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Apoptotic cells carry a plethora of self-antigens but they suppress eliciting of innate and 
adaptive immune responses to them. How apoptotic cells evade and subvert adaptive 
immune responses has been elusive. Here, we propose a novel model to understand 
how apoptotic cells regulate T cell activation in different contexts, leading mostly to 
tolerogenic responses, mainly via taking control of the CD80–CTLA-4 coinhibitory signal 
delivered to T cells. This model may facilitate understanding of the molecular mechanisms 
of autoimmune diseases associated with dysregulation of apoptosis or apoptotic cell 
clearance, and it highlights potential therapeutic targets or strategies for treatment of 
multiple immunological disorders.
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APOPTOSIS

Apoptosis, or programmed cell death (PCD), is the physiological form of cell death that plays 
an important role in tissue homeostasis and regeneration, as well as maintenance of robust 
organ functions. While cell death by necrosis may have immunostimulatory and inflammatory 
effects (Sauter et  al., 2000), apoptosis shows no immunostimulatory capacities, and may serve 
beneficial functions to the host (Sauter et  al., 2000; Mahajan et  al., 2016).

Our understanding of many aspects of apoptosis has constantly increased over the past ~30 years, 
due to tremendous effort and a myriad of studies using various model systems. For example, 
mouse models, due to the power of mouse genetics and with the availability of gene-targeting 
approaches, have been a mainstay tool to understand both the various functions of apoptosis-related 
genes in development and the association between gene functions or apoptosis states and disease 
phenotypes in mammals (see, for instance, Reyes et  al., 2010; Gómez-Sintes et  al., 2011; Yamaguchi 
et  al., 2011; Wu et  al., 2015). Given that the apoptosis machinery is evolutionarily conserved, from 
worms to mammals, other eukaryotic models have also been used such as drosophila, especially 
considering the ease of genetic screens and availability of a large number of fly lines (see, for 
instance, Richardson and Kumar, 2002; Gullaud et  al., 2003; Denton et  al., 2008; Xu et  al., 2009). 
Even yeast, which, while it lacks main regulators of mammalian apoptosis such as caspases and 
the B cell lymphoma 2 (Bcl-2) family members, was used to study apoptosis via heterologous 
expression of many such genes, given the advantages of the yeast model (e.g., easy manipulation 
via molecular biology or genetics, low cost, and the availability of powerful tools such as the yeast 
two-hybrid system) (Fleury et al., 2002; Kazemzadeh et al., 2012). In addition to the in vivo models, 
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in vitro models have also been frequently used to understand the 
signaling pathways or molecular interactions that regulate apoptosis 
at the cellular level, in physiological or disease conditions (Calissano 
et  al., 2009; Spencer and Sorger, 2011). Importantly, with the 
advent of stem cell technologies and in vitro differentiation methods, 
many human (stem cell-derived) cell types, including neurons, 
were used to understand apoptosis-related molecular disease 
mechanisms in the human genetic background (Csöbönyeiová 
et  al., 2016; Fang et  al., 2018).

Induction of cell death by apoptosis in mammals is initiated 
by two major signaling cascades: the “extrinsic” and “intrinsic” 
pathways of apoptosis (Nagata and Tanaka, 2017). In the intrinsic 
pathway, activation of apoptosis is triggered by either 
developmental signals or genotoxic substances resulting in the 
release of many proteins including cytochrome C from the 
mitochondria by pro-apoptotic members of the Bcl-2 family 
(Nagata and Tanaka, 2017). The released cytochrome C 
subsequently mediates the formation of apoptosomes in the 
respective cell’s cytosol, which are multiprotein complexes 
consisting of cytochrome C, pro-caspase 9, and apoptotic 
protease-activating factor 1 (APAF1) that process pro-caspase 
9 to its mature form (Liu et  al., 1996; Zou et  al., 1997, 1999). 
Mature caspase 9 finally mediates the maturation of inactive 
pro-caspase 3 to its active form caspase 3 (Nagata and Tanaka, 
2017). In the extrinsic pathway of apoptosis, binding of FasL 
(Fas Ligand, expressed on the surface of the apoptosis-inducing 
cell) to Fas (CD95, tumor necrosis factor receptor superfamily 
member 6) on the cell destined to undergo apoptosis results 
in a conformational change in the Fas trimer allowing for the 
formation of the death-inducing signaling complex (DISC) 
(Nagata and Tanaka, 2017). DISC is a multiprotein complex 
containing the Fas-associated death domain protein (FADD) 
and pro-caspase 8 (Chinnaiyan et  al., 1995; Kischkel et  al., 
1995; Muzio et  al., 1996). DISC activation results in the 
production of mature caspase 3 by DISC-matured caspase 8 
(Nagata and Tanaka, 2017). Finally, caspase 3 activated by 
both apoptosis pathways triggers the apoptosis program via 
the cleavage of >500 cellular substrates (Nagata and Tanaka, 
2017). While FasL expression is restricted to cytotoxic T 
lymphocytes, T helper type-2 (Th2) cells, and Natural Killer 
(NK) cells (Kägi et al., 1994; Lowin et al., 1994), Fas is expressed 
by most cell types (Nagata and Tanaka, 2017). Therefore, 
FasL-Fas interaction-induced apoptosis is very important for 
tissue homeostasis. Besides FasL, other ligands such as tumor 
necrosis factor-alpha (TNF-α), lymphotoxin-alpha (LT-α), 
TNF-like protein-1A (TL1A), and Apo2L/TNF-related apoptosis-
inducing ligand (TRAIL) can also trigger Fas-dependent apoptosis 
via the extrinsic pathway (Yamada et  al., 2017).

