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Coevolution of teaching ability and 
cooperation in spatial evolutionary 
games
Shuhua Zhang, Zhipeng Zhang, Yu’e Wu, Yu Li & Yunya Xie

Individuals with higher reputation are able to spread their social strategies easily. At the same time, 
one’s reputation is changing according to his previous behaviors, which leads to completely different 
teaching abilities for players. To explore the effect of the teaching ability influenced by reputation, 
we consider a coevolutionary model in which the reputation score affects the updating rule in spatial 
evolutionary games. More precisely, the updating probability becomes bigger if his/her partner 
has a positive reputation. Otherwise, the updating probability becomes smaller. This simple design 
describes the influence of teaching ability on strategy adoption effectively. Numerical results focus on 
the proportion of cooperation under different levels of the amplitude of change of reputation and the 
range of reputation. For this dynamics, the fraction of cooperators presents a growth trend within a 
wide range of parameters. In addition, to validate the generality of this mechanism, we also employ 
the snowdrift game. Moreover, the evolution of cooperation on Erdős-Rényi random graph is studied 
for the prisoner’s dilemma game. Our results may be conducive to understanding the emergence and 
sustainability of cooperation during the strategy adoptions in reality.

The prevalence of cooperative or altruistic behaviors is a ubiquitous phenomenon among selfish and unrelated 
agents, ranging from biological spheres to social communities1–4. Therefore, understanding the evolution of coop-
eration is one of the enduring conundrums of behavior sciences5–7. This has attracted plenty of attentions from 
biologists, economists and physicists. Evolutionary game theory is one of the fruitful frameworks, based on the 
so-called social dilemmas in which social conflicts are analogous to the competition among individuals8–10, to 
investigate this problem. Among these social dilemmas, the prisoner’s dilemma game (PDG) and the snowdrift 
game (SDG) are the most prominent metaphors for pairwise interactions11.

In the original game, two players (agents) make a decision simultaneously between cooperation (C) and defec-
tion (D). If both players cooperate, they will get the reward R equally, but only the punishment P when two defec-
tors encounter. On the contrary, the defector could get the highest temptation T and the cooperator only obtains 
the sucker’s payoff S if two players have different actions. For the PDG, the payoff must satisfy the necessary 
rankings T > R > P > S and 2R > (T + S). Mutual defection is the solely stable state or Nash equilibrium of the 
game, therefore, it is the rational choice. In other words, although mutual cooperation yields the most collective 
payoff, rational players always defect regardless of what the opponent chooses12. For the SDG, the payoff ranking 
is T > R > S > P. This minor variation results in a significant change with the optimal strategy. Namely, there are 
two Nash equilibria in this game: defect when your opponent cooperates and cooperate when your opponent 
defects13. According to the Nash equilibria of the games, it is easy to see that SDG is more supportive for coop-
eration than the PDG. However, the Nash equilibria of the above two classical games are contradictory to the 
fact that cooperation is observed in nature widely. Consequently, some unknown mechanisms are maintaining 
cooperation in reality definitely.

Over the past decades, various specific mechanisms have been proposed to understand the emergence and 
maintenance of cooperation in many disciplines. Paradigmatic examples include kin selection14, direct and indi-
rect reciprocity15–17, group selection18, noise19,20, extortion strategies21, reward and punishment22–25. Furthermore, 
some effective strategies are also used, such as the tit-for-tat26,27 and win-stay lose-shift28–30. In particular, spatial 
structure31 has been identified as one of the most effective factors to enhance cooperation. In spatial evolutionary 
game, players only interact with their nearest neighbors on a regular lattice. Cooperators can resist exploitation of 
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defectors through forming clusters, which can protect those cooperators that are located in the interior of clusters. 
Following this pioneering work, a great number of promoting mechanisms have been studied. See, for example, 
the survey articles32,33. Complex networks, having a similar connectivity distribution with complex systems in 
reality, e.g., air transportation networks and the Internet, provide a uniform framework to understand the com-
mon cooperation behaviors34–37.

