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A b s t r a c t .  Previous work has demonstrated that the 
X e n o p u s  protooncogene m o s  ~ can induce the matura- 
tion of prophase-arrested X e n o p u s  oocytes. Recently, 
we showed that m o s  xe can transform murine NIH3T3 
fibroblasts, although it exhibited only 1-2% of the 
transforming activity of the v-mos oncogene. In this 
study we have investigated the ability of the v - m o s  

protein to substitute for the m o s  xe protein in stimulat- 
ing X e n o p u s  oocytes to complete meiosis. Microinjec- 
tion of in vitro synthesized RNAs encoding either the 
m o s  x~ or v - m o s  proteins stimulates resting oocytes to 
undergo germinal vesicle breakdown. Microinjection 
of an antisense oligonucleotide spanning the initiation 
codon of the mos '~ gene blocked progesterone-induced 
oocyte maturation. When oocytes were microinjected 
first with the m o s  ~ antisense oligonucleotide, and sub- 
sequently with in vitro synthesized v -mos  RNA, 

meiotic maturation was rescued as evidenced by ger- 
minal vesicle breakdown. The v - m o s  protein exhibited 
in vitro kinase activity when recovered by immunopre- 
cipitation from either microinjected X en o p u s  oocytes 
or transfected monkey COS-1 cells; however, in paral- 
lel experiments, we were unable to detect in vitro ki- 
nase activity associated with the m o s  ~ protein. 
Microinjection of in vitro synthesized v-mos RNA into 
cleaving X e n o p u s  embryos resulted in mitotic arrest, 
demonstrating that the v-mos protein can function like 
the m o s  ~ protein as a component of cytostatic factor. 
These results exemplify the apparently conflicting 
effects of the v - m o s  protein, namely, its ability to in- 
duce maturation of oocytes, its ability to arrest mitotic 
cleavage of X en o p u s  embryo, and its ability to trans- 
form mammalian fibroblasts. 

T 
HE v-mos oncogene, derived from the acute transform- 
ing retrovirus Moloney murine sarcoma virus, en- 
codes a serine/threonine protein kinase localized in 

the cytoplasm of transformed fibroblasts (Maxwell and Ar- 
linghaus, 1985a; Papkoffet al., 1983). However, the identity 
of the substrate(s) recognized by v-mos remains conjectural 
and the biochemical mechanism whereby v-mos transforms 
is still a mystery. In a variety of organisms, significant ex- 
pression of the cellular homolog, c-mos, appears only in 
germ cells with little, if any, detectable expression in somatic 
cells (reviewed in Propst et al., 1988). Recently, it was dem- 
onstrated that expression of the Xenopus c-mos gene (mos '~) 
is required for the maturation of Xenopus oocytes (Sagata et 
al., 1988). Microinjection of oocytes with mos'~-specific 
antisense oligonucleotides prevents hormone-induced ger- 
minal vesicle breakdown (GVBD). ~ Moreover, prophase- 
arrested oocytes can be induced to undergo GVBD by micro- 
injection of in vitro transcribed mos "~ RNA, demonstrating 
that expression of the mos '~ protein is sufficient for reinitia- 
tion of normal meiosis (Freeman et al., 1989; Sagata et al., 

1. Abbreviations used in this paper: CSE cytostatic factor; GVBD, germinal 
vesicle breakdown; MPF, maturation-promoting factor. 

1989a). mos xe RNA is present during oocyte growth and 
maturation and persists in the developing embryo through 
blastulation; however, the mos "~ protein is only detected dur- 
ing hormone-induced oocyte maturation and is rapidly de- 
graded shortly after fertilization (Watanabe et al., 1989). 

Somewhat different results have been reported using 
mouse oocytes, where microinjection of murine c-mos- 

specific antisense oligonucleotides fails to block GVBD but 
does prevent extrusion of the first polar body (Paules et al., 
1989) or, in other experiments, the initiation of meiosis II 
(O'Keefe et al., 1989). The murine c-mos protein is present 
in oocytes before maturation, suggesting that this store of 
c-mos protein may stimulate GVBD even when de novo syn- 
thesis of c-mos protein is prevented by microinjection of an- 
tisense oligonucleotides. Thus, in both Xenopus and mouse 
oocytes, the microinjection of mos-speci f ic  antisense oligo- 
nucleotides blocks the completion of meiosis at the first point 
where de novo translation appears to be required. 

