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Adverse drug reactions adverse drug reaction (ADR) occur in approximately 17% of
patients. Avoiding ADR is thus mandatory from both an ethical and an economic point
of view. Whereas, pharmacogenetics changes of the pharmacokinetics may contribute
to the explanation of some type A reactions, strong relationships of genetic markers has
also been shown for drug hypersensitivity belonging to type B reactions. We present
the classifications of ADR, discuss genetic influences and focus on delayed-onset
hypersensitivity reactions, i.e., drug-induced liver injury, drug-induced agranulocytosis,
and severe cutaneous ADR. A guidance how to read and interpret the contingency
table is provided as well as an algorithm whether and how a test for a pharmacogenetic
biomarker should be conducted.

Keywords: adverse drug reactions (ADRs), drug hypersensitivity reactions, drug-induced agranulocytosis (DIA),
drug-induced liver injury (DILI), drug-induced severe cutaneous adverse reactions (SCARs)

INTRODUCTION

Apart from their intended principal therapeutic use, drugs action is always related to the risk of
ADRs. ADR are an important cause of morbidity and mortality. It is estimated that 3.6% of all
hospital admissions are due to an ADR and that 17% of all in-patients develop ADR, an estimated
0.5% of all ADR is lethal (Bouvy et al., 2015). The mean costs of a single ADR event in Germany has
been calculated as 2,743 EUR (Meier et al., 2015). An U.S. American study reports costs from 1,439
USD to 13,462 USD (Alagoz et al., 2016). Avoiding ADR is thus mandatory from both an ethical
and an economic point of view. We present the classifications of ADR, discuss genetic influences
with focus on delayed-onset hypersensitivity reactions, i.e., DILI, DIA and SCAR, and present an
algorithm when and how to test for relevant pharmacogenomic biomarkers.

Taxonomy of Adverse Drug Reactions (ADRs)
Adverse drug reaction are divided into types A and B ADR (Figure 1). Type A ADR, the so-
called “pharmacological ADR,” are caused (i) by a change of dosage and/or pharmacokinetics and
consequently of its pharmaco- or toxicodynamic action or (ii) solely by a change in the target

Abbreviations: ACEi, angiotensin-converting-enzyme-inhibitor; ADR, adverse drug reaction; AERD, aspirin-exacerbated
respiratory disease; AIU, aspirin-induced urticaria; ASA, acetylsalicylic acid; CPIC, Clinical Pharmacogenetics
Implementation Consortium; CysLT, cysteinyl leukotriene; DIA, drug-induced agranulocytosis; DILI, drug-induced liver
injury; DRESSs, drug rash with eosinophilia and systemic symptoms; HLA, human leukocyte antigen; LTs, leukotrienes;
MCH, major histocompatibility complex; NAT, arylamine N-acetyltransferase; NNS, number needed to screen; NPV, negative
predictive value; NSAID, non-steroidal anti-inflammatory drug; PAF, platelet-activating factor; PGs, prostaglandines; PPV,
positive predictive value; SCAR, severe cutaneous ADR; SJS, Steven Johnson’s syndrome; TEN, toxic epidermal necrolysis;
USAN, U.S. Adopted (Drug) Name; USAN, aspirin.
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FIGURE 1 | Overview of different ADR types, examples for drugs and reactions and influencing biomarkers or patients’ conditions.

structure leading to different affinity of the drug to the target
and/or a different agonist-directed trafficking at the (target-)
receptor. In contrast, type B ADR, drug hypersensitivity ADR,
are caused by allergic or non-allergic mechanisms involving the
immune system and/or mediators such as histamine (Figure 2).
Type A were estimated to account for approximately 80% of
ADR occurring in clinical practice (Borda et al., 1968). However,
this figure has undoubtedly changed over the last 50 years due
to differences in drug prescriptions, pharmacovigilance activities
and a better understanding and thus demarcation of type B ADR.
34 years later, maybe owing to these advances in medicine, type
A were reported to account for 91% of all ADR (Mjorndal et al.,
2002).

In the past, it was postulated that type A ADR are usually a
feature of the drug property and thus predictable, while type B
ADR are strongly dependent on the genetic features of the host.
Pharmacogenetic polymorphisms are now known to aggravate
certain type A ADR (cf. descriptions of AERD and red-man-
syndrome below). Type B ADR appeared to be non-predictable
and dose-independent. However, dose-dependency has been
shown for some hypersensitivity reactions (Rive et al., 2013).
Rising knowledge of genetic polymorphisms of the immune
system have helped to predict at least some type B ADR by
applying genotyping (Rive et al., 2013).

