epidemiology and that long-read 
sequencing approaches may further enhance the utility 
of pathogen genomic data.
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platform (ENA Study Accession: PRJEB6945). The original 
study identified 85 single nucleotide polymorphisms (SNPs) 
that were validated with Sanger sequencing [1]; we refer to 
this set of validated SNPs as pipeline E.

All variant-calling pipelines compared here have been applied, 
formed the basis of, or have been proposed for transmission 
inference (e.g. pipeline A: [28]; B: [29]; C: [30]; D: [18]) and 
varied in quality control, choice of reference genome, mapper, 
caller, variant filters and genomic regions excluded (Table S1, 
available in the online version of this article).

Variants identified by different pipelines in the 
same outbreak data
After filtering, pipelines identified 63 to 416 SNPs between 
outbreak strains (i.e. internal SNPs) compared to 85 SNPs 

identified in the initial study (Fig. 2a, Table S2). The five pipe-
lines identified a common set of 55 SNPs (Fig. 2b); however, 
there was significant discordance in SNPs identified and each 
pipeline identified 1–190 unique SNPs. Sensitivity in recovering 
SNPs in the original study ranged from 72.9–92.9 % (Fig. 2c, 
Table S2). Two variants identified by pipeline B fell in locations 
on pipeline B’s reference genome (one of the outbreak genomes) 
that did not correspond to references used by other groups and 
were unique due to reference choice. Pipeline C excluded 20 % 
(17/86) of samples that did not meet thresholds for contamination 
(minimum of 90 % of reads taxonomically classified as M. tuber-
culosis complex) [22]. It is likely that differences in the magnitude 
of total outbreak variants identified by pipelines C and D result 
from their treatment of positions of low-coverage or low-quality 
sequence information, which we discuss further below.

Fig. 1. Experimental approach. We investigated the consequences of variant-calling methodological choices on genomic epidemiology 
inferences with two approaches. First, to test the effect of the variant-identification pipeline on transmission inferences, we conducted 
a pipeline comparison experiment in which four independent genomic epidemiology groups called variants from the same sequence 
data generated during a clonal tuberculosis epidemic in Germany (a). We compared variant calls in addition to the transmission and 
phylogenetic inferences made with each variant set. Second, we measured the performance of variant-calling-tool combinations in 
recovering genome-wide variants and pairwise differences between outbreak genomes in a simulated TB outbreak for which we knew 
the underlying genomic truth. We simulated evolution over the course of a model tuberculosis outbreak, generating a phylogeny with 
known SNP mutations, depicted as red crosses (b). This resulted in a set of closely related full-length outbreak genomes for which we 
knew the underlying true patterns of genomic variation (c). For each outbreak genome, we simulated Illumina sequence reads (green 
lines), synthesizing the type of genomic data we might generate in a real outbreak investigation. We mapped reads, called variants, and 
applied variant filters with several different tool combinations, resulting in 35 sets of candidate variant calls (candidate SNPs depicted as 
grey dashed lines) for each set of query sequence data (d). We then compared each candidate variant set to the underlying true outbreak 
variants to evaluate the performance of each tool combination.
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Transmission inferences across pipelines
Pairwise genetic distances between outbreak sequences, a 
proxy of the evolutionary distance between genomes, are 
frequently used to identify M. tuberculosis isolates potentially 
linked by recent transmission [31]. Two isolates separated 
by a large evolutionary distance are considered unlikely to 
be the result of recent transmission, while isolates within a 
threshold genetic distance [7–10] are considered clustered 
and potentially epidemiologically linked.

While the current consensus is that distance thresholds should 
be calibrated to the diversity observed within individual 
studies [20, 31, 32], in practice, previously existing 5- [8] or 

12-SNP [7] thresholds are frequently employed to distinguish 
between ‘clustered’ and ‘non-clustered’ isolates [20].

The five pipelines identified different distributions of pairwise 
SNP distances (Fig. 3a), leading to widely different epide-
miological interpretations (Figs 3a and b). Median pairwise 
distances ranged from 1 to 42 SNPs among pipelines (Table 
S2). Pipelines reported that 0–29.7 % of isolate pairs were 
identical (0 SNP differences). After applying commonly 
used transmission thresholds of pairwise distances less than 
or equal to 5 or 12 SNPs [7, 23, 33], the number of poten-
tial transmission links varied dramatically across pipelines 
(Fig. 3b, Table S2). For example, with variants identified by 
pipeline A, 80.7 % of sample comparisons fell below a 5-SNP 

Fig. 2. Outbreak variation identified by four pipelines. (a) Total internal SNPs identified by each pipeline (a−d) compared with the 85 
SNPs detected in the original study (e), (b) the intersection of SNPs identified by each pipeline, and (c) sensitivity of each pipeline (a−d) 
in recovering the set of Sanger sequence-verified SNPs from the original study (e).
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threshold of potential recent transmission whereas with 
variants identified by pipelines C and D, less than 0.5 % of 
comparisons did.

Even pipelines that identify similar total numbers of internal 
SNPs (A and B) and that identify pairwise differences that are 
closely correlated (Fig. 3c) may still identify different distances 
between isolate pairs, resulting in conflicting transmission 
inferences. After applying a 5-SNP threshold for transmission, 
pipeline A identifies 413 potentially clustered pairs not identi-
fied by pipeline B. Conversely, pipeline B identifies 14 potentially 

clustered pairs not identified by pipeline A. Cumulatively, for the 
two most similar pipelines, 11.7 % of transmission inferences 
(427 of 3655 pairwise comparisons) are discordant (Fig. 3c, 
blue shading). Correlation of measured pairwise differences 
was lower for all other pipelines (Fig. S1).

