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Abstract

Background: It has been widely accepted that long non-coding RNAs (lncRNAs) play
important roles in the development and progression of human diseases. Many
association prediction models have been proposed for predicting lncRNA functions
and identifying potential lncRNA-disease associations. Nevertheless, among them,
little effort has been attempted to measure lncRNA functional similarity, which is an
essential part of association prediction models.

Results: In this study, we presented an lncRNA functional similarity calculation
model, IDSSIM for short, based on an improved disease semantic similarity method,
highlight of which is the introduction of information content contribution factor into
the semantic value calculation to take into account both the hierarchical structures
of disease directed acyclic graphs and the disease specificities. IDSSIM and three
state-of-the-art models, i.e., LNCSIM1, LNCSIM2, and ILNCSIM, were evaluated by
applying their disease semantic similarity matrices and the lncRNA functional
similarity matrices, as well as corresponding matrices of human lncRNA-disease
associations coming from either lncRNADisease database or MNDR database, into an
association prediction method WKNKN for lncRNA-disease association prediction. In
addition, case studies of breast cancer and adenocarcinoma were also performed to
validate the effectiveness of IDSSIM.

Conclusions: Results demonstrated that in terms of ROC curves and AUC values,
IDSSIM is superior to compared models, and can improve accuracy of disease
semantic similarity effectively, leading to increase the association prediction ability of
the IDSSIM-WKNKN model; in terms of case studies, most of potential disease-
associated lncRNAs predicted by IDSSIM can be confirmed by databases and
literatures, implying that IDSSIM can serve as a promising tool for predicting lncRNA
functions, identifying potential lncRNA-disease associations, and pre-screening
candidate lncRNAs to perform biological experiments. The IDSSIM code, all
experimental data and prediction results are available online at https://github.com/
CDMB-lab/IDSSIM.
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Background
Genome sequence analysis has shown that only less than 2% of human genome sequence

can encode protein, that is, about 20,000 protein-coding genes, and more than 98% of hu-

man genome sequence do not encode protein, yielding a great number of non-coding

RNAs (ncRNAs) [1–3]. In fact, it has been widely acknowledged that ncRNAs also play a

key regulatory role in various biological processes [4, 5]. As a member of ncRNA family,

long non-coding RNAs (lncRNAs) defined as ncRNAs with more than 200 nucleotides in

length have been suggested as potential drivers of several diseases more recently [4, 6].

For instance, Gregory et al. reported that lncRNA HOTAIR promotes proliferation, sur-

vival, invasion, metastasis, and drug resistance in lung cancer cells [7]. Wang et al. sum-

marized several lncRNAs that have been reported to be involved in the pathogenesis of

Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and amyotrophic lateral

sclerosis [8]. Therefore, inferring lncRNA functions, as well as detecting lncRNA-disease

associations, can help us to deeply understand the pathogenesis of human diseases [9, 10].

For inferring lncRNA functions, a simple but efficient way is to develop functional similar-

ity calculation model that inferring lncRNA-lncRNA functional similarities using their

known functions and associations with specific diseases. Compared with biological experi-

ments, the functional similarity calculation model is a valuable supplement to characterize

lncRNA functions with less time and costs, which can be further studied by lncRNA-

disease association detection methods to better understand underlying genetic mecha-

nisms of human diseases at lncRNA level, leading to more accurate associations between

lncRNAs and diseases being captured [11–13].

Many lncRNA functional similarity calculation models have been proposed so far

[12–16], which mainly fall into four categories [17]. The first is based on the lncRNA

expression profile. Since the lncRNA expression profile can characterize details of

lncRNA in digital form, expression similarity between two lncRNAs can be calculated

using correlation measures, which have strong link to functional similarity. Chen et al.

proposed LRLSLDA method to predict lncRNA-disease associations, where Spearman

correlation coefficient was used to measure expression similarity between expression

profiles of each lncRNA pair, which was combined with lncRNA Gaussian interaction

profile kernel similarity to obtain the lncRNA functional similarity [14]. The second is

based on the gene ontology (GO) terms since many lncRNAs have been annotated with

GO terms, which are broadly adopted for biological functional descriptions. Yu et al.

utilized a Bayesian prior probability strategy, as well as associations between lncRNAs

and GO terms, to measure the lncRNA functional similarity [15]. The third is based on

lncRNA interactions with other biomolecules. It has been believed that lncRNAs nor-

mally interacting with other biomolecules, such as miRNA and mRNA, in a compli-

cated way to jointly affect diseases. Therefore, measuring the lncRNA functional

similarity through its interactions with other biomolecules is reasonable. Cheng et al.