Drug Hypersensitivity Reactions (type B
ADR, Idiosyncrasy)
Depending on the mechanism of activation of the immune
systems, most type B ADR (∼75%) can be classified as either non-
allergic hypersensitivity ADR (formerly called “pseudoallergic”),

i.e., direct effect on mast cells causing histamine release, or as
type I reaction according to Gell and Coombs, i.e., IgE-mediated
histamine release. Type IV reactions, i.e., T-cell-mediated delayed
hypersensitivity reactions, are less common (∼25%). Types II
and III reactions are uncommon among drug hypersensitivity
reactions.

Besides these immune reactions types I to IV, a direct
pharmacologic action on immune receptors (“p-i concept”) of
T-cells without prior presentation of the drug via MHCs (coded
by HLA) has been proposed (Posadas and Pichler, 2007). Finally,
some drugs are thought to alter the functioning of the immune
system, e.g., alpha-methyldopa can induce the production of
drug-independent autoimmune antibodies (Pierce and Nester,
2011), and statins potentiate the shifting of T-helper 1 to T-helper
2 immune responses (Suchak et al., 2007).

Examples, Clinical Manifestation, and
Pharmacogenetics
While type A ADR are usually a feature of the drug, drug
hypersensitivity reactions are strongly dependent on the genetic
features of the host. However, pharmacogenetic markers have
been described for both types of ADR.

Type A ADR
Type A ADR depend on the toxico- or pharmacodynamic
action of the drug and are thus diverse. E.g., aminoglycosides
are ototoxic. However, this ototoxicity can be greatly
enhanced by a polymorphism in the mitochondrial
DNA coding for a 12S-ribosome vital for mitochondrial
protein biosynthesis resulting in complete deafness during
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FIGURE 2 | Stimuli for degranulation of mast cells and basophils and interplay/overlap with type II-IV reactions. Beside the canonical IgE-mediated true
allergic pathway, activation of the complement system and the direct interaction with IgE-receptor can lead to degranulation. Changes in the the metabolism and
signaling of various arachidonic acid-derivatives, e.g., cysteinyl leukotrienes, or in the histaminergic system, as well as changes to the kallikrein-kinine-system are
believed to aggravate any reactions. Light red: proteins/genes involved in hypersensitivity with known genetic associations; Dark red: example of drugs leading to
primarily non-allergic hypersensitivity ADR. ACEi, angiotensin-converting-enzyme inhibitor; ALOX5, 5′-lipoxygenase; ASA, acetylsalicylic acid (USAN: aspirin);
C3a/C5a, activated components 3 and 5 of the complement system; DAO, diaminooxidase; FcεR, IgE-receptor; HLA, human leukocyte antigen; HRH, histamine
receptor; LTC4S, cysteinyl leukotriene synthetase; NAT, N-acetyl transferase; NSAID, non-steroidal anti-inflammatory drugs; RCM, radio contrast media; TBXAS1,
thromboxane synthetase; TCR, T-cell receptor; TXA2R, thromboxane receptor; XPNPEP2, aminopeptidase P.

aminoglycoside treatment (Estivill et al., 1998; Usami
et al., 1998). Varying activities of drug metabolizing
enzymes are the main cause of type A ADR. Classic
examples for such pharmacokinetic variants is the poor-
metabolizer phenotype of the drug metabolizing enzyme
UDP-glucuronosyl-transferase (UGT) 1A1 which results in
increased risk of neuropenia during high dose irinotecane
therapy (Innocenti et al., 2009) or of cytochrome P450 2D6
causing an elevated risk of extrapyramidal symptoms while
treatment with the neuroleptic haloperidol (Brockmoller et al.,
2002).

Immediate Reactions: Type I and Non-allergic
Hypersensitivity ADR
Mast cells and basophils can be stimulated to release
inflammatory agents like histamine, heparin, leukotrienes,
prostaglandins, cytokines, proteases, and PAF. If the stimulus
derives from an IgE-antigen-complex it is considered a true type
I allergic reaction. However, non-IgE-mediated responses are
common and comprise approximately 77% of all reactions of this
type (Demoly et al., 1999). For some drugs, both mechanisms
apply (Canto et al., 2009).

After degranulation of mast cells and basophils, the resulting
type I or non-allergic hypersensivitiy ADR mainly manifest
in the skin as itch, urticaria, and erythema due to the pro-
inflammatory substances released. Acute severe reactions, called
anaphylaxia, involve the cardio-vascular system and the airways,
i.e., swelling and edema of pharynx, larynx and bronchi
with possible subsequent asphyxia. Anaphylaxia is seen more
frequently with immediate hypersensitivity reactions than other
types.

Non-allergic hypersensitivity ADR (“pseudoallergy”)
There are several pathways for non-IgE-mediated mast
cell/basophil degranulation (Figure 2).