Increasingly, transmission inferences are made by incorpo-
rating additional epidemiological data along with sequence 
data. We additionally tested the effect of the variant-
identification pipeline on transmission inferences made by 
transcluster [32], a probabilistic approach that integrates 

Fig. 3. Pairwise SNP distances and phylogenetic trees inferred using different variant-identification pipelines. (a) The distribution of 
pairwise genetic distances identified by each pipeline on a log-scale. The width of the violin represents the frequency of a given pairwise 
genetic distance. The dotted lines at 5 and 12 SNPs represent commonly used thresholds for recent transmission. (b) The percentage 
of sequence pairs with potential transmission links when applying 5 and 12 SNP thresholds for transmission. (c) Pairwise distances 
between isolates identified by pipelines A and B are closely correlated (Pearson's correlation coefficient, r=0.89, P<0.001). Each point 
corresponds to a unique pair of sequences. Dotted lines indicate 5 and 12 SNP distance thresholds and blue and red shading indicates 
regions in which callers make conflicting transmission inferences after applying a 5 or 12 SNP threshold, respectively. (d) Maximum-
likelihood trees inferred from the variation identified by each pipeline largely cluster separately.
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sequence alignments, sampling dates and epidemiological 
priors to predict transmission clusters. We held epidemiologic 
parameters constant and included sampling dates reported in 
the original study [1]. Similar to inferences made by applying 
thresholds to pairwise distances, inferred transmission 
clusters differed substantially across variant-identification 
pipelines (Fig. S2). After applying a 5-SNP threshold to 
transmission clusters, for example, pipelines inferred from 2 
(pipelines A and B) to 76 (pipeline D) clusters. We addition-
ally found that adjustment of transmission thresholds does 
not adequately harmonize transmission inferences across 
pipelines (Supplementary Text; Fig. S5).

It seems likely that the large number of variants exclusive 
to pipelines C and D, (Fig. 2), and the apparent similarity 
of pipeline C and D transmission inferences (Figs S1 and 
S2) partly reflect pipeline assumptions. Pipelines C and D 
produced individual sample variant call format (VCF) files 
that included only variant sites; this precluded distinguishing 
between reference allele calls and sites with no confident allele 
call (i.e. at positions of low coverage or quality). To measure 
pairwise differences between samples, these pipelines 
assumed that missing sites represented the reference allele, 
likely generating inflated measures of pairwise differences. 
An alternative strategy could produce VCFs including all 
reference-genome positions with information about the depth 
and quality of reads corresponding to reference and allele calls 
even at sites with no coverage.

Phylogenetic inferences across pipelines
We then fit maximum-likelihood phylogenies with alignments 
of concatenated SNPs identified by each pipeline. We assessed 
the similarity of bootstrapped trees with Robinson–Foulds 
(RF) metric, a measure of distance between phylogenetic 
trees, and used Ward’s method to assign trees into clusters 
(Fig. 3d). While bootstrap trees do not converge for each pipe-
line [34], reflecting low levels of measured diversity, the trees 
inferred by different pipelines are assigned to distinct clusters 
(Fig. 3d). All trees cluster with their respective pipelines, with 
the exception of three bootstrap replicate trees inferred from 
pipeline A variation. Pipeline C, which excludes 20 samples, 
is not shown because tree distances cannot be computed 
between trees with different sets of tips.

Tool performance in a simulated outbreak
For the outbreak described above, as for any outbreak, the 
true genomic sequence of M. tuberculosis isolates is unknown. 
Performance of pipelines in recovering true outbreak SNPs 
cannot be measured. Variant-calling pipelines for human 
genomes are often benchmarked upon diploid human 
genomic ‘truth sets,’ variants identified and confirmed by 
several sequencing and bioinformatic pipelines and/or vali-
dated by family pedigrees [35, 36]. However, such genomic 
variant truth sets do not exist for M. tuberculosis or other 
human pathogens.

To evaluate the performance of commonly used variant-
calling-tool combinations in recovering genome-wide 

variants and pairwise differences between outbreak genomes, 
we simulated sequence data from a set of synthetic, closely 
related M. tuberculosis genomes, for which we knew the 
underlying true patterns of variation (Fig. 1). We measured 
accuracy in terms of sensitivity (the probability of true vari-
ants are identified) and precision (the probability a variant 
identified by a caller is indeed a true variant).

We applied commonly used mapping algorithms (BWA, 
Bowtie 2 and SMALT)[37,38,39] variant callers (Breseq, 
Pilon, GATK, Samtools and DeepVariant)[40,41,42,4344] 
and filters (no filter, a hard quality score filter, QUAL, Pilon-
specific filters, and variant quality-score recalibration, VQSR) 
to simulate data and measure performance in recovering true 
SNP variants (Methods).

Performance in recovering M. tuberculosis SNPs 
across tool combinations
To measure performance of variant-calling tools in recovering 
genome-wide M. tuberculosis variants, we generated 20 sets 
of Illumina short-read data in silico from the M. tuberculosis 
strain CDC1551 query genome and evaluated the perfor-
mance of nine variant-calling-tool combinations in recov-
ering the 1501 SNPs identified by pairwise alignment of the 
query and the frequently used M. tuberculosis strain H37Rv 
reference genome (Methods).

Performance in recovering true genome-wide M. tuberculosis 
SNPs varies widely across tool combinations (Fig. 4) using 
strain H37Rv as the mapping reference. Prior to filtering, 
variation in precision exceeds that of sensitivity; maximum 
precision is 98.0 % (Bowtie 2/Breseq) while maximum sensi-
tivity is 80.1 % (Bowtie 2/Pilon) (Table S3). The number of 
false positive (FP) errors varies from 21.4 (Bowtie 2/Breseq) 
to 351 (Bowtie 2/DeepVariant) before filtering.