Teaching activity38,39 is an important process in the evolution of cooperation, which refers to the influence or 
reproduction rate of individuals. Players with high influence are more likely to reproduce than individuals with 
low influence, i.e., they have a higher teaching ability. In previous works38,39, teaching ability is a control varia-
ble, which is unchanged during the evolution. However, teaching ability is changing continuously in reality, as 
a consequence, we adopt a coevolutionary model in this paper. In addition, it is not hard to imagine that players 
who have higher reputation are able to spread their social strategies easily. For example, the companies will get 
higher and higher reputation if they always complete the production tasks on time on the basis of the contracts 
with other enterprises. Then, more and more firms are not only inclined to cooperate or deal with them, but also 
more likely to refer to and imitate their way of operational management or technologies. On the contrary, other 
companies are not willing to imitate them. Therefore, the logical assumption using reputation score to symbolize 
the teaching ability is reasonable. Reputation represents a class of individual information which is about one’s 
past behaviors. It will change according to one’s past behaviors. It has promoted the evolution of cooperation 
effectively in games of indirect reciprocity. As a classically theoretical model of reputation, image scoring has been 
studied extensively in which cooperative behaviors increase reputations and defective actions decrease the score 
by one unit40. It has been proved that cooperation can be enhanced evidently with the aid of reputation. Migration 
based on the reputation has been introduced into the spatial PDG41. Individuals can adjust their partnerships on 
the basis of local information about reputation42. The time scale of selection and updating will change if reputa-
tion is introduced43,44. Some coevolutionary models about time scale and cooperation are employed in previous 
works45,46 and the results show that cooperation can be promoted when an individual with a high payoff holds a 
successful strategy for a longer time. In the present paper, strategy updating and teaching ability have the same 
time scale. In addition, cognitive ability based on reputation is also studied, inferring that reputation mechanism 
can be seen as a universally applicable promoter of cooperation, which works on various interaction networks and 
in different types of evolutionary game47–51. However, one can not ignore partners’ reputation (teaching ability) 
when he updates his strategy because reputation includes a lot of information about the partner. Obviously, one’s 
teaching ability could affect partner’s decision directly. Generally speaking, one is perhaps more likely to adopt 
partner’s strategy with a good reputation and excludes the one with a bad reputation. For example, virtuous peo-
ple usually spread their minds easily in reality. This form of connection between reputation and partner’s teaching 
ability is not studied in previous work. Therefore, a more realistic scenario will acknowledge that a player will 
make a decision by taking the teaching ability into consideration.

Based on the above facts, in the present paper, we propose a modified updating rule incorporated with part-
ner’s reputation to describe the teaching ability. It is assumed that individuals acquire reputation without extra 
cost because reputation information can spread among neighbors by gossip. The PDG and SDG are employed to 
model social dilemmas, in which interactions are driven by complex topologies. In this paper, we consider the 
regular lattice (the neighborhood setups are the von Neumann neighborhood or the Moore neighborhood, in 
other words, the degree k is equal to 4 or 8 for each vertex, respectively) and the Erdős-Rényi (ER) random graph. 
For the ER random graph, the average degree k is equal to 4. Simulation results show that a higher level of coop-
eration appears when teaching ability is in effect during the decision making process.

Results
Teaching ability, represented by reputation score Ri, is introduced into the strategy updating rule to explore its 
influences on the emergence of cooperative behavior in spatial evolutionary games. The influences of one’s teach-
ing ability change during the evolution of games. The change amplitude of Ri is δ (>0) every time. That is to 
say, choosing cooperation for player i will lead to Ri increases by δ. Otherwise, it decreases by δ. Additionally, 
Ri ∈ [−α, α] (α > 0), which means that the value of reputation has a saturation effect whether it is good or bad. 
Reputation score Ri has an important effect on the strategy updating for player i. From a qualitative point of view, 
the probability of strategy updating becomes more bigger if Ri is positive. Instead, it turns smaller. Furthermore, 
δ/α is the fluctuation ratio of reputation. It represents the intensity of teaching ability. In the following results, 
we set the size of the regular lattice from 100 × 100 to 200 × 200. The size of the ER random graph is 10000. And 
Monte Carlo (MC) simulation is repeated for 61000 times. The details of interactions between agents and their 
corresponding payoffs are summarized in the Methods section.