Non-steroidal anti-inflammatory drug are very commonly
used drugs that are frequently involved in hypersensitivity
ADR in some individuals. They are reported to be the leading
cause of hypersensitivity ADR (Dona et al., 2012). ASA, USAN
or NSAID-exacerbated respiratory disease (AERD or NERD,
respectively) and ASA-induced urticarial (AIU) were known to
affect primarily individuals with allergic rhinitis and polyposis
nasi after application of an NSAID. This phenotype is also
commonly referred to as Samter’s triad. The last decades shed
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light on various genetic markers associated with AERD/AIU,
e.g., DAO (Agundez et al., 2012) and histamine-receptors (Ayuso
et al., 2013). Other markers like IgE-receptors (FcεR) and
alterations in synthases, receptors and degrading enzymes of
CysLT and thromboxanes are nicely reviewed by (Park et al.,
2013; Gomez et al., 2015). The phenotype “nasal polyposis” is
associated with certain HLA genotypes (Molnar-Gabor et al.,
2000).

However, predictive testing for AERD/AIU appears to date not
feasible due to the multitude of possible biomarkers and their
relatively weak associations: E.g., recalculating the frequency
data on CysLTR1 haplotypes and AERD (Kim et al., 2006)
suggests that at least approximately 300 patients need to be
genetically tested to avoid one incident. Cf. below (see section
‘The Output’) for more showcase calculations and points to
consider for predictive testing.

Brisk displacement of histamine from mast cells/basophils can
clinically present as red-man-syndrome which is seen after rapid
intravenous exposure to a variety of drugs, e.g., vancomycine,
ciprofloxacine, and amphotericine B. The red-man-syndrome
after application of vancomycine was linked to a missense
polymorphism in the diaminooxidase (DAO) gene at c.995C > A
(Myers et al., 2012). DAO is needed for efficient degradation of
histamine. Defects thus cause or aggravate histamine-dependent
ADR.

Mastocytosis is a pathological condition leading to
large amounts of histamine being released to a variety of
stimuli, including commonly used drugs like NSAIDs. While
mastocytosis is poorly understood, an association with a missense
variant in c-Kit gene (c.2468A > T) which encodes a tyrosine
kinase receptor in stem cells is known (Nagata et al., 1995; Akin,
2006). Mutated c-Kit leads to constitutive activation of affected
immune cells.

In addition to antibiotics and NSAID, other commonly
used drugs or substances which can lead to non-allergic
hypersensitivity ADR are radio contrast media (e.g., gadolinium,
iopromid), local anesthetics (e.g., bupivacaine), opioids (e.g.,
morphine), curare-derivatives (e.g., rocuronium), preservatives
(e.g., benzoate) and coloring agents (e.g., yellow-orange S). It
appears extremely variable which of these substances actually
trigger a hypersensitivity ADR in an individual susceptible
patient.

Angiotensin-converting-enzyme inhibitors inhibit
bradykinine degradation as off-target effect. Polymorphisms
in a kinine degrading enzyme (aminopeptidase P, XPNPEP2)
are thought to contribute to angioedema (Cilia La Corte
et al., 2011; Mahmoudpour et al., 2013). Bradykinine is
believed to worsen inflammatory responses. There are two
case report of fatalities caused by allopurinol hypersensitivity
possibly aggravated by concomitant captopril or enalapril,
respectively (Pennell et al., 1984; Ahmad, 1995). Based on
these reports, the combination of ACEi and allopurinol is
considered not recommended. However, considering that
this combination is extremely common and that virtually no
further fatalities were reported, the mechanistic idea that ACEi
will exacerbate every hypersensitivity reaction needs to be
questioned.

True type I immediate ADR
Recently, various polymorphisms in several genes have been
linked to penicillin-induced immediate hypersensitivity reactions
(Gueant et al., 2015). Quite surprisingly, HLA genes appear to
be involved, although HLA gene products are not prominently
involved in IgE-signaling to mast cells and basophils. On the
other hand, both production and specificity of IgE appear to
correlate with certain HLA genes (Marsh and Bias, 1977; Young
et al., 1995).

Penicillines and cephalosporins are listed in the WHO
Model List of Essential Medicines and prescribed world-wide.
Furthermore, after NSAID, beta-lactam antibiotics are reported
to be the leading cause of hypersensitivity ADR (Dona et al., 2012)
and the most frequent cause for true allergies (Blanca et al., 2009).
Due to the high exposure rate and the intrinsic high risk, allergic
reactions are occurring frequently.

Type II and Type III
Type II and type III reactions are less commonly observed.
Penicillines are known to form haptens on blood cells which
are subsequently targeted by IgG and IgM antibodies causing
thrombocytopenia or hemolytic anemia (type II). If betalactame
antibiotics a such as pencillines are bound by IgG or IgM in the
bloodstream, immune complexes form and cause intra-vascular
immune reactions, e.g., vasculitis, or damage the glomeruli, e.g.,
glomerulonephritis (type III). To our best knowledge, there is
currently no data on genetic associations to such types II and III
reactions.