We examined the genomic location of errors and tested if 
standard filters could reduce FP errors. Variant-calling 
performance varies across the genome and is worse in the 
168 repetitive PE/PPE genes (Fig. 4), which are often excluded 
from M. tuberculosis molecular epidemiology studies [45]. 
Before filtering, 39.8–71.0 % (identified by SMALT/Pilon and 
BWA/GATK, respectively) of FPs occur in PE/PPE genes, 
which comprise 6.37 % of the genome (Fig. 4a). False negative 
(FN) errors are also disproportionately located in the PE/PPE 
genes (Fig. 4b). Before filtering, 65.2–70.8 % (identified by 
(SMALT/Samtools and BWA/DeepVariant, respectively) of 
FNs occur in PE/PPE genes.

Filtering by excluding the PE/PPE genes or by filtering by 
quality score or VQSR reduces but does not eliminate FP 
errors, while increasing FN errors. FP errors are minimized 
by Bowtie 2/GATK with VQSR and excluding the PE/PPE 
genes (mean FP 2.2 SNPs, mean FN 167 SNPs). Even when 
PE/PPE genes are included, GATK/VQSR tool combinations 
identify fewer FP errors than all other tool combinations 
(Fig. 4). FN errors are minimized by SMALT/DeepVariant, 
excluding the PE/PPE genes (mean FP 68.4 SNPs, mean FN 
98.2 SNPs). Further, filters contribute to extensive variation 
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across tool combinations. For example, applying a VQSR 
filter as compared to a quality filter to calls identified by 
BWA/GATK can reduce FP errors from 83 to 10 (when still 
including PE/PPE genes) (Fig. 4).

We additionally examined the source of FN errors for Pilon/
Bowtie 2, the tool combination with the highest sensitivity 
(lowest FN errors) to determine if FNs could be attributed to 
filtering or incorrect reference allele calls. Of the mean 327 
total FN errors (Table S3) an average of 50.2 positions were 
called as heterozygous sites by Pilon. These sites were marked 
as ‘Ambiguous’ by Pilon and filtered. However, the majority of 
FN sites could not be explained by ambiguous calls. A mean 
of 206.0 sites along the genome were marked as low coverage 
and 99.1 sites were marked as deletions by Pilon and were 
additionally filtered. Many of these occurred in the repeti-
tive PE/PPE genes. Finally, many FN errors are adjacent to 

sites called as indels. This suggests that further optimization 
of filters to specific tool combinations, in addition to post-
processing steps such as the normalization of variant calls, 
could improve performance beyond that achieved using the 
default parameters. Our intent here is not to optimize the 
parameters for each caller; but rather to test whether variants 
identified and performance vary across tool combinations.

All tool combinations are characterized by a trade-off between 
sensitivity and precision visible in the inverse relationship 
between FP and FN errors. However, no tool combination 
consistently outperforms other tool combinations in minimizing 
both types of errors (Fig. 4), indicating that an optimal approach 
may depend on the relative costs of different error types for 
specific applications. No combination of mapper, variant caller 
and filter were able to achieve >99.9 % precision and sensitivity 
reported for human genomes and which won the PrecisionFDA 

Fig. 4. Errors in M. tuberculosis SNPs identified by different tool combinations. Mean and standard deviation of false positive (a) and 
false negative (b) errors identified by variant-identification tool combinations. Breseq is a complete computational pipeline that includes 
mapping with Bowtie 2. Bar colour indicates mapper and shading indicates genomic region. Panels have different y-axes.
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Truth Challenge, a competition in small variant identification 
from short-read genomic sequence data [44].

Effect of reference choice on performance in 
recovering M. tuberculosis SNPs
To assess how the choice of reference genome affects variant-
calling performance, we mapped one sequence set to 13 
different reference genomes spanning global M. tuberculosis 
diversity and ranging from 1376 (lineage 4, strain F11) to 
3396 (lineage 2, strain Beijing_NITR203) SNPs distant from 
the strain CDC1551 query genome (lineage 4, Table S4). In 
Poisson-generalized linear models, log-transformed distance 
to the reference genome, mapper and caller are significant 
predictors of both FP and FN errors, prior to filtering.

Both FP and FN errors increase with increasing log-
transformed distance between the query and reference 
genomes, when controlling for pipeline (Fig. S3). Errors vary 
widely between reference genomes, possibly reflecting indi-
vidual genomes’ repetitive content, extent of synteny with the 
query genome, or reference assembly quality.

Performance in recovering pairwise differences 
across tool combinations
Studies of the genomic correlates of antibiotic resistance or 
virulence seek to identify variants in a single genome with 
respect to a reference genome. In contrast, variant calling for 
transmission inference seeks to measure small amounts of 
variation between multiple closely related outbreak genomes. 
Identifying variants between query genomes and a known 
reference genome is intermediate to the true goal: identi-
fying variants between the outbreak genomes. If errors with 
respect to the reference genome are consistent within a single 
pipeline, then inference about relatedness between outbreak 
samples should not be affected.

We measured the performance of tool combinations in iden-
tifying pairwise differences between closely related sequences 
within a model 5 year TB outbreak (Methods). We simulated 
evolution of M. tuberculosis from a common ancestral genome 
(strain CDC1551) over the outbreak phylogeny (Figs S4 and 
S6), resulting in a total of 145 outbreak SNPs with respect to 
the strain H37Rv reference, and generated sequence data in 
silico from the 44 outbreak sequences. True pairwise differences 
between outbreak genomes ranged from 0 to 27 SNPs and mean 
pairwise distance between isolates was 13.2 SNPs with respect 
to the reference genome.