In other experiments, microinjection of Xenopus oocytes 
with mosxe-specific antisense oligonucleotides inhibited 
GVBD induced by injection of the p21 ~ protein (Barrett et 
al., 1990). Hormone-induced maturation of oocytes is known 
to stimulate two kinase activities: one which phosphorylates 

© The Rockefeller University Press, 0021-9525/90/08/533/9 $2.00 
The Journal of Cell Biology, Volume 111, August 1990 533-541 533 



the 40S ribosomal subunit protein $6 (Nielsen et al., 1982), 
and another which phosphorylates histone H1 (Cicirelli et 
al., 1988). The activation of both of these kinase activities 
by progesterone or insulin treatment is blocked by mos x° an- 
tisense oligonucleotides (Barrett et al., 1990). Histone H1 
kinase activity has recently been attributed to the cdc2 pro- 
tein (Arion et al., 1988), the catalytic subunit of maturation- 
promoting factor (MPF) (Dunphy et al., 1988; Gautier et 
al., 1988). MPF is a cell cycle-regulated protein complex 
that induces oocyte maturation and, more generally, controls 
entry into mitosis (Gerhart et al., 1984; Dunphy and New- 
port, 1988). In light of these results, it seems likely that 
mos xe is involved in the activation or stabilization of MPE 

A second function for the mos ~e protein has been sug- 
gested based on experiments in which mos x° RNA was 
microinjected into cleaving Xenopus embryos (Sagata et al., 
1989b). Cytostatic factor (CSF) has been characterized as 
an activity present in extracts from unfertilized eggs that 
maintains the unfertilized egg in a state of meiotic arrest, 
possibly by stabilizing MPF (Masui and Markert, 1971). In- 
jection of mos x° RNA into one blastomere of a two-cell em- 
bryo resulted in mitotic cleavage arrest of the injected blasto- 
mere, identical to the results observed with CSF-containing 
extracts. In addition, neutralization or immunodepletion of 
the mos x° protein from egg extracts with mos xe may arrest 
mitotic cleavage by preventing the decrease of MPF activity 
which accompanies the normal cell cycle, by either directly 
or indirectly stabilizing MPE 

The c-mos genes from a variety of species can transform 
mouse fibroblasts in vitro (Blair et al., 1981; van der Hoorn 
et al., 1982; Blairet al., 1986; Schmidt et al., 1988; Paules 
et al., 1988; Freeman et al., 1989). However, transformation 
by the v-mos gene is 50-100 times more efficient than trans- 
formation induced by mos x~. In addition to its transforming 
activity, the v-mos protein possesses an intrinsic protein ki- 
nase activity demonstrated by in vitro autophosphorylation 
(Maxwell and Arlinghaus, 1985a). The results discussed 
above raise the possibility that transformation by v-mos may 
be a consequence of the inappropriate expression of a protein 
kinase which acts to stabilize MPF activity. 

In this study, we have undertaken a direct comparison be- 
tween v-mos and mos x~ with regard to their ability to func- 
tion in Xenopus oocytes. Microinjection of oocytes with 
v-mos RNA induced GVBD in a manner analogous to that 
of mos ~°. Induction of GVBD by v-mos was not affected by 
preinjection of the oocytes with mosx~-specific antisense oli- 
gonucleotides. We also demonstrate that the v-mos protein 
expressed in oocytes or in mammalian tissue culture cells 
possesses significantly greater kinase activity than the 
mos x~ protein. Finally, we show that v-mos can function to 
arrest cleaving Xenopus embryos and thus can substitute for 
the mos ~ protein as a component of CSE 

Materials and Methods 

In  Vitro Transcription o f  R N A  

The wild type mosXe/pSP64(polyA) plasmid and the mutant mos xe(Rg°) 
gene, with the codon for lysine-90 replaced with a codon for arginine, have 
been described previously (Freeman et al., 1989). A similar plasmid was 
constructed to allow for expression of the v-mos gene under the transcrip- 
tional control of the SP6 promoter. A Barn HI fragment containing the com- 
plete v-mos coding region from strain 124 of Moloney murine sarcoma vi- 

rus (Van Beveren et al., 1981) was inserted into pSP64(POlyA) (Promega 
Biotec, Madison, WI) upstream of the synthetic poly(A) tract. The v-mos, 
mos xe, and ?HO$ xe(RgO) plasmids were then linearized at a unique restriction 
enzyme site downstream of the poly(A) tract and used as templates for tran- 
scription of 5'-capped and polyadenylated RNAs by SP6 RNA polymerase 
(Promega Biotec) as described (Melton, 1987). The integrity of the RNAs 
used in microinjections was determined by electrophoresis through 1.5% 
agarose/2.2 M formaldehyde gels and by in vitro translation in rabbit 
reticulocyte lysates (Amersham Corp., Arlington Heights, IL) containing 
50/~Ci of [3SS]methionine. 