APOPTOTIC CELLS AND  
INNATE IMMUNITY

It was initially thought that apoptotic cells (ACs) might 
be  immunologically null, however a plethora of evidence has 
since then indicated that ACs are immunologically active, exerting, 
in most cases, anti-inflammatory and immunosuppressive effects. 

Early, in 1997, a pioneering study (Voll et  al., 1997a) showed 
that peripheral blood-derived macrophages exposed to ACs 
exhibited enhanced production of the immunosuppressive cytokine 
interleukin (IL)-10, which is an important immune regulatory 
molecule that prevents inflammatory immune responses, tissue 
damage, and the development of autoimmunity. Recently, ACs 
were shown to induce upregulation of the transcription factor 
aryl hydrocarbon receptor (AhR) in a Toll-like receptor (TLR) 
9-dependent manner, which enhanced production of IL-10 to 
mediate AC-dependent immunosuppression (Shinde et al., 2018). 
Consequently, AhR knockout induced autoimmune responses and 
systemic lupus erythematosus (SLE) disease in a mouse model 
(Shinde et al., 2018). However, it is important to note that, while 
IL-10 is mainly considered to have anti-inflammatory effects on 
a wide range of target cells, recent findings suggest a more 
complex modulatory function of this important cytokine. Because 
of its role as an important B cell growth and differentiation 
factor (that promotes B cell proliferation and IgG production), 
IL-10 was suggested to contribute to the pathology of SLE via 
activation of autoreactive B cells (reviewed in Geginat et  al., 
2016). IL-10 levels were shown to increase in SLE patients and 
polymorphisms in the IL-10 promoter were strongly associated 
with SLE development (Peng et  al., 2013). In line with these 
findings, neutralization of IL-10 blocked autoantibody production 
in SLE patients (Llorente et  al., 1995). However, both the source 
of the pathogenic IL-10 production in SLE patients and its possible 
contribution to other autoimmune diseases remain to be  further 
characterized (Geginat et  al., 2016).

Besides IL-10, ACs were shown to induce the production 
of many anti-inflammatory cytokines such as transforming 
growth factor beta (TGF-β), platelet activating factor  
(PAF), and prostaglandin E2 (PGE2) (Voll et  al., 1997b;  
Cvetanovic and Ucker, 2004). In addition, macrophage exposure 
to ACs caused a reduction in the macrophages’ expression 
of the pro-inflammatory and immunostimulatory cytokines 
tumor necrosis factor (TNF)-α, IL-12, IL-1β, IL-18, and 
granulocyte-macrophage colony-stimulating factor (GM-CSF)  
(Fadok et  al., 1998; Kim et  al., 2005).

Therefore, ACs are able to modulate the activation state of, 
and cytokine secretion from, antigen-presenting cells (APCs) 
which influences both innate and subsequent adaptive immune 
responses to the ACs. This immune modulation also has 
consequences for T cell activation upon encountering ACs. For 
example, suppression of macrophage-derived IL-12 production 
may prevent the differentiation of self-reactive T helper type-1 
(Th1) CD4+ cells and autoimmunity (Trembleau et  al., 1995), 
while AC-induced IL-10 represses the expression of MHC-II 
and costimulatory molecules required for antigen presentation 
and subsequent T cell activation (Couper et  al., 2008).