Performance in recovering true pairwise differences between 
outbreak strains varied across tool combinations using strain 
H37Rv as the mapping reference. Prior to filtering, mean sensi-
tivity ranges from 85.9 % (Bowtie 2/Breseq) to 95.0 % (Bowtie 2/
DeepVariant) and mean precision ranges from 14.7 % (Bowtie 
2/Samtools) to 64.5 % (SMALT/GATK) (Table S5). As seen for 
genome-wide performance, performance in identifying pair-
wise differences is worse in the 168 repetitive PE/PPE genes 
compared to the rest of the genome. Before filtering, 31.9 % 
(SMALT/Pilon) – 97.0 % (BWA/GATK) of FPs occur in PE/
PPE genes (Fig. 5).

We then tested whether filters could improve performance 
in recovering pairwise differences. Quality score or VQSR 
filters reduce but do not eliminate FP pairwise errors 
(Fig. 5, Table S5). Several tool combinations result in mean 
FP pairwise errors above 5 SNPs if PE/PPE genes are not 
excluded (i.e. approaches with Samtools; GATK/QUAL; 
Breseq/QUAL; Bowtie 2/Pilon/Qual; BWA/Pilon/Pilon). 
If a pairwise difference threshold of 5 SNPs was applied, 
the effect of variant-calling errors alone would exclude the 
possibility of recent transmission. Even after filtering, the 
range of mean FP errors is more than 25 times that of FN 
errors across tool combinations (Fig. 5).

Because 23 of the 145 outbreak SNPs occur within PE/PPE genes, 
approaches which exclude PE/PPE genes have a maximum total 
sensitivity of only 84.1 % (122/145) of the total outbreak varia-
tion. Tool combinations including GATK/VQSR, DeepVariant/
QUAL, and Bowtie 2 or SMALT with Pilon and Pilon-specific 
filter or SMALT/Pilon/Qual allow PE/PPE gene variation to be 
retained while keeping mean FP errors below 5 SNPs. Among 
tool combinations that include PE/PPE gene variation and with 
mean FP errors below 5 SNPs, maximum sensitivity was 94.1 % 
(Bowtie 2/Pilon/Pilon) and maximum precision was >99.9 % 
(Bowtie 2/DeepVariant/QUAL). We found that pairwise errors 
are often repeated and cluster within repetitive genomic regions 
(Supplementary Text).

Effect of variant filtering on transmission 
inferences
Variant filters vary widely between studies and can contribute 
more to variation between tool combinations than either 
mapping or variant calling (Figs 3 and 4). However, filters are 
frequently not justified empirically, and the effect of filtering on 
transmission and phylogenetic inference is unknown. To test the 
effect of variant filtering on downstream inferences, we applied 
a series of increasingly stringent quality-score filters to variant 
calls identified by a single tool combination, BWA/GATK.

As expected, applying increasingly strict variant quality-score 
filters reduces observed pairwise differences between outbreak 
samples, resulting in a trade-off between FP and FN errors 
(Fig. 6a, b). Mean genome-wide FP pairwise errors are 10.5 
SNPs before quality filtering and 0.29 SNPs after excluding 
the PE/PPE genes. Mean genome-wide FP errors fall rapidly 
to 0.14 after excluding variants in the lowest quality decile 
and 0.046 SNPs after excluding PE/PPE genes. Mean genome-
wide FN errors are 0.74 before filtering and increase rapidly 
after excluding the lowest two deciles of variants. FN errors 
are consistently higher in variant sets excluding PE/PPE 
genes, reflecting the fact that 15.9 % (23/145) of true variants 
occur in these genes.

Before quality filtering, 95.0 % of isolate pairs were correctly 
assigned as falling above or below a 5-SNP threshold when 
considering genome-wide variants; 95.9 % pairs were correctly 
assigned after exclusion of the PE/PPE genes (Fig. 6c). Accu-
racy in distinguishing pairs falling above or below a 5-SNP 
threshold improves slightly after excluding variants in the 
lowest quality decile to a maximum of 98.1 % for genome-wide 
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variants and 94.6 % after excluding PE/PPE genes, after which 
accuracy rapidly declines. Excluding the PE/PPE genes gener-
ally results in lower accuracy in identifying isolate pairs falling 
under a 5-SNP threshold (Fig. 6c).

Distances of reconstructed trees to the true underlying 
phylogeny fall rapidly after initial filtering and then steadily 
increase with more stringent quality score filters, resulting 
in a U-shaped relationship between quality-score filter and 
distance to the true tree, measured by KC distance, and a 
hockey-stick-shaped relationship for RF distance (Fig. 6d). 
When no quality filtering is applied, the inclusion of variants 
within PE/PPE genes results in large distances of inferred 
phylogenies to the true tree (149.0, KC distance and 70.0, RF 
distance). Mean KC tree distances fall to a minimum of 22.4 
after filtering 30 % of variants, when genome-wide variants 
are included. Mean RF distances fall to a minimum of 35.8 
after filtering of 10 % of variants, when genome-wide variants 
are included. These observations suggest that some filtering 
is necessary to remove the lowest quality variants, either by 
exclusion of problematic regions or by exclusion of the lowest 
quality variants, but additional filtering may rapidly erode the 
quality of inferred phylogenies.

DISCUSSION
As shown in the results (pipeline comparison for epidemic 
data), methodological differences between different  
M. tuberculosis molecular epidemiology groups can lead to 
differing epidemiological conclusions made from the same 
sequence data. While a recent study found that four European 
variant-identification pipelines were largely concordant in 
their ability to rule out potential transmission links between  
M. tuberculosis isolates [46], the pipelines in this earlier study 
applied similar genomic filters and three of the four pipelines 
compared used Samtools. Further, while the earlier study 
compares the number of genomically clustered isolates iden-
tified by different pipelines, here, we compare the pairwise 
distances identified by different pipelines.