developed IntNetLncSim model to calculate the lncRNA functional similarity based on

the integration of two interaction networks (mRNA-mRNA, miRNA-mRNA) and the

lncRNA-regulatory network [12]. The fourth is based on the lncRNA-disease associa-

tions. Assuming that similar lncRNAs may show similar functions, and therefore affect

similar diseases, the lncRNA functional similarity can be measured using lncRNA-

disease associations and disease semantic similarity. Chen et al. proposed both LNCS

IM1 and LNCSIM2 models to measure the lncRNA functional similarity, the former
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based on directed acyclic graphs (DAGs) and the later based on the information con-

tent (IC) to calculate the disease semantic similarity [16]. Their reliable performance

improvements have been demonstrated in both cross validation and case studies.

Nevertheless, they also have several limitations need to be addressed. For example, se-

mantic contributions of different disease terms at the same layer cannot be effectively

distinguished in LNCSIM1 and the accuracy of IC value always depends on the infor-

mation integrity of DAGs in LNCSIM2. Huang et al. therefore developed an edge-

based calculation model ILNCSIM to measure the lncRNA functional similarity, main

improvement of which comes from the combination of the concept of IC and the

hierarchical structure of DAGs for calculating disease semantic similarity [13].

In this study, inspired by previous models, especially LNCSIM1, LNCSIM2 and ILNC

SIM, we presented an lncRNA functional similarity calculation model, IDSSIM for short,

based on an improved disease semantic similarity method. Highlight of the improved dis-

ease semantic similarity method is the introduction of IC contribution factor into the se-

mantic value calculation to take into account both the hierarchical structures of DAGs

and the disease specificities. Experiments of IDSSIM and its comparison with three state-

of-the-art models, i.e., LNCSIM1, LNCSIM2, and ILNCSIM, were performed on both

lncRNADisease database and MNDR database by using evaluation measures of receiver

operating characteristic (ROC) curves and area under the curve (AUC) values. Results

demonstrated that IDSSIM is superior to compared models, and can improve accuracy of

disease semantic similarity effectively, leading to increase the association prediction ability

of our model. Besides, case studies of breast cancer and adenocarcinoma were also

adopted. Results showed that most of potential disease-associated lncRNAs predicted by

IDSSIM can be confirmed by databases and literatures, implying that IDSSIM can serve

as a promising tool for predicting lncRNA functions, identifying potential lncRNA-disease

associations, and pre-screening candidate lncRNAs to perform biological experiments.

Methods
Human lncRNA-disease associations

Two matrices that contain human lncRNA-disease associations were collected for the calcula-

tion of lncRNA functional similarities. The first matrix came from the 2017 version of

lncRNADisease database [18] (http://www.cuilab.cn/lncrnadisease) in October, 2019. There

were in total 116 lncRNAs that were collected according to the reference [19]. After perform-

ing quality control to exclude lncRNAs unrecorded in lncRNADisease database and diseases

with irregular names or lack of Medical Subject Headings (MeSH) tree numbers, 157 diseases,

82 lncRNAs and 701 associations were retained. The second matrix was downloaded from

the Mammalian ncRNA-disease repository (MNDR) database [20] (http://www.rna-society.

org/mndr/index.html) in October, 2019. After the same quality control, we collected lncRNA-

disease associations with 89 diseases, 190 lncRNAs and 1680 associations. In these two matri-

ces, each row represents an lncRNA and each column represents a disease. If an lncRNA

associated with a disease, its corresponding element of matrix is set to 1, otherwise, 0.

Disease semantic similarity

Disease semantic similarity between two diseases can be calculated using their DAGs,

which were constructed by mapping their disease names into MeSH descriptors. MeSH

Fan et al. BMC Bioinformatics          (2020) 21:339 Page 3 of 14

http://www.cuilab.cn/lncrnadisease
http://www.rna-society.org/mndr/index.html
http://www.rna-society.org/mndr/index.html


descriptors were obtained from the National Library of Medicine [21] (http://www.nlm.

nih.Gov/), and the disease category of which was used here. For a disease A, its DAG

can be denoted as DAGA = {TA, EA}, where TA is the set of ancestor nodes of A includ-

ing itself, and EA is the set of all edges in the DAG. The disease term t ∈ TA in DAGA

has semantic contribution to the disease A, which was defined as semantic value SV 1
AðtÞ

of t to the disease A, and can be calculated in LNCSIM1 [16] by the following

formula,

SV 1
A tð Þ ¼ 1 t ¼ A

max Δ� SV 1
A t

0
� �

t
0
∈C tð Þ��� �

t≠A

�

where C(t) is the children of t, Δ is the semantic contribution factor of edges in EA that

linking t and t′, which was normally set to 0.5 [22].