APOPTOTIC CELLS AND  
ADAPTIVE IMMUNITY

The Route to T Cell Activation
Upon T cell receptor (TCR) activation by ligand binding, such 
as by specific-antigen-bound major histocompatibility complex 
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(MHC) on the surface of APCs, the TCR-associated CD3 chains 
become tyrosine-phosphorylated leading to recruitment of 
kinases and scaffold proteins and formation of a supramolecular 
complex that triggers signaling pathways and transcriptional 
cascades responsible for T cell differentiation and clonal 
expansion, as well as effector cell generation (Rathmell et  al., 
2003; Smith-Garvin et  al., 2009; Marko et  al., 2010; Schultze 
et  al., 2012). Among those signaling and transcriptional events 
are the upregulation of the glucose receptor Glut 1 (Frauwirth 
et  al., 2002) and the glutamine receptors Snat1 and Snat2 
(Carr et  al., 2010), and the activation of the MAPK and PI3K/
Akt pathways (Kannan et  al., 2012). Collectively, these events 
are required to fulfill the metabolic needs of the proliferating 
T cells and to support cell cycle progression and cytokine 
production (Appleman et  al., 2002).

However, TCR ligation alone is insufficient to trigger or 
maintain robust T cell activation, as this process is tightly 
regulated by a complex array of costimulatory and coinhibitory 
ligands and receptors (Esensten et al., 2016). The prototypical 
costimulatory receptor is CD28, while the prototypical 
coinhibitory receptors are cytotoxic T lymphocyte antigen-4 
(CTLA-4) and PD-1 (Buchbinder and Desai, 2016). Shared 
ligands between both types of receptors include CD80 (B7-1) 
and CD86 (B7-2). Stimulation of CD28 potentiates and sustains 
IL-2 production from T cells and prevents peripheral 
immunotolerance development (Bour-Jordan et al., 2011; Kow 
and Mak, 2013). These T cells activated by CD28-B7 signaling 
then mature and differentiate, subsequently inducing B cell 
proliferation and differentiation into plasma cells producing 
antigen-specific antibodies (Kow and Mak, 2013).

Although CD80 can bind to and activate CD28, significant 
evidence suggests that it also contributes a strong coinhibitory 
function. In fact, the binding of CD80 to the coinhibitory 
receptor CTLA-4 occurs with higher affinity than its binding 
to the costimulatory receptor CD28 (KD  =  0.2 and 4  μM, 
respectively) (van der Merwe and Davis, 2003; Collins et  al., 
2005; Butte et  al., 2008). Furthermore, the crystal structure 
of the CD80-CTLA-4 complex showed that CD80 homodimers 
bind bivalent CTLA-4 homodimers in an unusually stable, 
high-avidity complex (Ikemizu et  al., 2000; Stamper et  al., 
2001). CTLA-4-mediated coinhibitory signaling is critical for 
negative regulation of T cell activation and proliferation, as 
evidenced by the severe lymphoproliferation and multi-organ 
inflammatory lymphocytic infiltrates observed in mice lacking 
CTLA-4 signaling (Tivol et  al., 1995) or in cancer patients 
receiving anti-CTLA-4 antibodies (Pardoll, 2012).

Even when the TCR and CD28 are ligand-activated, CTLA-4 
activation can inhibit cell cycle progression and cause proliferative 
arrest of T cells by suppressing IL-2 production (Krummel 
and Allison, 1996; Walunas et  al., 1996). It thus seems that 
CTLA-4 has a superdominant, overarching role in the regulation 
of T cell activation. CTLA-4 selectively reverses CD28-mediated 
costimulation (Walunas et al., 1996; Tai et al., 2007). Moreover, 
since CTLA-4 is a higher affinity CD80/86 binding partner, 
CTLA-4 can compete out CD28 for CD80/CD86 binding, also 
leading to suppression of T cell activation. Besides CD28 and 
CTLA-4, other costimulatory and coinhibitory receptors and 

ligands were later discovered and reported to modulate  
APC-T cell interaction (for review, see Kow and Mak, 2013;  
Attanasio and Wherry, 2016; Schildberg et  al., 2016).

An Integrative Model of Apoptotic-Cell-
Mediated Immune Evasion and Tolerance
Strong evidence indicates an essential role for the coinhibitory 
pathway in suppressing adaptive immune responses. First, the 
role of the coinhibitory signaling in regulating self-tolerance 
or autoimmunity is supported by the finding that various 
coinhibitory ligands are expressed, besides APCs, on 
non-hematopoietic cells which was suggested to play a role 
in maintaining tissue tolerance by suppressing self-reactive T 
cells in the periphery (Anderson et  al., 2016; Schildberg et  al., 
2016; Ward-Kavanagh et  al., 2016; Janakiram et  al., 2017). 
Notably, some tumors and infectious pathogens evade immune 
recognition by exploiting such natural tolerance mechanisms 
(Odorizzi and Wherry, 2012; Pardoll, 2012; Wang et  al., 2013; 
Attanasio and Wherry, 2016; Baumeister et  al., 2016).