Type IV
Type IV ADR may lead to symptomatic or asymptomatic internal
manifestations include, among others, agranulocytosis (DIA),
hepatitis (DILI), nephritis (DIRI), pneumonitis and myositis.
Fever and lymphadenopathies are possible. Type IV ADR can
also damage the skin SCAR, e.g., DRESSs, destruction of∼10% of
the skin SJS and destruction of greater extend, the so called TEN.
There is a certain overlap of DRESS, SJS, and TEN concerning the
dermatological features.

Type IV ADR are strongly linked with a plethora of HLA-
genes residing on chromosome 6. HLA-A, HLA-B, and HLA-C
encode proteins that form a MHC I-receptor on various cell
types for presentation of intracellular peptides to the immune
system. HLA-DP, HLA-DM, HLA-DO, HLA-DQ, and HLA-
DR are proteins for T-cell interaction, e.g., MHC II-receptors
and other related proteins, consisting of alpha- and beta-
chains encoded by separate genes. A single HLA-gene can be
further specified, e.g., HLA-B∗44:02:01:02S for a HLA-B gene
of allele group 44 and allele 02. The other descriptors specify
synonymous changes in the coding region, changes in the non-
coding region and changes in expression. Traditional serology-
based HLA typing can usually only detect the allele group of
the HLA protein and not the other subtle differences below this
level.

Examples of hypersensitivity-conferring HLAs and type IV
ADR include abacavir + HLA-B∗15:02 causing DRESS (Martin
et al., 2012, 2014), carbamazepine + HLA-B∗31:01 causing
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SJS/TEN (McCormack et al., 2011) and flucloxacillin + HLA-
B∗57:01 causing DILI (Daly et al., 2009). Other related genes
include Transporter Antigen Processing (TAP1/2), MHC-class
I related chain A/B (MICA/MICB) and hemochromatosis gene
(High Fe, HFE). Data on T-cell receptors genes (TCRs) and killer
cell immunoglobulin-like receptors (KIR) is scarce, but might
prove relevant.

Datasources
Several databases exist nowadays to summarize the various
findings (Table 1).

Overlapping of Different Reaction Types
Drugs can elicit hypersensitivity ADR by several non-allergic
and allergic mechanisms at once, e.g., penicillines can induce
immediate and delayed ADR (Blanca et al., 2009), and
vancomycin can lead to both IgE-mediated and non-allergic
hypersensitivity ADR (Polk et al., 1993).

To date, the different type IV reactions are not easily separated,
i.e., type IVc reactions appear to be a dominant mechanism that
is also occurring during types IVa, IVb, or IVd reactions (Posadas
and Pichler, 2007).

Depending on the HLA-genotype, the risk agranulocytosis
mediated by the antipsychotic clozapine could be significantly
increased (Goldstein et al., 2014). However, a second mechanism
was proposed before hypothesizing that clozapin would
be metabolized to highly reactive nitrenium ions that
deplete the ATP and glutathione-content of neutrophils
and would ultimately lead to neutropenia (Tesfa et al.,
2009).

Conditions Other than Genetics
Influencing Type B ADR
The general state of the immune system may influence the
occurrence or non-occurrence of ADR. E.g., vancomycin-
related red-man-syndrome is very frequently seen (up to
90%) in non-infected, healthy patients, e.g., those receiving
prophylactic treatment, but much less (3.7–47%) in those
suffering from infections (Sahai et al., 1990; Sivagnanam and
Deleu, 2003). Vice versa, reactions to ampicilline (notably,
not amoxicilline) are much more common in EBV-infected
patients (Haverkos et al., 1991; Chew and Goenka, 2016) and
reactions to sulfonamides occur predominately in HIV-
infected patients (Jaffe et al., 1983).The mechanism for
sulfonamide-induced hypersensitivity in HIV-patients was
attributed to a decrease of cellular glutathione (Rieder et al.,
1995).

TABLE 1 | Databases of genotypes and associated ADR.

Name of database Access

The HLA Adverse Drug
Reaction Database

http://www.allelefrequencies.net/hla-adr/default.asp

LiverTox Database http://livertox.nih.gov/

HLADR (Du et al., 2015) http://pgx.fudan.edu.cn/hladr/

DELAYED-ONSET DRUG
HYPERSENSITIVITY REACTIONS

Common Features of Drug
Hypersensitivity Reactions
It can be speculated whether the clinical manifestation of a
drug hypersensitivity reactions is connected to specific genetic
alterations. E.g., is there a common pool of polymorphisms
leading to either DILI, DIA or SCAR? Existing data do
unfortunately deny the existence of such a simple genetic
constellation.