Microinject ion o f  R N A  into Xenopus  Oocytes 
and  Embryos  

Stage VI oocytes were manually dissected from ovaries surgically removed 
from female Xenopus (Xenopus I, Ann Arbor, MI). After overnight incuba- 
tion at 18°C in modified Barth's solution, MBS-H (88 mM NaCl, 1 mM 
KC1, 0.33 mM Ca(NO3)2, 0.41 mM CaC12, 0.82 mM MgSO4, 2.4 mM 
NaHCO3, 10 mM Hepes pH 7.4, 0.1 mg/ml each of penicillin and strep- 
tomycin), healthy oocytes were microinjected with 50 nl of in vitro tran- 
scribed RNA. Microinjected oocytes were incubated in MBS-H at room 
temperature and scored for GVBD by the appearance of a white spot in the 
pigmented animal pole (Merriam, 1971). Oocytes were then fixed in 5% 
trichloroacetic acid and manually dissected to confirm GVBD. As a positive 
control for GVBD, oocytes were treated with 15/~M progesterone in MBS- 
H and analyzed for GVBD as above. 

Ovulation was induced in animals by injecting with 100 U of pregnant 
mare serum gonadotropin (Calbiochem-Behring Corp., La Jolla, CA) 3-10 
d before injection of 500 U human chorionic gonadotropin (Sigma Chemi- 
cal Co., St. Louis, MO). Ovulated eggs were collected into MMR solution 
(5 mM Hepes, pH 7.8, 100 mM NaC1, 2 mM KCI, 1 mM MgSO4, 2 mM 
CaCI2, 0.1 mM EDTA) and fertilized in vitro. The in vitro fertilized eggs 
were dejellied in 2% cysteine and cultured in MMR containing 5% Ficoll 
(Newport and Kirschner, 1982). Two-cell embryos were microinjected in 
the animal pole of one blastomere with 30 nl of RNA (1 mg/ml) just before 
completion of the first cleavage. 

Microinject ion o f  An t i s e nse  Oligonucleotides 

An antisense oligonucleotide that spans the mos xc start codon and is com- 
plementary to the nucleotide sequence (-)18 to 7 of the mos xe gene was 
synthesized on an Applied Biosystems 381A DNA synthesizer and purified 
by chromatography on an oligonucleotide purification cartridge (Applied 
Biosystems, Inc., Foster City, CA). 50 nl of the oligonucleotide (2 mg/ml) 
were microinjected into stage VI oocytes. The injected oocytes were in- 
cubated in MBS-H at room temperature for 4 h before incubation in 15/~M 
progesterone in MBS-H or a second microinjection with 50 ni of v-mos 
RNA (2 mg/ml). Oocytes were scored for GVBD as described above. 

Immunoprecipitation and In Vitro Kinase Assay of 
mos ~ and v-mos Expressed in Oocytes 

Microinjected oocytes were labeled by incubation in MBS-H containing 0.5 
mCi/ml each of [35S]cysteine and [35S]methionine for 12 h. Oocytes were 
rinsed twice in MBS-H and lysed in 2-3 ~l per oocyte of Tris/NP-40 buffer 
(10 mM Tris HCI, pH 6.8, 5 mM EDTA, 150 mM NaCl, 1% NP-40, l0 
~g/ml aprotinin (Sigma Chemical Co.) containing 1 mM PMSF and 2 mM 
DTT. Lysates were centrifuged for 5 rain at 10,000 g at 4°C to pellet the 
yolk. The [35S]-labeled supernatants were diluted with 800/~l RIPA buffer 
(10 mM sodium phosphate pH 7.2, 150 mM NaCl, 1% NP-40, 1% sodium 
deoxycholate, 0.1% SDS, l0/zg/ml aprotinin) containing 1 raM PMSF and 
immunoprecipitated with either anti(37-55)-serum (Gallick et al., 1985), 
which recognizes the NH2-termini of both v-mos and mos ~e, or anti(mos~)- 
serum, a rabbit antiserum raised against a peptide (KESNAPPPLGTGL) 
corresponding to the COOH-terminal 12 amino acids of mos ~e crosslinked 
to BSA. In some cases, the antipeptide sera were preincubated with the ap- 
propriate peptide antigen before being added to the lysates. The immunopre- 
cipitates were collected with fixed Staphylococcus aureus bacteria (Boeh- 
ringer Mannheim Biochemicais, Indianapolis, IN) and analyzed by 15% 
SDS-PAGE and fluorography. 