Moreover, CTLA-4-mediated coinhibition was shown to 
be essential for terminating T cell activation as CTLA-4−/− mice 
develop massive lymphoproliferation and early death (Tivol 
et al., 1995; Waterhouse et al., 1995). CTLA-4 was also suggested 
as a master switch for peripheral tolerance (Bluestone, 1997). 
Importantly, the essential role of CTLA-4  in autoimmune 
regulation was further highlighted by the fact that blockade 
of CTLA-4 signaling in multiple animal models resulted in 
aggravation of autoimmune diseases (Karandikar et  al., 1996; 
Luhder et  al., 1998; Chitnis et  al., 2001). Moreover, CTLA-4 
gene single-nucleotide polymorphisms (SNPs) in humans were 
associated with autoimmune disorders. For example, a SNP 
in the 6.1-kb (kilobase) 3′ region of the CTLA-4 gene was 
associated with higher risk of Grave’s disease, autoimmune 
hypothyroidism, and type 1 diabetes mellitus (Ueda et  al., 
2003). Blockade of the CTLA-4- or PD-1-mediated coinhibitory 
signaling accelerated cardiac allograft rejection in C57BL/6 
mice receiving BALB/c hearts (Ito et al., 2005). It was suggested 
that CTLA-4 and PD-1 may play redundant or complementary 
functions that differentially target different stages of tolerance 
(priming, activation, or reactivation of T cells, respectively) 
(Linsley and Ledbetter, 1993; June et al., 1994; Dahl et al., 2000).

The role of the costimulatory/coinhibitory molecules in 
immune responses to ACs in vivo (in mice) has also been 
suggested by the finding that antigen-coupled ACs (derived 
from splenocytes) induced T cell tolerance via enhanced IL-10 
and PD-L1 expression on AC-ingesting macrophages. These 
ACs also enhanced Treg activation that maintained 
immunotolerance in that model (Kushwah et al., 2010). PD-L1 
upregulation was dependent on IL-10, as IL-10 neutralization 
with antibodies reduced the PD-L1 response to ACs.

Since ACs were reported to induce IL-10, and given that 
IL-10 is mostly an anti-inflammatory cytokine as discussed 
above, which is important for the induction of tolerance and 
suppression of dendritic cell maturation (Faulkner et al., 2000; 
Corinti et  al., 2001), it seemed plausible to suggest that 
adaptive immune responses to ACs could be  mediated by 
IL-10 effects. However, that hypothesis has been difficult to 
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fully establish due to different conclusions from various studies. 
For example, ACs were shown to induce IL-10 production 
by monocytes (Voll et al., 1997a), but not macrophages (Fadok 
et  al., 1998). But antigen-coupled ACs enhanced IL-10 and 
PD-L1 expression in AC-ingesting macrophages and induced 
T cell tolerance in mice (Getts et  al., 2011). Importantly, 
however, while statistically significant, the IL-10-induced 
PD-L1 upregulation in that study was subtle when compared 
to the IL-10-neutralized control (only ~20% increase in PD-L1 
mean fluorescence intensity (MFI) over the control). Conversely, 
using macrophage cell lines and mouse primary macrophages, 
we  found that the upregulation of another costimulatory/
coinhibitory molecule, CD80, was more pronounced (on 
average  >  4-fold upregulation, relative to the unstimulated 
control) (Yakoub et  al., 2018).

In another study, dendritic cells exposed to ACs exhibited 
reduced T cell proliferation and activation and reduced 
lipopolysaccharide (LPS)-triggered upregulation of the 
costimulatory molecule CD86 (Stuart et  al., 2002). In that 
study, ACs did not significantly affect IL-10 levels secreted by 
dendritic cells, and even IL-10 neutralization by soluble IL-10R 
did not affect expression of the costimulatory molecules on 
the dendritic cells (Stuart et al., 2002). Even further, ACs could 
inhibit LPS-induced activation of bone marrow-derived dendritic 
cells derived from IL-10-deficient mice; and neutralizing another 
anti-inflammatory cytokine, TGF-β1, could not suppress the 
inhibition of dendritic cell maturation by ACs (Stuart et  al., 
2002), contrary to what was suggested (Chen et  al., 2001). In 
total, these reports suggest that the effect of ACs on adaptive 
immune responses cannot, or cannot completely, be  attributed 
to secondary effects of the cytokine secretion modulated by 
ACs, and that ACs may have direct effects on the machinery 
regulating adaptive immune responses.