Example for One Drug – One Genotype – Several
Outcomes
Allopurinol causes SJS/TEN in Han Chinese bearing HLA-
B∗58:01. At the same time, in the same population, it can cause
DRESS.

Example for One Drug – Several Genotypes – One
Outcome
Vice versa to the allopurinol example, nevirapine causes DRESS.
It appears that the most significant HLA genotype for this
reaction heavily depends on the population: HLA-B, HLA-C, and
HAL-DR-loci have been associated.

Example for Several Drugs – One Genotype – One
Outcome
Finally, phenytoin, phenobarbital, and carbamazepine can elicit
SJS/TEN in HLA-B∗15:02 positive patients. At least this last riddle
can be explained by considering the common chemical features of
the three drugs (see below for details).

Drug-Induced Livery Injury
Flucloxacilline and amoxicilline/clavulanic acid are powerful
first-line antibiotics which may cause DILI (Daly et al., 2009).
Due to their wide-spread usage and inherent ability to cause DILI,
it is vital to further understand the mechanism. Unfortunately
for testing purposes, the numbers needed to screen are high and
routine testing is (currently) not feasible. This in part due to
the rareness of DILI which is estimated to occur in about 14
of 100,000 inhabitants per year (Bell and Chalasani, 2009). This
comes unexpected when taking into account that the liver is a
metabolically highly active organ, able to produce a variety of
bioactivated and thus putatively immunogenic compounds from
the parent drug. However, the liver is considered a tolerogenic
environment, i.e., there are mostly no or locally restricted
immune reactions in the liver (Crispe, 2003).

Amoxicilline/clavulanate has been linked to DILI in patients
with HLA-DRB1∗15:01 and recently with HLA-A∗30:02,
HLA-B∗18:01 and the complex genotype HLA-DRB1∗15:01-
DQB1∗06:02 (Stephens et al., 2013). Interestingly, the detected
populations at risk also differed in age and speed of reaction
onset.

Drug-Induced Agranulocytosis
Several drugs can elicit a life-threatening destruction of
blood cells. E.g., the antipsychotic clozapine is commonly
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(0.8% of drug users) causing neutropenia (less than 1500
neutrophil granulocytes/µl) or agranulocytosis (less than 500
granulocytes/µl). Other triggering drugs for DIA comprise
thyreostatics like methimazole and the analgesic metamizole
(USAN: dipyrone). Pharmacogenetic associations are known for
methimazole and HLA-DRB1∗08:03:2 (Tamai et al., 1996), for
metamizole and various HLA genotypes (Vlahov et al., 1996) and
for clozapine and a complex HLA genotype in Jewish subjects
(Lieberman et al., 1990) for more than two decades.

Since clozapine appears to be the most effective antipsychotic
drug available, there is a need to increase our understanding
of its safe or putatively unsafe usage. The initial findings for
clozapine were subsequently refined and applied to the general
population (Dettling et al., 2001). Various polymorphisms
leading to DIA after clozapine exposure have been identified, e.g.,
a complex genotype consisting of HLA-DRB5-DRB4, HLA-C-
B-DRB5 (Dettling et al., 2007), HLA-DQB1 (Athanasiou et al.,
2011), HLA-DQB1 (126Q) and HLA-B (158T) (Goldstein et al.,
2014). The latter two studies deserve additional attention since
the association was identified to be due to single amino acid
changes at a defined position in the HLA gene product rather
than to alleles described before. This is similar to the incidental
finding that a single amino acid change in HLA-A, HLA-B, and
HLA-C at position 152 might explain altered susceptibility of
T-cells to drugs and lead to DILI (Stephens et al., 2013). Amino
acids exchanges at this position alter the antigen binding pocket
E of the MHC I receptor and possibly the interaction with
T-cells. These findings suggest that a single amino acid change
and not a serology-derived typing of HLA may provide a better
prediction of the observed hypersensitivity reaction because of
the mechanistical explanation inferred by the change in the
binding pocket.

Severe Cutaneous ADR
Next to the liver, the skin, including the mucosa, is involved in
bioactivation of drugs. Additionally, since the skin is the barrier
that protects our body from the environment, it is rich of immune
cells. Due to this combination of a huge amount of putatively
immunogenic compounds, an abundancy of immune cells and
the constant pre-sensitization of the dermal immune cells due
to their contact with pathogens, the skin is a prime location for
the manifestation of immune reactions. It has been proposed
that the increased reactivity of EBV- or HIV-infected patients to
aminopenicillines might be due to a lower activation threshold
of T-cells (Posadas and Pichler, 2007). Differential pathways of
activation have been show for flucloxacillin (Yaseen et al., 2015).