For kinase assays, unlabeled microinjected oocytes were lysed as de- 
scribed above but the supernatants were diluted with 800 #1 Tris/NP-40 
buffer containing 1 mM PMSF and 2 mM DTT before immunoprecipita- 
tion. The immune complexes were collected with fixed S. aureus bacteria 
and in vitro kinase assays were performed as described previously (Maxwell 
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Figure 1. Dose-dependent induction of GVBD by v-mos. Healthy 
stage VI oocytes were microinjected with 50 nl of either v-mos or 
mos ~ RNAs at concentrations of 20 #g/ml, 0.1 mg/ml, 0.5 mg/ml, 
and 2.5 mg/ml. Oocytes were cultured in MBS-H for 12 h and 
scored for the percentage with GVBD as described in Materials and 
Methods. Groups of 25-30 oocytes were injected for each data 
point. The percentage GVBD for each point was normalized to the 
maximum percentage GVBD obtained. Additional experiments 
confirmed the relationship between v-mos and mos ~ shown above, 
however, the absolute values for the maximum percentage GVBD 
observed ranged from 50 to 100% (,)  v-mos-injected oocytes; (e) 
mos'~-injected oocytes. 

e~ 
m 

and Arlinghaus, 1985a; Singh et al., 1988). The phosphorylated proteins 
were analyzed by 15% SDS-PAGE and autoradiography. 

Express ion o f  mos  ~e and v-mos in COS-1 Cells 

The v-mos and mos xe genes were inserted into SV-40 late expression vec- 
tors, pJCll9 (Sprague et al., 1983) and pMH189, as Xho I and Xho I to 
Cla I fragments, respectively, pMH189 is a derivative of pJC119 derived by 
the insertion of Xho I and Cla I linkers into the unique Xho I restriction 
site of pJC119. COS-1 cells were transfected by the DEAE-dextran method 
as described previously (Hannink et al., 1986). The cells were labeled for 
2 h, 48 h after transfection, with 0.2 mCi/rnl each of [35Slcysteine and 
[35S]methionine in DME lacking cysteine and methionine. Cells were 
lysed in RIPA buffer and immunoprecipitated with either anti (3%55)-serum 
or anti(mos~)-serum. The immunoprecipitates were collected with fixed S. 
aureus bacteria and analyzed by 15% SDS/PAGE and fluorography. 

For in vitro kinase assays, COS-1 cells were transfected with the v-mos 
and mos xe genes as described above and lysed in Tris/NP-40 buffer con- 
raining 2 mM DTT. Cell lysates were immunoprecipitated and subjected to 
immune complex kinase assays as described previously (Maxwell and 
Arlinghans, 1985a; Singh et al., 1988). The phosphorylated proteins were 
analyzed by 15 % SDS-PAGE and autoradiography. 

Results 

Microinjec t ion o f  v-mos R N A  Induces  G V B D  in 
Xenopus  Oocytes 

Previous work has demonstrated that microinjection of 
mos ~ RNA into prophase-arrested Xenopus oocytes in- 
duces oocyte maturation, characterized by GVBD, in a dose- 