Similar to the results in macrophages showing upregulation 
of CD80 by ACs (Yakoub et  al., 2018), ACs were reported 
to induce CD80 and CD86 expression on in vitro differentiated 
human dendritic cells, which involved both soluble factors 
secreted and cell-cell contact to achieve the full effects of 
the ACs (Johansson et al., 2007; Pathak et al., 2012). Notably, 
however, these effects of ACs on CD80/86 expression on 
dendritic cells required “pre-activation” of the ACs with 
anti-CD3 and anti-CD28 antibodies, whereas non-pre-activated 
ACs showed no effect on CD80/86 expression on dendritic 
cells (Johansson et al., 2007; Pathak et al., 2012). These results 
suggest a differential AC response between dendritic cells 
and macrophages, as such AC activation was not required 
to modulate CD80 levels on macrophages (Yakoub et  al., 
2018). In a similar concept, “heat-stressed,” but not unstressed, 
ACs induced the costimulatory molecules CD40, CD80, 
and  CD86 on dendritic cells and secretion of the 
immunostimulatory IL-12, resulting in enhanced T cell 
responses (Feng et  al., 2002).

While the immunosuppressive or tolerogenic effects of ACs 
are established by a plethora of evidence (Kabelitz and Janssen, 
1997; Steinman et  al., 2000; Fadok et  al., 2001; Ferguson 
et  al., 2002; Liu et  al., 2002; Stuart et  al., 2002; Morelli 
et  al., 2003; Rovere-Querini et  al., 2004; Gray et  al., 2007), 

there were also instances where ACs were reported to have 
immunostimulatory effects (Hoffmann et  al., 2000; Ignatius 
et al., 2000; Feng et al., 2002; Buttiglieri et al., 2003; Goldszmid 
et  al., 2003; Ishii et  al., 2003; Casares et  al., 2005). It is thus 
possible to propose a model (Figure 1) whereby exposure 
to ACs in a non-inflammatory/non-immunostimulatory context 
(that does not involve immunogenic stimuli that trigger T 
cell activation) mounts a tolerogenic response via T cell 
inhibition through the coinhibitory pathway, whereas exposure 
to activated ACs in an immunostimulatory context mounts 
an immunogenic response via T cell activation through the 
costimulatory pathway. In support of this model is our finding 
that under non-immunostimulatory conditions, the AC-induced 
CD80 upregulation on macrophages was coupled with CD28 
downregulation on T cells (Yakoub et  al., 2018), which may 
possibly enhance the coinhibitory functions of CD80 as it 
binds the coinhibitory receptor CTLA-4 with much higher 
affinity and stability than it does the costimulatory receptor 
CD28 as described above.

CD80 binding to CTLA-4 conveys an inhibitory signal to 
T cell activation that overrides costimulatory signals, counteracting 
the initiation of T cell activation and proliferation and indeed 
inducing their apoptosis (Walunas et al., 1994). Moreover, other 
mechanisms could also contribute to AC-mediated suppression 
of adaptive immune responses. For example, ACs (derived from 
dendritic cells) engulfed by dendritic cells induced TGF-β1 
secretion and differentiation of naïve T cells into Foxp3+ Tregs 
(Kushwah et  al., 2010). Naïve T cells can differentiate upon 
antigen recognition into effector T cell subsets such as Th1, 
Th2, and Th17, or into immunosuppressive Tregs. AC-ingesting 
dendritic cells suppressed the development of the effector Th17 
cells, but enhanced the development of Tregs where dendritic 
cell-T cell interaction and the costimulatory/coinhibitory signaling 
were suggested to play a role in Treg induction (Yamazaki et al., 
2003; Torchinsky et  al., 2009).