We start by examining the effect of the new strategy adoption rule on the persistence of cooperation. As shown 
in Fig. 1, two different sizes of neighbors are compared to analyze the impact of strategy selection on the evolution 
of cooperation on the regular lattice (200 × 200) with periodic boundary conditions. More concretely, panels (a) 
and (b) are corresponding to the results for the von Neumann neighborhood and the Moore neighborhood52, 
respectively.

δ = 0 means that the model degenerates to the traditional version and the normalized payoff difference 
(Pi − Pj)/k is the sole determinant factor for strategy updating. According to the previous research31, cooperators 
could form clusters to prevent defectors from invasion, which is called the network reciprocity. However, the 
cooperators located on the edge of the cooperative clusters are prone to revolting as the value of b increases, which 
results in the dissolution of cooperative clusters eventually (i.e., in the two traditional cases, the values of b, which 
make the cooperators vanish, are less than 1.1).

As shown in panels (a) and (b), once δ > 0, the evolution of the whole system becomes totally different because 
the teaching ability is considered. The normalized payoff difference (Pi − Pj)/k and the teaching ability Ri decide 
the strategy updating at the same time. Moreover, b is fixed to 1.15. For each curve in Fig. 1, the fraction of 
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cooperation ρc monotonically increases with the increasing of the fluctuation ratio of reputation δ/α. Although 
the temptation to defect b is high, this mechanism can guide the players to select cooperation effectively so that 
cooperators survive in the system. It can be observed that cooperators could dominate the whole network in 
some cases. The introduction of teaching ability makes individuals update strategy depends on the normalized 
payoff difference and the teaching ability. And this updating rule seems to be reasonable and makes cooperation 
become the dominant strategy. Furthermore, the range of reputation α has a great impact on the evolution of 
cooperation. Obviously, the speed and intensity of cooperators appearing and spreading in the α = 3 condition 
are more remarkable than those of α = 1 or α = 2. However, the gap between the two curves of α = 2 and α = 3 is 
smaller than that between α = 1 and α = 2. This suggests that the effect of the range of reputation will not increase 
immensely. The above results clearly indicate that the evolution of cooperation is greatly promoted under the 
newly introduced mechanism.

It remains interesting to elucidate how this new mechanism promotes cooperation. To provide answers, we 
show some characteristic snapshots on a 100 × 100 square lattice (the von Neumann neighborhood) in Fig. 2 (the 
green and the red represent the cooperators and the defectors, respectively). The parameter b is given by a con-
stant term in all snapshots (b = 1.17). First, looking at the upper row, the snapshots are given for t = 0, 5, 10, 100, 
60000. As shown, cooperators and defectors uniformly scatter all over the lattice initially. As described earlier, 
cooperators will die out in the traditional version in this condition. However, the evolution is obviously different 
once the teaching ability (δ = 1.5 and α = 3.0) is incorporated. Compared with the traditional case, all players 
take more information (the teaching ability) into account when they make a decision. Cooperative clusters could 
protect cooperators granted that the value of b is high. Many a cooperator is able to survive at the stable stage even 
though the fraction of cooperators will fall at the beginning of the evolution.