dependent manner (Freeman et al., 1989; Sagata et al., 
1989a). To determine if the v-mos oncogene is likewise able 
to induce meiotic progression, we prepared in vitro synthe- 
sized v-mos RNA for microinjection into oocytes. The v-mos 
coding region was cloned into pSP64 poly(A), and 5'-capped 
and polyadenylated RNA was transcribed in vitro as de- 
scribed in Materials and Methods. Increasing amounts of ei- 
ther v-mos or mos xe RNA were microinjected into stage VI 
oocytes, and 12-14 h later the oocytes were examined for 
signs of GVBD. The resulting dose-response curve (Fig. 1) 
shows that v-mos RNA was able to induce GVBD over the 
same range of. concentrations as mos ~ RNA. At the lowest 
and highest concentrations tested, both v-mos and mos x° 
RNAs induced GVBD with roughly comparable efficiencies; 
however, at intermediate concentrations v-mos RNA was 
4-6-fold more effective than mos ~ RNA. We did not ob- 
serve any differences in the kinetics of GVBD in oocytes in- 
jected with v-mos RNA compared to those injected with 
mos xe RNA. Although the amount of mos RNA injected in 
these experiments corresponds to a significant fraction of the 
total polyadenylated RNA in an oocyte, the newly translated 
mos protein represents only a small percentage of the total 
protein synthesized (data not shown). This may be due to the 
regulation of protein synthesis in oocytes by some compo- 
nent of the translational machinery other than the level of in- 
jected RNA (Laskey et al., 1977; Audet et al., 1987). These 
results demonstrate that microinjection of v-mos RNA in- 
duces meiotic progression in Xenopus oocytes and suggest 
that v-mos may be able to substitute for mos ~ in this ca- 
pacity. 

Ant i s e nse  Inhibi t ion  o f  mos  x" Does  N o t  Prevent  
Induc t ion  o f  G V B D  by v-mos 

Conceivably, oocyte maturation in response to microinjec- 
tion of v-mos RNA might not result directly from the trans- 
lated v-mos protein. For example, the presence of v-mos pro- 
tein in microinjected oocytes might stimulate the synthesis 
of endogenous mos x° protein to a level sufficient to promote 
GVBD. To directly test this possibility, we carried out double 
microinjection experiments in which we first microinjected 
mos ~, antisense oligonucleotides, which can inhibit hor- 
mone-induced maturation of Xenopus oocytes by preventing 
mos ~e translation (Sagata et al., 1988), and subsequently 
microinjected v-mos RNA in an effort to overcome the inhi- 
bition of translation of mos x'. For the first microinjection, 
oocytes were injected with an antisense oligonucleotide that 
spans the initiator methionine codon for mos x'. After incu- 
bation in buffer for 4 h, the preinjected oocytes were either 
treated with progesterone or microinjected with v-mos RNA. 
When oocytes were injected with the antisense oligonucleo- 
tide and then treated with progesterone, GVBD occurred in 
<10% of the oocytes demonstrating the efficacy of the an- 
tisense oligonucleotide (Fig. 2). When the preinjected oo- 
cytes were injected with v-mos RNA, 84% of the oocytes un- 
derwent GVBD. This result was very similar to the results 
observed for either progesterone-treated oocytes or oocytes 
injected with only v-mos RNA. SDS-PAGE analysis of im- 
munoprecipitates of [35S]methionine-labeled oocytes that 
had been injected with either v-mos RNA alone, or with the 
antisense oligonucleotide followed by v-mos RNA, demon- 
strated that an equal amount of v-mos protein was synthe- 
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Figure 2. Induction of GVBD by v-mos  in the presence of m o s  ~e 
antisense oligonucleotides. Groups of 20-25 oocytes were treated 
either by (a) incubation in 15/zM progesterone; (b) microinjection 
with the mos  ~ antisense oligonucleotide followed 4 h later by in- 
cubation in 15 ttM progesterone; (c) microinjection with v-mos 
RNA; or (d) microinjection with the mos  x" antisense oligonucleo- 
tide followed 4 h later by microinjection with v-mos RNA. Microin- 
jections and scoring of oocytes for GVBD were performed as de- 
scribed in Materials and Methods. 

oocytes were also [35S]methionine labeled and immunopre- 
cipitated with anti(37-55)-serum for comparison ( l ane / ) .  
Immunoprecipitation of the 41-kD m o s  xc protein and 39-kD 
v - m o s  protein was specifically blocked by preincubation of 
the antisera with the cognate peptide antigens as shown in 
the + lanes. As expected, the COOH-terminal  anti(mosx~)- 
serum did not immunoprecipitate any v-mos protein (lane 9). 
Approximately 16 times more mos ~° protein was synthesized 
in injected oocytes than in progesterone-treated oocytes. 
This data, along with the data presented in Fig. 1, suggest 
that the amount of m o s  ~ protein present in the injected oo- 
cytes is not directly proportional to the extent of  GVBD. This 
could be explained if synthesis of  another protein was limit- 
ing the extent of GVBD induced by m o s .  

sized in each case (data not shown). These data show that 
v - m o s  can induce GVBD in oocytes that are deficient in 
mos ~ translation and suggest that induction of GVBD by 
v - m o s  occurs independently of m o s  x°. 