CD80 expressed on T cells was also shown to bind PD-L1 
on APCs with an affinity greater than that of CD80-CD28 
binding (Butte et al., 2007; Rollins and Gibbons Johnson, 2017), 
which may negatively regulate T cell activation. Similarly, CD80 
on APCs, which ACs upregulate (Yakoub et  al., 2018), was 
suggested to bind PD-L1 on T cells (Schildberg et  al., 2016), 
which may downregulate T cell activation, if not directly, 
indirectly by competing out CD28 and thus reducing the 
costimulatory signal that is essential for T cell activation and 
sustenance of the adaptive immune response. Notably, PD-L1 
expression on parenchymal tissues including pancreatic islets 
mediated tolerance and inhibited self-reactive CD4 T cells (Keir 
et  al., 2006); and interference with CD80-PD-L1 binding 
enhanced activation of CD4 and CD8 T cells in vivo and 
accelerated development of autoimmune diabetes in NOD mice 
(Paterson et  al., 2011). Interestingly, it was also proposed that 
CD80/86 binding to CTLA-4 and PD-L1 on T cells enhances 
T cell motility, reducing T cell-APC contacts and the strength 
of the immune synapse, while enhancing contacts with, and 
activation of, Tregs (Dilek et  al., 2013). Moreover, binding of 
PD-L1 on ACs to PD-1 on T cells is also possible (Kushwah 
et al., 2010), which may also strengthen the coinhibitory signal 
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FIGURE 1 | A model for the regulation of T cell-mediated adaptive immune responses to apoptotic cells. (A) At the resting state, no activation of the TCR 
or the costimulatory pathway takes place. (B) In immunostimulatory contexts (such as AC ingestion by APCs in the presence of LPS, TLR ligands, or 
mycobacterial antigens), TCR binding to AC antigens presented in the context of MHC-I/II and the costimulatory signaling mediated by binding of CD28 by 
mainly CD86 (or CD86 and CD80) take place. Thus, activation of the costimulatory pathway ensures effector T cell (Teff) activation and proliferation, leading 
to mounting of an immune response to AC antigens. (C) In non-immunostimulatory contexts, such as AC ingestion by APCs in the absence of additional 
immunopotentiating stimuli (e.g., TLR ligands or mycobacterial antigens), the costimulatory signaling mediated by CD28 is downregulated. Rather, CD80 is 
upregulated, which binds mainly to CTLA-4 (CD80 binds CTLA-4 with much higher affinity than CD28), initiating the coinhibitory signaling that leads to Teff 
suppression and apoptosis. Even if some costimulatory signal is conveyed (by binding of some CD80 molecules to CD28), the CTLA-4-mediated 
coinhibitory signal predominates and usually overrides costimulation. Other signals are possible (e.g., binding of CD80 to PD-L1 on T cells or binding of 
PD-L1 on APCs to PD-1 on T cells) and might have some contribution to the overall coinhibitory signaling delivered to T cells, although their significance 
and relative contribution have yet to be established. Overall, the coinhibitory signaling to T cells triggers the inhibition of Teff functions; and in this context, 
differentiation of Tregs may also be enhanced.
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to T cells, although its significance needs to be  established as 
previously discussed.

Whether ACs would induce a tolerogenic or immunogenic 
response may depend on presence of immunostimulatory 
conditions or cues, including: (1) the type of cell death 
induced in the ACs, e.g., caspase-dependent or independent 
(Larmonier et  al., 2002); (2) type of the apoptosis-inducing 
agent or drug used in the experimental model (Casares et al., 
2005; Obeid et  al., 2007); (3) the stage of apoptosis (early 
vs. late) in the ACs (Weyd et  al., 2013); (4) type of the 
apoptotic corpse (ACs or apoptotic blebs) ingested by the 
APC (Fransen et  al., 2009); (5) cell-type of the ACs ingested 
by the APCs (Kushwah et  al., 2010); (6) secretion of T cell 
immuostimulatory cytokines, such as TNF-α, or TLR ligands 
(Clayton et al., 2003); (7) type and ratio of the APCs (dendritic 
cells or macrophages) present in a particular tissue site 
(Denning et  al., 2007); or (8) presence of potentially 
immunogenic or immunogenizing infectious pathogen (e.g., 
mycobacterial) antigens in the tissue microenvironment 
(Espinosa-Cueto et  al., 2017).

While the distinction between APC types (dendritic cells 
or macrophages) in terms of the type of immune response 
(immunogenic vs. tolerogenic) to ACs cannot be  completely 
settled given the varying reports thus far in this regard, there 
is still some preliminary evidence to propose that macrophages 
might mainly mediate tolerogenic responses to ACs while 
dendritic cells might mainly mediate the immunogenic responses. 
Dendritic cells and macrophages exhibit distinct locales and 
may thus mediate differential, locale-specific, AC responses 
(T cell activation or inhibition). For example, in the intestinal 
lamina propria, both APC types present commensal microbe 
and dietary antigens to T cells, with dendritic cells inducing 
effector Th17 T cells, and macrophages inducing Tregs (Denning 
et  al., 2007). Tregs induced by AC-presenting macrophages 
showed induced anti-inflammatory cytokine production and 
reduced immunostimulatory cytokines, and displayed an anergic 
phenotype after restimulation with the antigen (Denning et al., 
2007). Because macrophages are more abundant than dendritic 
cells in the lamina propria, T cell tolerance thus becomes the 
predominant response in that context. Importantly, macrophages 
were shown to be  essential for clearing tumor ACs introduced 
into mice and eliciting tolerogenic responses to the ACs (Asano 
et al., 2011); as ablation of the spleen marginal zone macrophages 
in these mice diminished the immunosuppressive potential of 
the ACs and enabled triggering of an immune response to 
ACs (McGaha et  al., 2011). It thus seems possible that the 
immunosuppressive or tolerogenic response to ACs is mainly 
mediated by macrophages as the APCs.

ROLE OF APOPTOTIC-CELL-MEDIATED 
IMMUNOSUPPRESSION IN DISEASES

An abundance of ACs (~70 billion) is produced daily in humans 
and defective clearance of these ACs has been associated with 
diseases, primarily autoimmune conditions. Therefore, we  will 
briefly discuss some disease conditions, where we propose that 

the immunosuppressive properties of ACs may be  exploited 
for therapeutic purposes.