This formula interprets the DAG in a quantitative way under the assumption of dis-

ease terms at the same layer of DAGA having the same semantic contribution to the

disease A. However, this assumption is sometimes problematic. For example, the dis-

ease term t1 and t2 are at the same layer of DAGA, but compared with t2, t1 is a rarer

disease and appears in less DAGs. In this case, the conclusion of t1 being the more spe-

cific disease term than t2 in DAGA and therefore SV 1
Aðt1Þ being higher than SV 1

Aðt2Þ
seems more reasonable than the assumption of LNCSIM1.

To consider this situation, LNCSIM2 used another formula to calculate the contribu-

tion of disease term t ∈ TA in DAGA to the semantic value of disease A,

SV 2
A tð Þ ¼ − log

Dags tð Þ
D

where D is the number of diseases in the MeSH, and Dags(t) is the number of DAGs

including t. This IC strategy helps to retain the disease specificity, and performs well

while several diseases with significantly different DAG-frequencies appear at the same

layer of a DAG. However, its accuracy depends on the information integrity of DAGs

and easily suffers from the information bias in DAGs.

In the IDSSIM model, we leveraged the advantages of both LNCSIM1 and LNCSIM2,

and defined the contribution of disease term t ∈ TA in DAGA to the semantic value of

disease A as,

SV 3
A tð Þ ¼ 1 t ¼ A

max Δþ Ptð Þ � SV 3
A t

0
� �

t
0
∈C tð Þ��� �

t≠A

�

where Pt is the IC contribution factor, and defined as,

Pt ¼
max
k∈K

Dags kð Þð Þ −Dags tð Þ
D

where K is the set of all diseases in MeSH. It should be noted that for the disease t, its

Pt value change with the continuously updated version of MeSH.

Then, the semantic value of disease A in IDSSIM was calculated in the same way as

described in LNCSIM1, that is, it is the summation of contributions of all disease terms

in DAGA to the disease A,
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SV Að Þ ¼
X
t∈TA

SV 3
A tð Þ

Furthermore, the disease semantic similarity between two diseases A and B was

defined in the similar way as LNCSIM1 based on their shared disease terms in DAGs,

DSS A;Bð Þ ¼

X
t∈TA∩TB

SV 3
A tð Þ þ SV 3

B tð Þ� �

SV Að Þ þ SV Bð Þ

To understand the calculation process of the disease semantic similarity more clearly,

an example was given in Fig. 1. First, DAGs of two diseases, i.e., Pancreatic Neoplasms

and Liver Neoplasms, were constructed by using MeSH descriptors. It is seen that DAG

of Pancreatic Neoplasms has 4 layers and 8 disease terms, and DAG of Liver Neoplasms

has 4 layers and 6 disease terms, among which, 4 disease terms are shared by these two

diseases. Second, D, Dags(t), and max
k∈K

ðDagsðkÞÞ were calculated by using all disease

DAGs, and the semantic contribution factor Δ was also set to 0.5 [16, 22]. We can see that

disease terms in the same layer have different contribution factor Δ + Pt, therefore yielding

different semantic contributions SV 3
AðtÞ to the disease in each DAG. Third, semantic

values of these two diseases and their disease semantic similarity were calculated using

above formulas. As we can see from the example, the IDSSIM model takes into account

both the hierarchical structures of DAGs and the disease specificities.

LncRNA functional similarity

In the IDSSIM model, the lncRNA functional similarity was calculated in the same way

as described in the references [11, 13, 16]. In this paper, an example was given to ex-

plain the calculation process, as shown in Fig. 2.