To compare with Fig. 1, we also explore the distribution of strategies at the 60000th Monte Carlo step (MCS) 
in the lower panels of Fig. 2. The parameters are δ = 0, δ = 0.75, δ = 1.5, δ = 2.25, δ = 3.0 from left to right and 
α = 3.0. The other configurations are consistent with the upper row. For δ = 0, cooperators still can not survive 
because the selection intensity is not enough to resist the temptation to defection. With the increasing of δ, many 
big and compact clusters form steadily when the mechanism works. For example, the territory of the defectors 
becomes more and more smaller when δ increases from 0 to 3. The increased teaching ability means that some 
information except the payoff becomes more and more important for individuals. Such a consideration is reason-
able, e.g., one will consider a lot of things besides the profit when he makes a decision. These results illustrate that 
this mechanism can facilitate the network reciprocity remarkably. Based on this fact, it is not hard to understand 
that cooperators can dominate the whole system when δ reaches the maximum at the same condition. The simu-
lated phenomena imply that the cooperators can survive or even thrive owing to the consideration of appropriate 
teaching ability.

Note that there are two major factors to affect the probability of strategy updating from the above analyses: 
the normalized payoff difference and the value of reputation. Therefore, it is necessary to study the individual’s 
preference for strategies. What follows is an observation about the temporal traits of strategy retention rate. As 
shown in Fig. 3, the parameter b is fixed to 1.2 in every panel and δ/α = 0.75 except the traditional case. Therein, 
ρc→c represents the rate that cooperator is still a cooperator between two rounds. Analogously, ρd→d is the rate that 
defectors retain defective strategies along with time. For the traditional case, ρc→c reaches to 0 and ρd→d becomes 
1 fast since the temptation to defect is high. Consequently, cooperators become extinct soon in the background 
of the payoff of defectors being more than that of cooperators. However, cooperators could occupy a certain 

Figure 1.  Concentration of cooperators ρc vs the quotient of δ/α in the prisoner’s dilemma game, α = 1.0, 2.0 
and 3.0, respectively. For both panels, the results are obtained on a 200 × 200 regular lattice. The results in panel 
(a) are acquired in the von Neumann neighborhood, while the results are according to the Moore neighborhood 
in panel (b). As the value of δ/α increases, the effect of teaching ability becomes obvious. Parameter b = 1.15.
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territory when teaching ability (α = 1.0) is taken into consideration. For α = 2.0, ρc→c first drops and the trend 
of ρd→d is opposite completely, which proves that the overall atmosphere is still unfavorable for the persistence 
of cooperation even though with the help of different teaching abilities in the early stage. After that stage, ρc→c 
fast upward pulls and ρd→d falls rapidly and ρc→c even exceeds ρd→d. Since the cooperation strategy is more likely 

Figure 2.  Typical strategy distribution of cooperators (green) and defectors (red) on a 100 × 100 square lattice. 
Snapshots are given at t = 0, 5, 10, 100, 60000 steps in the upper row. The lower panels are the distribution of 
strategies at the 60000th step. The amplitudes of change of reputation are δ = 0, δ = 0.75, δ = 1.5, δ = 2.25 and 
δ = 3.0 from left to right, respectively. The parameters are b = 1.17, α = 3 and k = 4.

Figure 3.  Time evolution of the strategy retention rate ρc(d)→c(d). ρc→c represents the rate that cooperators 
continue to cooperate and ρd→d denotes the rate that defectors continue to retain defective strategy. δ/α is fixed 
to 0.75 and the panels are corresponding to α = 1.0,2.0,4.0 except the traditional case. With the increasing of α, 
the readiness to cooperate increases gradually. The depicted results are obtained on a 200 × 200 square lattice, 
with the parameter k = 4 and b = 1.2.
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becoming reference selection, so it is not hard to understand that the evolution of cooperation widely spreads in 
Fig. 2. For α = 4.0, the evolution trend is similar to α = 2.0. However, the gap between two curves becomes bigger 
and bigger and the number of retaining cooperation will increase to 1. This process means that the prevalence of 
cooperation is positively related to the value of α. We could draw a conclusion that the incorporation of teaching 
ability influenced by reputation adjusts the microscopic preference of players and accelerates the dissemination 
of cooperation based on these results. These promoting effects are consistent with the aforementioned results.