Rheumatoid Arthritis
Rheumatoid Arthritis (RA) is a chronic systemic autoimmune 
disorder characterized by progressive inflammatory bone and 
joint destruction. Immunologically, the autoimmune responses 
are mediated by either circulating autoantibodies directed against 
citrullinated peptides and rheumatoid factor or complement 
protein C3 (Abdolmaleki et al., 2018). The destructive autoimmune 
responses in RA are maintained by IL-6 and TNF-α secreted 
by tissue macrophages triggering the MMP and RANK-ligand-
supported activation of osteoclasts (An et  al., 2016). In RA 
patients, the sustained joint inflammation is maintained by an 
abnormal state of aberrant cell survival caused by perpetual T 
cell activation resulting in stimulation and proliferation of fibroblasts 
which was termed “apoptosis resistance” (Malemud, 2018). In 
line with these observations, anti-apoptotic proteins were shown 
to be  upregulated in RA synovial fluids (reviewed in Williams 
et  al., 2018). Therefore, induction of apoptosis has the potential 
to reduce joint damage and to further modulate autoimmune 
responses in RA by modulating the coinhibitory signaling to T 
cells as previously described. Experimental apoptosis induction 
has therefore been considered as potential therapeutic avenue 
in RA, e.g., by targeting intracellular apoptotic inhibitory molecules, 
but thus far has not reached clinical trials (Williams et al., 2018).

Systemic Lupus Erythematosus
SLE is a chronic systemic autoimmune disorder characterized by 
the presence of circulating nuclear antigens, including DNA and 
nucleosomes, and of autoantibodies against these nuclear antigens 
(Poon et  al., 2014). SLE affects the skin, lungs, kidneys, and 
central nervous system. Impaired engulfment of ACs by phagocytes 
leads to accumulation of ACs in the lymph nodes and blood 
and in the skin after UV exposure. Impaired AC clearance 
eventually leads to secondary necrosis, which allows intracellular 
(self-) antigens, normally hidden within the AC to be  exposed 
extracellularly, and thus recognizing these self-antigens by the 
immune system, causing the production of autoantibodies and 
autoimmunity. While mostly suggested to be  caused by defective 
AC engulfment, super-stimulatory APCs that lead to hyperactive 
T cells were also suggested to recapitulate SLE in a mouse model 
(Zhu et al., 2005). Thus, targeting APC activity which is normally 
modulated by ACs in normal physiological conditions might be a 
successful strategy for therapy development for SLE.

Sjögren’s Syndrome
Sjögren’s Syndrome (SS) is an autoimmune disease targeting the 
salivary and lacrimal glands resulting in chronic dryness of mouth 
and eyes (Ainola et  al., 2018). In SS, apoptotic particles blebbing 
from apoptotic epithelial cells, possibly caused by defects in the 
production of sex hormones, that contain typical SS autoantigens 
such as hY1RNA were shown to contribute to disease pathology 
(Ainola et  al., 2018). In line with this increase in apoptosis rates, 
enhanced levels of both Fas and FasL were reported in salivary 
gland tissues, but not in lacrimal gland tissues or peripheral blood 
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lymphocytes of patients with SS, implicating Fas-mediated apoptosis 
in the destruction of salivary gland tissue (Ishimaru et  al., 2001; 
Bolstad et  al., 2003). The presence of both autoantigens and 
adjuvanting nucleic acids in these apoptotic particles was shown 
to stimulate plasmacytoid dendritic cells in salivary glands via 
TLR7 and TLR9, resulting in the activation of autoreactive T 
and B cells (Ainola et al., 2018). However, Ishimaru et al. reported 
that mice treated with an anti-murine FasL antibody (to suppress 
Fas-mediated apoptosis) unexpectedly showed exacerbations of the 
autoimmune lesions in both salivary and lacrimal glands (Ishimaru 
et al., 2001). Therefore, both the role of apoptosis in the pathology 
of SS and the therapeutic potential of ACs in the treatment of 
SS are poorly understood, warranting further investigations.

Autoimmune Lymphoproliferative 
Syndrome
Autoimmune Lymphoproliferative Syndrome (ALPS) is an inherited 
autoimmune disorder characterized by spleno- and hepatomegaly, 
lymphadenopathy, autoimmune lesions in multiple  organs, as 
well as autoimmune hemolytic anemia, thrombocytopenia, or 
leukocytopenia, caused by cell-type specific autoantibody 
production (Turbyville and Rao, 2010; Price et al., 2014; Yamada 
et  al., 2017). In ALPS patients, these symptoms are caused by 
spontaneous mutations in the Fas, FasL, or caspase 10 genes, 
resulting in a defective apoptosis of antigen-activated T- and B 
cells in the periphery, and the impaired limitation of immune 
responses (Yamada et  al., 2017). Since the pathology of ALPS 
is caused by a disruption of lymphocyte apoptosis, it is plausible 
to speculate that a decrease in production of ACs (which exert 
immunoinhibitory/anti-inflammatory effects as discussed) may 
contribute to the autoimmune pathology in ALPS patients. The 
role of ACs in ALPS pathogenesis and its possible exploitation 
for therapy is thus an interesting area for future research.