Suppose DG(u) and DG(v) are disease groups of lncRNAs u and v respectively, which

were collected from the matrix of human lncRNA-disease associations, the lncRNA

functional similarity between u and v can be calculated using semantic similarities of

diseases appearing in DG(u) and DG(v). More specifically, at first, the disease semantic

similarity sub-matrix was constructed, where both row and column represent diseases

that appears in DG(u) ∪DG(v), and each element is the disease semantic similarity be-

tween the corresponding diseases. Then, the similarity between a disease of one disease

group and another disease group is defined as,

S du;DG vð Þð Þ ¼ max
d∈DG vð Þ

DSS du; dð Þð Þ

S dv;DG uð Þð Þ ¼ max
d∈DG uð Þ

DSS dv; dð Þð Þ

where du and dv represent one disease in DG(u) and DG(v), respectively. Next, the

similarities of two disease groups to each other were defined as,

Su→v ¼
X

d∈DG uð Þ
S d;DG vð Þð Þ

Sv→u ¼
X

d∈DG vð Þ
S d;DG uð Þð Þ

Finally, the lncRNA functional similarity between u and v was defined as,
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FS u; vð Þ ¼ Su→v þ Sv→u

DG uð Þj j þ DG vð Þj j

where |⋅| denotes the number of diseases in the corresponding disease group.

Results and discussion
Performance evaluation

In order to evaluate the performance of IDSSIM, we compared it with three state-of-

the-art models, i.e., LNCSIM1, LNCSIM2, and ILNCSIM, on both lncRNADisease data-

base and MNDR database by using evaluation measures of ROC curves and AUC

values that generated by a five-fold cross validation strategy [13].

Specifically, for each database, the original matrix of human lncRNA-disease associa-

tions was randomly divided into five groups, scores of one of which were changed into

Fig. 1 An example of calculating the disease semantic similarity in IDSSIM
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0 and others remained unchanged. These five changed association matrices, as well as re-

sults of each compared model, i.e., disease semantic similarity matrix and lncRNA functional

similarity matrix, were applied to an association prediction method WKNKN [23] in turn to

get five predicted matrices of human lncRNA-disease associations. WKNKN was used here

since it was recently proposed and claimed to facilitate association prediction and its package

is available online. For the changed group in the original matrix of human lncRNA-disease as-

sociations, associations with their scores being equal to 1 were considered as observed posi-

tives, otherwise, observed negatives. For the changed group in each predicted matrix of

human lncRNA-disease associations, associations with their scores being higher than a thresh-

old were considered as predicted positives, otherwise, predicted negatives, where the threshold

was set to predicted scores in the changed group with the descending order in turn. There-

fore, for each predicted matrix of human lncRNA-disease associations, their true positive rates

(TPR) and false positive rates (FPR) can be obtained with different thresholds. In order to re-

duce the error caused by random grouping, the five-fold cross validation was repeated 10

times for each compared model, and the average values of TPR and FPR were used to draw

ROC curve and calculate AUC value.

Fig. 2 An example of calculating the lncRNA functional similarity in IDSSIM
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ROC curves and AUC values of compared models on lncRNADisease database and MNDR

database were shown in Fig. 3. It is seen that in terms of ROC curves and AUC values, IDSS

IM performed best among all compared models on these two databases. For the lncRNADi-

sease database, the AUC value of IDSSIM was 0.8966, and 0.74, 0.85, 1.00% higher than AUC

values of LNCSIM1, LNCSIM2, ILNCSIM, respectively. Similarly, for the MNDR database,

the AUC value of IDSSIM was 0.9302, has increased by 0.51, 0.22 and 0.35% than those of

LNCSIM1, LNCSIM2, ILNCSIM, respectively. These experimental results demonstrated that

IDSSIM can provide more accurate disease semantic similarity matrix and lncRNA functional

similarity matrix. Therefore, based on these two matrices, performance of the association

prediction method, such as WKNKN, can be further improved.

We applied two similarity matrices that generated by IDSSIM, namely, the disease se-

mantic similarity matrix and the lncRNA functional similarity matrix, as well as their

corresponding downloaded matrix of human lncRNA-disease associations coming from

either lncRNADisease database or MNDR database, to the association prediction

method WKNKN [23] to get two predicted matrices of human lncRNA-disease associa-

tions. In these two predicted matrices, several potential lncRNA-disease associations

were identified, which might be useful for uncovering underlying genetic mechanisms

of diseases though they need further bioinformatics studies and biological experiment

confirmation. In Fig. 4, the significant potential lncRNA-disease associations captured

by IDSSIM were shown as networks. In each network, blue and red nodes represent

lncRNAs and diseases respectively, and each edge linking an lncRNA and a disease rep-

resents the captured significant potential lncRNA-disease association, score of which is

higher than a threshold m(LDA) + 2 ⋅ sd(LDA), where LDA denotes scores of all poten-

tial lncRNA-disease associations that captured by IDSSIM, m(⋅) and sd(⋅) are the mean

and the standard deviation of them. We believed that these two networks can provide

important clues for the exploration of causative biomarkers of diseases.