Besides, it deserves to consider how the critical threshold value of bc changes with the fluctuation ratio param-
eter δ/α. Fig. 4 is the simulation results on a 200 × 200 square lattice (k = 4). As shown in Fig. 4, bc denotes the 
threshold for cooperators to die out. For the traditional version, we could see a straight line (black) at the bot-
tom of Fig. 4. It indicates that all players only care about payoffs so that defection becomes the rational choice. 
However, it can be observed that bc increases monotonically from left to right for other three curves, which means 
that the space of cooperators living is enlarged as δ/α increases. Those players with good reputation restrain self-
ish agents from adopting defection. For example, the cooperators are located in the edge of clusters in Fig. 2 are 
more loyal to cooperation. This result fully explains that the new idea could promote the survival of cooperators 
among selfish players.

Lastly, it is worth exploring the robustness and generality of the above observations by means of different 
networks and evolutionary game models. Here we set δ/α = 1 for all curves in Fig. 5. Our MC simulation results 
in the left panel are about prisoner’s dilemma game on the ER random graph. The network has the same average 
degree (i.e. k = 4) and size (N = 104 nodes) with regular lattice. As shown, a virtually promotion effect on the 
evolution of cooperation can be observed compared with the traditional version (δ = 0). The evolution of cooper-
ation is strengthened effectively with the increasing of δ in the PDG, which is qualitatively consistent with the 
results obtained on the regular network. As an example, the critical value bc has exceeded 2.0 when δ = 3.0, which 
implies that the cooperators can survive or even thrive within a large range of b’s values. For the right panel of 
Fig. 5, it depicts the fraction of cooperators ρc of SDG on the regular network (200 × 200 and k = 4) depend on the 
parameter r. Likewise, cooperation is enhanced obviously. Anyway, these results support the fact that teaching 
ability influenced by reputation is a universally effective way to sustain and promote cooperation, regardless of the 
form of the underlying game and interaction network.

Discussion
In sum, we have proposed a coevolutionary model to investigate the impact of teaching ability influenced by 
reputation on the evolution of cooperation in spatial evolutionary games. This model emphasizes the relevance 
of strategy adoption and teaching ability when human behaviors are modeled. This form of strategy adoption 
illustrates that the players with high reputation can spread their strategies easily and vice versa. There is no doubt 
that this coevolution process conforms to the real situation compared to the traditional case. Numerical simu-
lation implies that the amplitude of change of reputation δ and reputation’s range α have a significant impact on 
the persistence of cooperation. More cooperative clusters appear easily under this updating dynamics. Those 
players with good reputation restrain selfish agents from adopting defection strategy. In addition, the robustness 
of the enhancement effect is checked on ER graph for the prisoner’s dilemma game. The promoting effects are 
confirmed in the snowdrift game as well. The aforementioned results may illustrate that this mew mechanism has 
a certain degree of university because it works effectively for the prisoner’s dilemma game and the snowdrift game 
on two kinds of networks (the regular square lattice and the ER random graph). This work may be conductive to 
understanding the cooperative behaviors in complex economics as well as human society.