Our findings suggest that results from genomic epidemiology 
studies need to be interpreted in the context of study method-
ology. The lack of reproducibility among variant-identification 
pipelines affects all downstream analyses, particularly as 
variant uncertainty is not often reported or incorporated 
into other analyses. Estimates of M. tuberculosis substitution 
rate, for example, are similarly contingent on variant-calling 

Fig. 5. Errors in pairwise differences identified by different tool combinations. Mean and standard deviation of false positive (a) and false 
negative (b) SNP differences between outbreak sequences identified by variant-identification tool combinations. Breseq is a complete 
computational pipeline that includes mapping with Bowtie 2. Bar colour indicates mapper and shading indicates genomic region. Dotted 
lines in (a) indicate 5 and 12 SNP distance thresholds, commonly used for inferring recent transmission. Panels have different y-axes.
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pipeline. Stringent filtering or the exclusion of variants within 
the PE/PPE genes will likely decrease the observed molecular 
clock rate of M. tuberculosis. We note several limitations to 
our study (Box 1), including that we focus only on the impact 
of variant-identification methods on transmission inferences 
and not other potential downstream inferences.

Trained variant-identification tools
Sequencing technologies and variant-calling algorithms are 
rapidly changing, and our aim was not to identify a single 
best pipeline, but instead to characterize the reproducibility 
and accuracy of variant-identification tools when applied with 
default settings. We found that performance varies widely 
across approaches and that no single tool combination out-
performs all others. The good performance of DeepVariant 
and Pilon in recovering outbreak variation likely reflects cali-
bration upon labelled sequence data, through the training of a 
neural network (DeepVariant) or fitting of Gaussian mixture 
models to variant annotations (GATK/VQSR), or for Pilon, 
the use of read-pair information to improve local assembly, 
particularly in repetitive regions [41].

Interpreting population-level variation
A significant source of differences among pipelines in the results 
(pipeline comparison for epidemic data) could be attributed 
to the interpretation of variants following variant calling. This 
highlights the need to standardize reporting of variants and 
distinguish between missing sites and reference allele calls.

Variant filtering
We found that subtle differences between outbreak genomes 
can be readily overwhelmed by bioinformatic errors. However, 
appropriate filtering can greatly reduce both false-positive and 
false-negative errors while, in some cases, retaining variation 
in PE/PPE genes. Filters contribute to extensive variation 
across tool combinations. Further, our results demonstrate 
that tools and filters interact.

Many genomic epidemiology studies employ some type of 
hard filtering, whether based on annotation or genomic 
region. Transmission inferences based on pairwise differences 
as well as phylogenies are sensitive to variant-filtering strategy 
and optimal filters may depend on specific downstream 
application. While minimal filtering improves the accuracy 

Fig. 6. Effect of increased filtering on transmission inference and phylogenetic reconstruction. (a) False positive and (b) false negative 
pairwise errors identified in the simulated TB outbreak sequences with BWA/GATK and increasingly strict variant filtering. (c) Accuracy 
in distinguishing pairs falling above or below a 5-SNP threshold. (d) Distance of phylogenies inferred with increasingly filtered variants 
to the true outbreak phylogeny measured with the KC [65] and RF [55] metrics. Genomic region is indicated by colour and points 
corresponding to each genomic region are staggered along the x-axis to improve clarity. Points represent mean pairwise errors for each 
filtering level and error bars indicate the partially pooled errors across ten replicate sequence sets.
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of transmission linkages predicted by pairwise differences and 
tree reconstruction, extensive filtering results in poorer accu-
racy of predicted transmission linkages and phylogenies that 
are increasingly distant from the underlying true phylogeny. 
After limited quality filtering, including the PE/PPE genes 
does not negatively affect transmission or phylogenetic infer-
ences. The PE/PPE genes are the most variant dense regions 
of the M. tuberculosis genome and are known antigens and 
virulence determinants [45]. Routine exclusion of these genes 
reduces the information potential of M. tuberculosis genomes 
and limits our ability to study the functional consequences 
of M. tuberculosis variation. Our findings suggest that, if 
appropriate filters are applied, it may be possible to retain 
variation in many of the PE/PPE genes, frequently excluded 
from genomic epidemiology studies.

Reference genome choice
As expected, variant errors increased with increased distances 
between the reference and query genomes. This contrasts with 
a previous study that found the choice of reference genome 
did not affect M. tuberculosis epidemiological inferences [47]. 
Our study differs from the previous study in that we used 
simulated genomic data for which underlying true variation 
is known to measure performance in identifying variants in 
individual genomes. The earlier study measured how refer-
ence choice affects performance in classifying isolate pairs 
as linked or unlinked using the strain CDC1551 reference 
genome as truth.

M. tuberculosis genomic epidemiology studies routinely use 
strain H37Rv or strain CDC1551 reference genomes, both of 
which belong to lineage 4. Studies investigating variation in 
other lineages will particularly benefit from using local refer-
ence genomes, either a full-length genome from the outbreak 
being studied or another closely related genome. Gene content 
differs between M. tuberculosis lineages [20, 48], constraining 
sensitivity in a reference-based genome approach. Any variation 
within regions inserted in the query genomes relative to the 
reference will be missed even by a perfectly sensitive variant 
caller.

Pathogen genomic epidemiology needs
The issues we identify here generalize to other pathogens, 
particularly those with slow relative rates of substitu-
tion compared with time course of transmission. Our 
results suggest that pathogen genomic epidemiology, for  
M. tuberculosis and other species, will benefit from the further 
optimization of genomic resources and methods for bacterial 
genomes and the use of long-read sequencing data.