Case studies

Based on the predicted matrix of human lncRNA-disease associations in the lncRNA-

Disease database, another evaluation method of case studies, which is a routine method

Fig. 3 ROC curves and AUC values of compared models on lncRNADisease database and MNDR database
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and has been widely adopted by association prediction models [23, 24], was used to val-

idate the effectiveness of IDSSIM. Two diseases, i.e., breast cancer and adenocarcinoma,

were taken as cases in the study. For each disease, top 20 predicted potential lncRNAs

were recorded, as shown in Table 1 and Table 2 respectively. In the tables, lncRNAs

were examined one by one to confirm whether it associates with the disease using the

lncRNADisease (v2.0) database [25], Lnc2Cancer database [26] and recently published

literatures.

Breast cancer is one of the most common malignant tumors which threaten the

health of women, accounting for about 500,000 deaths per year worldwide [27]. Recent

advances have suggest that dysregulations of lncRNAs are associated with breast cancer

[28, 29]. Besides known associations between lncRNAs and breast cancer in the

lncRNADisease database, we further predicted 20 potential lncRNAs in Table 1 that

might be involved with breast cancer. Among them, 8 lncRNAs have been confirmed

by lncRNADisease (v2.0) database and Lnc2Cancer database, and 4 lncRNAs were re-

ported by literatures to be implicated in breast cancer. Sarrafzadeh et al. demonstrated

that significant up-regulation of PCAT1 has only been detected in a fraction of breast

cancers and concluded that PCAT1 is possibly involved in the pathogenesis of fraction

of breast cancers [30]. Ma et al. declared that SNHG3 promotes cell proliferation and

invasion through the miR-384/hepatoma-derived growth factor axis in breast cancer

[31]. Wang et al. identified MIR100HG as a pro-oncogene for triple-negative breast

cancer progression that promotes cell proliferation through triplex formation with p27

loci [32]. Silwal-Pandit et al. showed that the sub-cellular localization of the WRAP53

protein has a significant impact on breast cancer survival, and thus has a potential as a

clinical marker in diagnostics and treatment [33].

Adenocarcinoma is a type of malignant tumors, and appears in many human organs,

for example, lung [34], prostate [35], stomach [36], colon [37] and so on. Among top

20 predicted potential lncRNAs in Tables 2, 11 lncRNAs were reported to be associated

with adenocarcinoma in literatures. Dong et al. showed that GAS5 is significantly

downregulated in lung adenocarcinoma tissues, and may represent a potential bio-

marker for the diagnosis of lung adenocarcinoma [38]. Lee et al. found that HOTAIR

was involved in inhibition of apoptosis and promoted invasiveness, supporting a role

for HOTAIR in carcinogenesis and invasion of gastric adenocarcinoma [39]. Tano et al.

suggested that MALAT1 enhances cell motility of lung adenocarcinoma cells by influ-

encing the expression of motility-related genes [40]. Li et al. confirmed that MEG3

Fig. 4 The significant potential lncRNA-disease association networks captured by IDSSIM
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Table 1 Top 20 predicted potential lncRNAs associated with breast cancer

Rank lncRNA Evidence

1 PCAT1 [30]

2 PSORS1C3 Unconfirmed

3 MIAT LNC2Cancer

4 HIF1A-AS1 Unconfirmed

5 BANCR LNC2Cancer

6 CASC2 LNC2Cancer

7 GHET1 LNC2Cancer

8 PTENP1 lncRNADisease(v2.0)

9 7SK Unconfirmed

10 DNM3OS Unconfirmed

11 HULC LNC2Cancer

12 NPTN-IT1 Unconfirmed

13 MINA Unconfirmed

14 SNHG3 [31]

15 SNHG4 Unconfirmed

16 MIR100HG [32]

17 CRNDE LNC2Cancer/lncRNADisease(v2.0)

18 WRAP53 [33]

19 SNHG16 LNC2Cancer/lncRNADisease(v2.0)

20 BOK-AS1 Unconfirmed

Table 2 Top 20 predicted potential lncRNAs associated with adenocarcinoma

Rank lncRNA Evidence

1 GAS5 [38]

2 HOTAIR [39]

3 MALAT1 [40]

4 MEG3 [41]

5 H19 [42]

6 CCAT1 [43]

7 HULC Unconfirmed

8 NAMA Unconfirmed

9 MIAT Unconfirmed

10 WT1-AS Unconfirmed

11 PANDAR [44]

12 PTENP1 Unconfirmed

13 PVT1 [45]

14 TUG1 Unconfirmed

15 UCA1 [46]

16 BANCR Unconfirmed

17 CBR3-AS1 Unconfirmed

18 CCAT2 [47]

19 CDKN2B-AS1 Unconfirmed

20 DANCR [48]
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plays a promoting role in the proliferation, invasion, and angiogenesis of lung adeno-

carcinoma cells through the AKT pathway [41]. Liu et al. reasoned that H19 promotes

viability and epithelial-mesenchymal transition of lung adenocarcinoma cells by target-

ing miR-29b-3p and modifying STAT3 [42]. Lin et al. concluded that overexpression of