Figure 4.  Critical threshold values b = bc to make the evolution to the pure D phase (extinction of cooperators). 
It can be observed that bc increases monotonically with the increasing of the fluctuation ratio of reputation δ/α.  
These results shows that the space occupied by cooperators is enlarged. The simulation is executed on a 
200 × 200 square lattice and the neighborhood setup is the von Neumann neighborhood.
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Methods
In this work, evolutionary PDG and SDG are employed to explore the role of teaching ability influenced by 
reputation, in which every player occupies a vertex of the underlying networks. For testing the robustness of 
the impact of this newly introduced mechanism on the evolution of cooperation, different networks topologies 
including regular lattice and Erdős-Rényi (ER) random graph are taken into consideration. For simplicity but 
without loss of generality, here we consider a so-called weak PDG31, which is characterized with the temptation 
to defect T = b, mutual cooperation R = 1, the punishment for the mutual defection P = 0 and the suckers’ pay-
off S = 0. Therefore, it is not hard to see that the outcome of the game is only dependent on the parameter b. In 
addition, 1 < b < 2 quantifies the temptation to defect and represents the advantage of defectors over cooperators. 
For the SDG, the rescaled payoffs are T = 1 + r, R = 1, S = 1 − r and P = 0, where 0 < r < 1 represents the so-called 
cost-to-benefit ratio and payoffs still satisfy the ranking T > R > S > P. Initially, each individual i is designed as 
a cooperator (si = C) or a defector (si = D) with equal probability and is given a reputation score coefficient Ri as 
well. To avoid the preferential influence, we set Ri = 0 before the game. Reputation is important in human society. 
It reflects one’s history information or status and is accessed by all members in his/her community. Individuals 
with different reputation scores have different influences on the players interacting with them. As a consequence, 
we use the reputation score to symbolize the teaching ability. Moreover, it is assumed that reputation spreads 
among neighbors by gossip and is evaluated under the simple protocol below without cost.

The game is simulated with the following Monte carlo (MC) simulation procedures: firstly, player i gets his 
total payoff Pi by playing the game with his nearest neighbors. Next, player i will choose a neighbor j randomly 
from its neighbors as the reference target, who acquires payoff Pj in the same way. Last, all agents synchronously 
update their strategies according to the following probability:

=
+ − −

Prob
P P kK R

1
1 exp[( )/ ]

,
(1)

i
i j j

where K represents the intensity of selection. Without loss of generality, we set K to be 0.1 in this paper if not 
directly stated53. Player i will adopt j’s strategy relying on the normalized payoff difference (e.g. (Pi − Pj)/k) and Rj. 
The degree of player i is k. It is noted that each player has a chance to adopt one of their neighbors’ strategies once 
on average during one full MC simulation. As mentioned above, here we assume that players have local infor-
mation about his nearest neighbors. As a consequence, each neighbor’s reputation is known to the focal player 
and Rj could affect Probi directly. Furthermore, it is more practical that reputation is changing with the evolution. 
Here we assume that δ > 0 symbolizes the amplitude of change of reputation. That is to say, Ri increases by δ when 
i is a cooperator and Ri decreases by δ when i chooses defection. Additionally, Ri ∈ [−α, α](α > 0), which means 
that the value of reputation has a saturation effect whether it is good or bad and δ/α is the fluctuation ratio of 
reputation. According to formula (1), player i prefers to adopt player j’s strategy if Rj > 0. Instead, player i has an 
attitude of exclusion for player j if he is notorious. This simple design describes the influence of teaching ability 
on strategy adoption effectively.

Ultimately, a whole Monte Carlo step (MCS) is finished if the above-mentioned fundamental procedures are 
implemented. For the regular lattice, the results of MC simulation presented in the Results are obtained on popu-
lations comprising 100 × 100 up to 200 × 200 agents. And the neighborhood setups are the von Neumann neigh-
borhood or the Moore neighborhood, namely, the degree k is equal to 4 or 8 for each agent, respectively. For the 

Figure 5.  Left panel: fraction of cooperators ρc in dependence on the parameter b for different values of δ in the 
prisoner’s dilemma game on the ER graph. It has N = 104 nodes and its average degree is k = 4. Right panel: 
fraction of cooperators ρc of the snowdrift game in dependence of the parameter r for different values of δ on the 
regular lattice (size of 200 × 200 and the degree k = 4).
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ER random graph, the size N and the average degree k are N = 104 and k = 4, respectively. Additionally, the frac-
tion of cooperators ρc is acquired by averaging the last 1000 full MCS of the total 61000 and the final results are 
averaged over 10–20 independent runs to guarantee the accuracy.
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