First, pathogen genomic truth sets of experimental (not simu-
lated) sequence data accompanied by validated variants would 
enable training of machine-learning approaches upon labelled 
pathogen variant data and would serve as a gold standard for 
performance benchmarking of variant-calling approaches. 
Secondly, further work is needed to optimize variant callers 
for pathogens and for particular applications (i.e. prediction 
of antibiotic resistance versus transmission inference). Further, 

variant callers could output quality scores for reference allele 
calls in addition to alternative allele calls, enabling comparisons 
between all sites (as done by GATK and Pilon). This allows filters 
to be applied to both reference allele calls and alternate allele 
calls (i.e. reference allele calls might have poor coverage and/
or quality just as alternate alleles might). Third, we find that 
filtering on site and sample-specific annotations allows all avail-
able information about variants across samples to be retained 
(i.e. many variant-calling programs ‘merge’ sample-specific 
annotations into a maximum or mean annotation for a site and 
information about a low-quality call for a single sample may 
be lost). Fourth, the power of long-read sequence data could 
improve accuracy of transmission inferences. Finally, variant 
uncertainty represents an important and unreported source of 
potential error in genomic epidemiology studies. How to incor-
porate uncertainty in underlying measures of genomic variants 
or sequences in phylogenetic inference remains an open and 
important question.

Other groups have identified methods to reduce additional 
sources of error in genomic epidemiology studies. For 
example, taxonomic filtering can importantly exclude reads 

Box 1. Study limitations

•	 We measured performance on simulated sequence 
data that includes errors associated with Illumina 
sequencing [57], but which likely does not capture the 
full spectrum of sequence errors introduced in epide-
miological studies.

•	 We do not examine indels and other structural vari-
ants, which data presented by [66] demonstrate can 
be phylogenetically informative.

•	 We do not measure performance of pipelines in iden-
tifying within-host variation, which is clinically and 
epidemiologically important [67, 68] and can provide 
additional information for transmission inference 
[69, 70]

•	 We did not investigate the performance of variant-
calling tools in recovering variants associated with 
antibiotic resistance or other phenotypes.

•	 We did not measure the effect of recombination within 
an outbreak or with respect to a reference genome on 
the ability of tools to recover outbreak SNP variation.

•	 Performance measures of variant-identification tools 
depend on the accuracy of the truth set, generated by 
pairwise alignment of query and reference genomes. 
As described in Methods, we found that pairwise align-
ment had sensitivity >98 % and precision >95 % when 
recovering introduced SNP variants between closely 
related genomes. Because of this uncertainty in the 
truthset, some of the candidate genome-wide variants 
in the ‘Tool performance in a simulated outbreak,’ may 
be misclassified.
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from contaminating microbial species [49]. Additionally, 
other work has found that calling variants for samples inde-
pendently rather than jointly may improve sensitivity for 
detecting low-frequency microbial variants [50].

Conclusions
While many applications of M. tuberculosis whole-genome 
sequencing for transmission inference use hard filters to mini-
mize false-positive SNPs [20] and then apply pairwise SNP 
distance thresholds to infer potential transmission linkages 
[20, 51], here we show that (a) such approaches do not recover 
consistent sets of SNPs; (b) pairwise distance thresholds are not 
robust to differences between pipelines; and (c) strict filtering 
does not always improve transmission inferences made using 
pairwise differences or phylogenies.

We conclude that measurements of genetic distance and 
phylogenetic structure are dependent on variant-calling 
approach. More generally, we find that pathogen genomic 
epidemiology studies will benefit from genomic resources 
and tools designed for haploid genomes.

METHODS
Pipelines
Groups submitted filtered variant calls as single-sample or 
multi-sample VCFs in addition to a multiple sequence align-
ment of concatenated SNPs. We used LiftoverVcf (http://​
broadinstitute.​github.​io/​picard/) to convert variant coor-
dinates for pipelines A and B to coordinates on the strain 
H37Rv reference genome so that variant positions could be 
compared.

Pipeline C made diploid calls and did not provide a multiple 
sequence alignment. To create a multiple-sequence alignment 
of consensus sequences, we converted diploid calls to haploid by 
setting homozygous genotypes (0/0 or 1/1) to the corresponding 
haploid genotype (0 or 1) and heterozygous genotypes to the 
genotype with greater allele depth. We used bcftools [43] to 
generate consensus sequences, setting genotypes that were 
absent in single-sample VCFs to the reference allele, as specified 
by the authors.

Pipeline A additionally included diploid calls, however, also 
provided a FASTA file used for pairwise differences and 
phylogenies in addition to a list of variant sites internal to 
the outbreak. We used the list of variant sites internal to the 
outbreak to compare variant sites with other pipelines.

Sensitivity
The original study confirmed 85 internal outbreak SNPs 
with Sanger sequencing. While the underlying true number 
of outbreak SNPs is unknown, Sanger sequencing provides a 
high degree of confidence in this subset of SNPs. We therefore 
report pipelines’ ‘partial sensitivity’ in recovering these high-
confidence, previously identified SNPs. Specificity could not be 
measured.

Transmission cluster inference
We inferred transmission clusters based on both SNP distances 
(SNP clusters) and with the R package transcluster v0.1.0 (trans-
mission clusters) [32], which integrates sequence alignments, 
sampling dates and epidemiological priors to predict transmis-
sion clusters. We held epidemiological parameters constant, 
specifying a clock rate of 1.5 substitutions/genome/year (within 
the range of recently reported substitution rates [52]) and a 
transmission rate of 2.3 transmissions/year (within the range 
of potential transmission rates) and set both SNP-clustering and 
transmission cluster thresholds to 5 and 12 SNPs.