Severe cutaneous ADR encompass DRESS and SJS/TEN.
Commonly used substances which can cause SCAR are abacavir,
lamotrigine, and carbamazepine (Pirmohamed et al., 2015). The
latter has an aromatic moiety and is grouped together with
phenobarbital and phenytoin to the aromatic anticonvulsants.
These aromatic anticonvulsants were associated with various
HLA-A and HLAB variants. Interestingly, a hypersensitivity
reaction to the non-aromatic drug lamotrigine was recently also
associated to HLA-B∗15:02 and SJS in a Han Chinese population
(Man et al., 2007; Zeng et al., 2015).

The finding that abacavir is very likely to induce DRESS in
HLA-B∗57:01 positive patients led to a guideline of the CPIC
which recommends testing because of the severity of the reaction
and the high risk in absence of genetic prescreening (Martin
et al., 2012). It is estimated that 6% in the general population
are carriers of HLA-B∗57:01 and that around 50% of carrier
will develop DRESS. The recommendation is thus classified as
“strong.” However, it was argued that 50% of positively tested
individuals will be denied an effective treatment option (Martin
et al., 2012). Therefore, CPIC reviews guidelines on a regular
basis. Recently, the unchanged recommendation was confirmed
(Martin et al., 2014).

Table 2 summarizes all affected drugs and clinical
manifestations of late-onset hypersensitivity reactions.

ISSUES IN DATA ACQUISITION AND
INTERPRETATION

The Input
As nicely illustrated by the abacavir example, any improvement of
signal detection and risk calculations requires correct assessment
of the event (Phillips et al., 2011). Physicians in clinics tend

TABLE 2 | Manifestations of late-onset hypersensitivity reactions and
commonly affected drugs.

Affected organ Clinical manifestation Drugs involved

Liver Anorexia Flucloxacilline

Fatigue Amoxicilline

Nausea

Abdominal pain

Jaundice/itching

Blood clotting disorders

Blood tests: elevated liver
function tests (ALAT, ASAT)

Granulocytes Agranulocytosis: Metamizole
(Dipyrone)

Sudden fever Clozapine

Sore throat Carbimazol/
Thiamazol/Methimazole

Infections (urinary tract,
pneumonia)

Sepsis

Blood tests: low leukocyte
counts

Skin DRESS: Allopurinol

Fever Abacavir

Edema (face)

Exanthema

Lymphadenopathies

Blood tests: eosinophilia,
thrombocytopenia, anemia

SJS/TEN: Lamotrigine

severe necrosis of the skin Carbamazepine

Phenobarbital

Phenytoin
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sometimes to misdiagnose the reaction, focus on only one aspect,
fail to conduct further investigations that would strengthen or
invalidate the finding, or fail to document the event appropriately
(Thien, 2006). The solution that worked for the abacavir-findings
was to conduct two tests, both a clinical assessment using
a structured query form and a skin patch test to confirm
involvement of the immune system (Phillips et al., 2011).

Starting with the thalidomide tragedy, the powerful
pharmacovigilance system was installed in most countries.
The strength of this system is the huge data pool on adverse
events like ADR encompassing millions of cases world-wide.
A major drawback is the paucity of information routinely entered
into this systems (Böhm et al., 2016). Genetic information is
usually missing and the patients mentioned in the individual
safety reports cannot be recontacted for further investigations. It
is thus only possible to generate hypotheses which need further
evaluation.

The Throughput
To increase the collection of cases and their quality, interested
parties have formed their own collaborative research teams, e.g.,
RegiSCAR for severe cutaneous reactions (Phillips et al., 2011),
the Berlin Case–Control Surveillance Study group (e.g., Huber
et al., 2015) and the International CIA Consortium for DIA or
DILIGEN, iDILIC, DILIN, and others focusing on DILI (Nicoletti
et al., 2016). These networks allow standardized collection of
patient and event data as well as genetic material, and possibly
re-identification of patients for further data or material sampling.

Of note, such a network requires tremendous resources if the
drug-event-combination is rare. E.g., finding the association of
flupirtine and HLA-DRB1∗16:01-DQB1∗05:02 causing DILI took
more than 10 years of careful preparation and data collection
(Nicoletti et al., 2016). The Berlin Case-Control Surveillance
Study group collected data for 10 years (Huber et al., 2015).
The increasing availability of electronic health records, the
ongoing deployment of biobanks and the advances regarding
the accompanying ethical, legal, technical, and social challenges
(Strech et al., 2016) might deliver a global new data source for
research on drug hypersensitivity reactions.

The Output
All data essentially boils down to a 2x2 contingency table
of one biomarker and the occurrence of the ADR. Several
statistical measurements can be derived from this: p-values (e.g.,
derived from Chi squared with Yates’ correction), odds ratios,
sensitivity/specificity, PPV, NPV as well as NNS.