CCAT1 promotes metastasis via epithelial-to-mesenchymal transition in lung adenocar-

cinoma [43]. Jiang et al. found that an increased expression of PANDAR promotes cell

proliferation and inhibits cell apoptosis in pancreatic ductal adenocarcinoma [44]. Xu

et al. provided strong evidence that PVT1 confers an aggressive phenotype to esopha-

geal adenocarcinoma [45]. Liu et al. suggested that UCA1 axis plays a crucial role in

progression of pancreatic ductal adenocarcinoma and may serve as a target for new

therapies [46]. Hu et al. showed that CCAT2 may act as a competitive endogenous

RNA to regulate FOXC1 expression by competitively binding miR-23b-5p in lung

adenocarcinoma [47]. Lu et al. suggested that DANCR might be an oncogenic lncRNA

that regulates mTOR expression through directly binding to miR-496, and therefore

may be regarded as a biomarker or therapeutic target for lung adenocarcinoma [48].

Though future studies are needed to confirm above findings, according to case stud-

ies, we believed that IDSSIM is a promising model for lncRNA function prediction, and

the time and cost could be significantly reduced while performing biological experi-

ments based on clues that provided by IDSSIM.

In order to further validate the effectiveness of IDSSIM, Venn diagrams of four com-

pared models were illustrated in Fig. 5, each element of which can be written as |Lcon|/

|Lall|, where Lall represents potential disease-associated lncRNAs that predicted by all

corresponding models, Lcon represents those lncRNAs in Lall that can be confirmed to

associated with the disease by databases and literatures, and |⋅| denotes the number of

Lall or Lcon. It is seen that the combination of IDSSIM and WKNKN can predict more

confirmed disease-associated lncRNAs than other combinations of compared models

and WKNKN. For breast cancer, IDSSIM predicted 35 potential disease-associated

lncRNAs in total and 16 out of which have been confirmed. These ratios of LNCSIM1,

LNCSIM2, and ILNCSIM were 15/35, 14/30, and 14/34 respectively. Similarly, for

adenocarcinoma, these ratios of IDSSIM, LNCSIM1, LNCSIM2, and ILNCSIM were

18/33, 18/33, 16/30, and 6/13 respectively.

Conclusions
LncRNA functional similarity calculation model plays an important role in predicting

lncRNA functions and identifying potential lncRNA-disease associations. In this paper,

we proposed an lncRNA functional similarity calculation model, IDSSIM for short,

based on an improved disease semantic similarity method, highlight of which is the

introduction of IC contribution factor into the semantic value calculation to take into

account both the hierarchical structures of DAGs and the disease specificities. To

evaluate the performance of IDSSIM, comparison experiments with three state-of-the-

art models LNCSIM1, LNCSIM2, and ILNCSIM, were performed on both lncRNADi-

sease database and MNDR database by using evaluation measures of ROC curves and

AUC values. Results demonstrated that IDSSIM is superior to compared models, and

can improve accuracy of disease semantic similarity effectively, leading to increase the

association prediction ability of our model. In addition, case studies of breast cancer

and adenocarcinoma were also adopted. Results showed that most of potential disease-
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associated lncRNAs predicted by IDSSIM can be confirmed by databases and litera-

tures, implying that IDSSIM can serve as a promising tool for predicting lncRNA func-

tions, identifying potential lncRNA-disease associations, and pre-screening candidate

lncRNAs to perform biological experiments.

However, IDSSIM still has several limitations, which inspire us to continue working

in the future. Firstly, the information biases of diseases and/or lncRNAs in databases

which usually caused by their research heat sometimes lead to inaccurate lncRNA-

disease association scores. Secondly, the priori knowledge of lncRNAs, as well as their

interactions with other biomolecules, should be considered together in IDSSIM to fur-

ther improve its prediction accuracy. Thirdly, software package or web application of

IDSSIM should be provided later.
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