Phylogenetic inference
We calculated raw pairwise differences between isolates with 
the R package ape v.5.2 (model = ‘N’) [53]. We constructed 
maximum-likelihood phylogenies with RAxML-ng [54] with 
a GTR substitution model. We used a Stamatakis ascertain-
ment bias correction to correct for invariant sites and specified 
nucleotide stationary frequencies present in the strain H37Rv 
genome. We measured phylogenetic distances with the RF 
metric between a random selection of 200 bootstrap replicate 
trees derived from SNPs from each pipeline [55]. We reduced 
the dimensionality of tree distances with principal components 
analysis using the R package treespace [56]. To summarize the 
multi-dimensional distances between trees inferred with vari-
ants from each pipeline, we performed hierarchical clustering 
of trees using Ward’s method also in treespace [56].

Tool performance in a simulated outbreak
We simulated a tuberculosis outbreak and generated 
sequence data in silico (Figs S4 and S6). We applied 
commonly used mapping and variant-calling algorithms 
to simulated data and measured the performance of these 
variant-calling-tool combinations in recovering both true 
M. tuberculosis genomic variants and true pairwise differ-
ences between closely related M. tuberculosis sequences.

Simulated sequence data
We generated 20 independent Illumina readsets (2×151 bp) 
from the M. tuberculosis strain CDC1551 genome in silico, with 
the next-generation sequence-read simulator ART v. 2.5.8 [57], 
which simulates reads from a given genome with read lengths 
and error profiles from commonly used sequence platforms. 
We simulated reads using a built-in quality profile for a HiSeqX 
v2.5 TruSeq sequencing machine. Before simulations, we set 
ambiguous sites in the strain CDC1551 genome to N. We simu-
lated reads with a mean of 100X coverage, with a mean and 
standard deviation fragment length of 650 and 150 bp, respec-
tively (consistent with Illumina recommended insert sizes of 
350 bp (https://​support.​illumina.​com/​sequencing/​sequencing_​
instruments/​hiseq-​x/​questions.​html; standard deviation from 
empirical data).

Measuring performance requires a truth VCF of true variant 
sites in the query genome with respect to a given reference 
genome (Fig. 1). To generate truth VCFs for the strain CDC1551 
query genome with respect to 13 M. tuberculosis reference 

http://broadinstitute.github.io/picard/
http://broadinstitute.github.io/picard/
https://support.illumina.com/sequencing/sequencing_instruments/hiseq-x/questions.html
https://support.illumina.com/sequencing/sequencing_instruments/hiseq-x/questions.html
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genomes (Table S4), we pairwise aligned the query genome 
(strain CDC1551) to each reference genome separately with 
MUMmer [58] (nucmer maxmatch -c 1500), generating 13 pair-
wise alignments. We identified SNP variants from the pairwise 
alignments using MUMmer show-snps, excluding SNPs with 
ambiguous mapping and indels (show-snps -CIr).

Pairwise alignment does not perfectly recover all SNP 
variants between genomes. To test the accuracy of the 
pairwise alignment algorithm in identifying true SNP 
differences between the query and reference genomes, we 
created a query genome, which we refer to as H37Rv* by 
introducing a ‘test set’ of known SNP and indel variants 
into the strain H37Rv backbone with GATK’s FastaAlter-
nativeReferenceMaker. To select a test set of SNPs that 
were representative of standing biological variation in  
M. tuberculosis, we used the variants identified by the tool 
combination BWA/GATK/QUAL >40, in strain CDC1551 
with respect to strain H37Rv, including 1232 SNPs and 
376 indels. We then pairwise aligned the mutated genome, 
H37Rv* (mutated at the test set positions), to the strain 
H37Rv reference genome with the MUMmer method 
described above and measured sensitivity and precision 
of the pairwise aligner in recovering the 1232 introduced 
SNPs in the test set. Sensitivity was 98.8 % (1217/1232) and 
precision was 95.1 %(1217/1280). The errors in our method 
of defining a ‘truth VCF’ therefore means that there will be 
some measurable misclassification of candidate genome-
wide variants identified by the different tool combinations.

Mapping and variant calling
We mapped simulated reads with three read mappers, 
bwa[37], Bowtie 2 [38], and SMALT [39], using default 
settings. We mapped reads to strain H37Rv in addition to 
13 other reference genomes spanning described M. tuber-
culosis diversity (Table S4). We called variants with five 
variant callers using default parameters unless otherwise 
specified. For GATK, Samtools and Pilon, we set ploidy to 
1. The Breseq computational pipeline[40] includes mapping 
with Bowtie 2 and variant calling; therefore, Breseq is calls 
are not made in combination with other mappers. We called 
variants for each sample independently rather than jointly 
calling genotypes because joint variant-calling approaches 
are designed for human cohort studies and were found to be 
less sensitive in detecting singleton and low-frequency vari-
ants in a previous study [50]. We excluded all sites flagged 
by Pilon as ambiguous (i.e. mixed allele calls) or deletions.