It is sometimes desirable to combine several polymorphisms
to a complex genotype or, analogously, several drugs to one
drug class or several reactions to a syndrome. Grouping of
individual findings will enhance the usefulness of the data
for constructing novel detection techniques and to reach
statistical and clinical significance (Böhm et al., 2016). E.g.,
genotyping of individual polymorphisms in cases of clozapine-
induced agranulocytosis revealed no findings, whereas grouping
polymorphisms to complex genotypes revealed three associations
(Dettling et al., 2007). Another example is the 75% cross-
reactivity of carbamazepine, phenytoine and phenobarbital and

possibly lamotrigine on SJS/TEN. Arene oxide is a common
moiety of metabolites of the first three anticonvulsant drugs
and is considered to be the immunologic active substance.
Grouping these drugs might help to strengthen signals for certain
polymorphisms.

Traditional statistical approaches are not suited for analyses of
small numbers. The fewer cases are reported, the wider the 95%-
confidence interval becomes. The work of iDILIC shows that it is
possible to find a convincing signal with just six cases (Nicoletti
et al., 2016). However, in the future Bayesian approaches are
expected to replace traditional frequentists’ methods for such
small numbers of cases (Yum et al., 2014). Bayesian statistics
is increasingly used in early clinical trials in order to efficiently
screen for signals where numbers are low.

Each of the statistical measurements given above should be
used for different purposes:

(i) Statistical significance: the p-value marks the feasibility
for further calculations of this drug-biomarker-reaction-
association.

(ii) Technical significance: sensitivity/specificity are useful for
test validation only. They have no direct value for the
patient or the health system. Of course, the higher these
values are, the better the following resulting measurements.

(iii) Clinical significance: PPD and NPD reflect the personal
risk for an individual patient. E.g., if a drug hypersensitivity
reaction is extremely rare, a positive test for a biomarker
does not automatically suggest a high predictive value. PPD
and NPD will guide which further clinical investigations
should be conducted or which treatment options are
feasible.

(iv) Economic significance: the NNS will be used by the
stakeholders of the heath system. The NNS allows to
estimate the how many patients need to be screened to
prevent one case of ADR. Depending on the costs of
the screening procedure and the severity of the ADR,
different cut-off values for NNS will be used. Time will show
whether and to what extend pharmacogenetic tests will
decrease the overall treatment costs for prediction of drug
hypersensitivity reactions. Current evaluations estimate a
plain decrease of costs for the health system (Alagoz et al.,
2016).

Table 3 shows several examples where statistical, technical,
clinical and economic significance differ.

The example of the pooled data (dataset #3) as extracted
from the HLADR database shows that combining data does not
substantially improve PPV, NPV, or NNS if the individual datasets
are of sufficient quality (Mallal et al., 2002; Martin et al., 2004).

A common problem is the acquisition of data due to
the low numbers of cases and matching controls: often, not
all cells of the 2x2 contingency table contain a count. Zero
counts are problematic for the calculation of measurements
of disproportionality. There are several ways to cope with
this situation: A mathematical tool is the usage of Haldane’s
modification for Odds Ratios. By adding 0.5 to every cell, zero
counts are eliminated. Another option is carefully matching other
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TABLE 3 | Showcases of associations of drug – biomarker – event and derived statistical measurements.

# Drug-biomarker-
event

BE Be bE be p-value Sensitivity/
specificity

Prevalence or
incidence of

event

PPV/NPV NNS Datasource

1 Abacavir –
HLA-B∗57:01 –
DRESS/AHSS

14 4 4 163 <0.01 77.8/97.6% 8%∗ 77.8/97.6% 16.58∗ FD1 HLADR (Mallal
et al., 2002)

2 Abacavir –
HLA-B∗57:01 –
DRESS/AHSS

17 4 1 226 <0.01 94.4/98.3% 8%∗ 78.9/99.4% 15.53∗ FD4 HLADR (Martin
et al., 2004)

3 Abacavir –
HLA-B∗57:01 –
DRESS/AHSS

31 8 5 389 <0.01 86.1/97.9% 8%∗ 79.5/98.7% 16.25∗ Pooled FD1+FD4
(Mallal et al., 2002;
Martin et al., 2004)

4 Abacavir – complex
genotype HLA-B∗57:01
+ DR7 + DQ3 –
DRESS/AHSS

13 0 5 167 <0.01 72/100% 8%∗ 100/96.9% ∼12.5∗ Mallal et al., 2002

5 Flupirtin – complex
genotype
HLA-DRB1∗16:01 +
DQB1∗05:02 – DILI

11 0 614 10588 <0.01 1.8/100% 13.9:100,000∗ 100/94.5% ∼8000∗ Nicoletti et al., 2016

6 Flucloxacilline –
HLA-∗57:01 – DILI

43 8 4 60 <0.01 84.3/93.75% 8.5:100,000 0.12/99.99% ∼13,000 Daly et al., 2009

AHSS, abacavir hypersensitivity syndrome; Notation of 2x2 table in adaption of (Böhm et al., 2016): BE: Biomarker + Event, Be: Biomarker but no event, bE: event but
no biomarker, be: neither biomarker nor event. Values marked with ∗ were either extracted from additional source or calculated http://openvigil.pharmacology.uni-kiel.de/
contingency-table-calculator.php. FD# HLADR denotes the number of dataset obtained from http://pgx.fudan.edu.cn/hladr/.