Diabetes Mellitus
Type 1 diabetes mellitus can be caused by autoimmune responses 
to pancreatic beta-cell antigens resulting in insulin deficiency 
and hyperglycemia. While it was suggested that inefficient 
clearing of apoptotic pancreatic cells resulting in the release 
of damage-associated molecular patterns (DAMPs) in 
combination with autoantigens may contribute to the pathology 
of type 1 diabetes (Heimberg et al., 2001; O’Brien et al., 2006), 
ACs were also suggested as a tool to induce tolerance to beta-
cell self-antigens. Indeed, ACs (apoptotic beta-cell infusion) 
could suppress beta-cell antigen-specific CD4+ T cell proliferation 
and delay the onset of diabetes in the diabetes-susceptible, 
autoimmune (NOD) mice (Xia et al., 2007; Marin-Gallen et al., 
2010). Therefore, ACs show a promising potential for the 
treatment of type 1 diabetes.

Transplantation
After transplantation, immunosuppressive drugs are given to the 
patients, to induce tolerance and prevent graft rejection. However, 
these drugs show many undesirable and potentially dangerous 
side effects. Thus, ACs were suggested to be  used as possibly 
side effect-free tolerogenic tools (Morelli and Larregina, 2010). 

Donor’s ACs given to transplant patients may tolerize or repress 
the recipient’s immune responses to the transplant, prevent graft-
versus-host reactions, and enhance graft survival (Kleinclauss 
et  al., 2006; Wang et  al., 2006, 2009; Bittencourt et  al., 2011).

Cancer
Anti-tumor chemotherapeutic agents lead to production of 
massive cytotoxicity and generation of ACs. Given the adaptive 
immunosuppressive and tolerogenic effects of ACs, it is plausible 
to hypothesize that the apoptosis induced, and the ACs produced, 
by cancer treatments contribute to tumor survival indirectly 
by dampening immune responses to cancer cell antigens carried 
on these ACs. Thus, functionally blocking ACs in cancer may 
help reduce these undesirable effects of antineoplastic agents 
on anti-tumor immunity. In fact, some therapeutic strategies 
to target the coinhibitory molecules that mediate the adaptive 
immune responses to ACs have been investigated for their 
possible beneficial effects on anti-tumor immunity (Chen, 2004; 
Hirano et  al., 2005; Curran et al., 2010).

CONCLUDING REMARKS

While ACs have been investigated as tolerogenic or 
immunosuppressive “vaccines,” understanding the molecular 
mechanisms of the ACs’ immunomodulating effects, especially 
their interaction with the costimulatory/coinhibitory pathway, 
may encourage attempts at targeting specific molecules that 
ACs exploit in mediating their effects. In general, the 
costimulatory/coinhibitory pathway has been explored as target 
for therapeutic purposes. For example, targeting of either CD28, 
PD-1, PD-L1, or CTLA-4 has been investigated and some 
therapies targeting this machinery are already in clinical use 
(e.g., the anti-CTLA-4 antibody Ipilimumab for the treatment 
of advanced metastatic melanoma, and the anti-PD-1 antibodies 
Pembrolizumab and Nivolumab for the treatment of advanced 
melanoma, advanced non-small cell lung cancer, and metastatic 
renal cell carcinoma) (Dilek et  al., 2013).

Although the costimulatory/coinhibitory pathway has been 
a tempting target for disease therapy, some challenges remain 
and are yet to be overcome in the future to enable full harnessing 
of the therapeutic potential of this pathway. For example, some 
therapies targeting the costimulatory/coinhibitory pathway have 
even been discontinued in medical practice due to limited 
effectiveness (Smith et  al., 2013), or have failed clinical trials 
at early stages (Khoury and Sayegh, 2004). Some proposed 
therapies can also pose significant risks (Frebel and Oxenius, 
2013). This all reflects the fact that we  have not yet reached 
complete and thorough understanding of the costimulation/
coinhibition pathways and their intricate interactions with 
diseases. In conclusion, this perspective proposes a model to 
understand how ACs regulate the costimulatory/coinhibitory 
signaling pathways of regulating T cell activation in order to 
suppress adaptive immune responses, which may facilitate 
harnessing these molecular mechanisms in therapy development 
for various immunopathological conditions.
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