We additionally called variants for each sample indepen-
dently with DeepVariant v.0.7.0, a convolutional neural 
network trained upon human genomic truth sets to iden-
tify variants in short-read sequence data [44]. Specifically, 
DeepVariant v.0.7.0 was trained upon labelled genotypes 
from a total of 16 sets of human genomic data, including 
ten PCR-free sequence replicates of HG001, two PCR-free 
replicates of HG005 PCR-free and four PCR replicates of 
HG001. The genomic ‘truth’, which the model is trained 
on, includes variants that have been identified by several 

pipelines and occur within ‘high confidence’ regions of the 
human genome [59]. The model was frozen after training 
and then can be applied to unseen genomic data in the 
form of aligned reads (BAM files). DeepVariant does not 
have an option to infer haploid genotypes; therefore, we 
assigned homozygous genotype predictions to the corre-
sponding haploid call (i.e. assigning 0/0 to 0 and 1/1 to 
1). For heterozygous calls, we used allele depth to assign 
genotype as the allele with greater coverage. If two alleles at 
a heterozygous site had equal depth, we randomly selected 
a haploid genotype. We set DeepVariant SNPs filtered as 
‘RefCall’ to missing. For all callers, we output all-sites VCF 
files (i.e. both variant and invariant sites) in order to distin-
guish between reference allele calls and missing or ‘no-call.’ 
Software tools are listed in Table S6.

Variant filtering
We excluded indels and applied two independent filters 
to SNP variant calls to samples individually: a single hard 
variant quality-score filter, QUAL <40 and VQSR (variant 
quality-score recalibration) [42]. VQSR fits Gaussian 
mixture models to annotations characterizing a truth set 
of high-quality variants and then applies this model to all 
candidate variants to recalibrate variant quality scores. 
Because a high-quality truth set does not exist for M. tuber-
culosis, we defined our truth set internally, including all 
candidate SNPs with a QUAL score greater than the mean 
QUAL score for a given set of variants. We set a phred-
scaled prior likelihood of 15 and used the annotations DP, 
QD, MQRankSum, ReadPosRankSum, FS, SOR and MQ 
in the model. We set the recalibrated variant quality-score 
(VQSLOD) threshold so that our caller would have 99 % 
sensitivity for recovering variants within our truth set. We 
did not apply VQSR to DeepVariant calls to avoid overfit-
ting. By default, Pilon flags low-coverage variants (default 
minimum depth is 10 % mean coverage or 5X, whichever is 
greater). We additionally filtered these low-coverage vari-
ants from Pilon calls only, referring to this as the ‘Pilon’ 
filter for Figs 3 and 4.

Performance benchmarking
We used ​hap.​py [60], software widely used to measure 
performance of variant-calling pipelines upon human 
genomic variation [44], to assess the performance of each 
pipeline.

Outbreak simulations
We simulated a short, relatively densely sampled 5 year TB 
outbreak with TransPhylo [13, 61] (Fig. S4). We set the basic 
reproduction number, R0, to be 3 and the generation time, 
the time between subsequent infections, and sampling time, 
time between infection and diagnosis, as Gamma distributed, 
with shape of 10 and scale of 0.1, corresponding to a mean of 
1 year. We set the product of the within-host population size 
and generation time (Neg) to 100/365 and the probability of 
observing cases, π, to 0.25.
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TransPhylo simulates transmission trees, graphs of who 
infected whom and when in an outbreak. We extracted the 
underlying phylogeny from the simulated transmission tree 
using a substitution rate estimate of 2 substitutions/genome/
year [52]. We chose a rate on the higher end of published 
clock rates for M. tuberculosis to ensure that we would obtain 
sufficient numbers of ‘true’ simulated SNPs on which to test 
both pipelines and downstream inference.

To generate a set whole-genome sequences related by the 
simulated genealogy, we then simulated evolution along 
the simulated phylogeny with Pyvolve [62]. Pyvolve takes 
a phylogeny, a root sequence, and a nucleotide substitu-
tion model and simulates evolution along the branches of 
a phylogeny. We simulated nucleotide evolution from the 
strain CDC1551 reference genome with an F81 model of 
nucleotide evolution [63] with empirically derived nucleotide 
frequencies. We used snp-sites [64] to generate a VCF file of 
variant sites in the tip genomes. Pyvolve introduces variants 
randomly along the root sequence; to simulate variation at 
sites known to be polymorphic in M. tuberculosis, we replaced 
the sites simulated with Pyvolve with randomly selected sites 
that varied between strains CDC1551 and H37Rv, allowing 
us to preserve the simulated phylogenetic structure while 
including variants that are segregating in natural M. tuber-
culosis populations. The clustering of true outbreak variants 
reflects that they were drawn from a set of sites polymorphic 
between the strains H37Rv and CDC1551 reference genomes. 
We applied this set of 147 SNPs to the strain CDC1551 refer-
ence genome, generating 44 simulated outbreak sequences. 
We then used LiftOver to generate a ‘truth’ outbreak VCF with 
respect to the strain H37Rv reference genome. Two of the 147 
original internal outbreak variants could not be lifted over to 
the strain H37Rv reference genome and therefore could not 
be identified by any tool combination when using the strain 
H37Rv genome, we therefore include only the 145 internal 
outbreak SNPs with respect to the strain H37Rv genome in 
our performance metrics.

From each tip genome, we simulated Illumina short-read 
sequence data, mapped reads and called variants as described 
above.

Phylogenetic inference
To determine the effect of filtering on phylogenetic inference, 
we focused on variants identified by a single tool combina-
tion, BWA/GATK. We selected variant quality thresholds 
that corresponded to deciles of variant sites (including all 
sites across samples called as alternative alleles), generated 
multiple alignments of SNPs meeting quality thresholds, and 
inferred maximum-likelihood phylogenies for each multiple 
alignment. We fit maximum-likelihood trees with RAxML-
ng, with a GTR substitution model. We applied a Stamatakis 
ascertainment bias correction to correct for invariant sites 
and specified nucleotide stationary frequencies present in the 
strain CDC1551 outbreak root genome. We measured phylo-
genetic distances from the best supported trees to the true 
tree using the Robinson–Foulds [55] and the Kendall–Colijn 

metrics [65], with lambda equal to 0. Bootstrap trees did not 
converge for all filtered alignments, reflecting the low levels 
of measured variation after filtering.
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