(known) cohorts to the existing data (Nicoletti et al., 2016). The
theoretical gold standard is to keep gathering reports until all cells
can be filled in with sufficiently large counts which is often not
feasible.

The full dataset (#4) using complex genotypes illustrates that
the combination of genotypes enhances the performance of the
test, in this case the PPV (Mallal et al., 2002).

The dataset #5 illustrates that even test with an extremely low
sensitivity can lead to acceptable high PPV and NPV and thus
NNS (Nicoletti et al., 2016).

The findings in dataset #6 shows a scenario in which
testing appears very reasonable if calculating PPV and NPV
from the original data (PPV = 91.49%, NPV = 88.23%,
NNS = 1.3). However, when applying the real population-wide
prevalence instead of relying solely on the counts reported in
this publication, a much lower PPD of 0.12% results and thus a
very high NNS of approximately 13,000 (Daly et al., 2009). Still,
testing is desirable from the patient’s point of view (NPV 100%).
However, it is economically not feasible.

WHEN AND HOW TO TEST FOR A RISK
OF HYPERSENSITIVITY

From a clinical point of view, testing for pharmacogenetics
markers for the prediction of drug hypersensitivity reactions is
only useful if

(i) a test with sufficient PPV/NPV exists,
(ii) an alternative treatment or diagnostic option exist that can

be employed on a positive test result and
(iii) the test is unlikely to inflict damage on the patient.

From an economically point of view, it might be added:
(iv) testing of the population at risk should be cheaper than the

costs to treat ADR in this population, implying a low NNS.

Of note, the NNS requires knowledge of the prevalence
to be calculated. Due to the rareness of the events being
analyzed, in most cases just estimates of the incidence-rates
in a subpopulation (primarily users of the drug) are known.
Consequently, NNS figures will vary depending on these
epidemiologic data. Table 4 lists the drugs for which currently
a genetic testing prior to exposition is mandatory.

Sometimes, more than one test for a risk-predicting factor is
available. Under most circumstances, phenotyping requires more
time and could potentially damage the patient. E.g., the risk of
a drug hypersensitivity reactions to abacavir can be assessed in a
variety of ways: a genetic test for HLA-B∗57:01, an ex vivo test like
lymphocyte transformation test (LTT) and in vivo tests like a skin
patch test or an oral challenge (Rive et al., 2013). The genetic test
and the LTT bear no risk for the patient. The genetic test needs no
cultivation of cells and is thus much cheaper than the LTT. The
skin patch might induce a reaction and the oral challenge option
cannot be used due to severe drug hypersensitivity reactions.

TABLE 4 | Drugs for which currently pharmacogenetics testing is
mandatory.

Drug Biomarker

Abacavir HLA- B∗57:01

Carbamazepine Only for Thai and Han Chinese: HLA-B∗15:02

Not included are any test for the existence or subsceptibility of the
pharmacodynamic target (e.g., kinase inhibiting oncologic drugs and the required
prior genetic testing for a mutation in the kinase).
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Human leukocyte antigen typing can also be done using
serology, i.e., antibodies directed at certain surface proteins.
However, the accuracy of this method is lower (7.1%
misassignments) than genetic HLA typing (Bozon et al., 1996).
Subtle changes of the HLA-encoded proteins are usually not
detectable with serology-based methods. It is doubtful whether
binding pockets to drugs or other interacting proteins (e.g.,
T cell receptors) are being recognized by the currently employed
antibodies in serology-based HLA typing.

Summarizing, genetic tests have been proven to be usually the
safest, fastest, and cheapest screening tool.

CONCLUSION

Adverse drug reaction are a major burden for the health
care system. A large percentage could be prevented.
Pharmacogenetic testing can contribute to avoidance of ADR,
both pharmacological ADR (type A) and drug hypersensitivity
reactions (type B ADR). Certain alleles and complex genotypes

of HLA genes contribute to drug hypersensitivity reactions.
Common drug hypersensitivity reactions include cytotoxicity
in skin, liver, and blood cells. The decision for HLA genotyping
before drug therapy is dependent on severity of the expected
ADR and the existence of other treatment options, as well as a
reasonable high positive and NPVs of the test in question in the
population to be analyzed.
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