T h e  v - m o s  P r o t e i n  E x h i b i t s  S i g n i f i c a n t l y  G r e a t e r  I n  

V i t r o  K i n a s e  A c t i v i t y  t h a n  t h e  m o s  x~ P r o t e i n  

The v - m o s  protein, when expressed in mammalian tissue 
culture cells or in yeast, possesses an intrinsic protein kinase 
activity evident in in vitro autophosphorylation assays (Max- 
well and Arlinghaus, 1985a; Singh et al., 1986b). To com- 
pare the potential in vitro kinase activity of  the m o s  x` pro- 
tein with that of  the v - m o s  protein, we performed immune 
complex kinase assays on oocytes microinjected with v - m o s  

or mos xc RNA using two different mos antisera: anti(37-55)- 
serum (GaUick et al., 1985), which recognizes an epitope at 
the NH2-terminus of both v - m o s  and  m o s  x°, and ant i (mosx~)-  

serum, which was raised against a COOH-terminal  peptide 
of  rnos x~. Hal f  of  the injected oocytes were labeled with 
[35S]methionine and, after the occurrence of GVBD, lysates 
were prepared and subjected to immunoprecipitation with 
each of the two mos antisera (Fig. 3). Progesterone-treated 

Figure 3. Expression of v-mos  and mos  x~ in microinjected oocytes. 
Oocytes were microinjected with 50 nl of 2 mg/ml of v-mos  or 
mos  ~ RNA as described in Materials and Methods. After the in- 
jections, oocytes were cultured for 12 h in MBS-H containing 500 
#Ci/ml each of [3SS]cysteine and [3~S]methionine. Progesterone- 
treated oocytes were cultured as above except that the media also 
contained 15 #M progesterone. Each lane represents the immuno- 
precipitated protein from 10 oocytes. The - /4-  indicates whether 
the immunoprecipitation was performed in the absence or presence 
of the competing peptide antigen. Immunoprecipitates were ana- 
lyzed by SDS-PAGE and fluorography for 24 h. Lanes 1 and 2 are 
immunoprecipitates of progesterone-treated oocytes, lanes 3 - 6  
are from mos~-injected oocytes, and lanes 7-10 are from v-mos- 
injected oocytes. Cell lysates were immunoprecipitated with an- 
ti(37-55)-serum, which recognizes both v-mos and mos ~, shown 
in lanes 1, 2, and 5-8;  or with anti(mos~)-serum, lanes 3, 4, 9, 
and 10. The  arrows indicate the positions of the mos  ~ (upper  ar- 
row) and the v-mos proteins ( lower  arrow).  Molecular weight mark- 
ers are given on the right side of the fluorograph. 
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the mos x= protein possesses very little, if any, in vitro kinase 
activity. 

To examine the difference in kinase activity between the 
v-mos and mos x° proteins further, the two proteins were ex- 
pressed transiently in monkey COS-1 cells under the tran- 
scriptional control of the SV-40 late promoter. Immunopre- 
cipitation of  [35S]methionine-labeled lysates prepared from 
v-mos- or mosx°-transfected cells revealed that an approxi- 
mately equal amount of  each protein was synthesized (Fig. 
5 A). However, only the v-mos protein showed significant 
phosphorylation in immune complex kinase assays (Fig. 5 
B). The mos x* protein immunoprecipitated with either of 
the two m o s  antisera was not phosphorylated in these experi- 
ments (Fig. 5 B and data not shown), consistent with the 
results obtained using m o s  ~° RNA injected oocytes de- 
scribed above. Thus, the v-mos and m o s  ~c proteins differ 
markedly in their ability to be phosphorylated in vitro yet 

Figure 4. In vitro kinase assay of v-mos and mos = expressed in oo- 
cytes. Oocytes were microinjected with v-mos and mos = RNA as 
described in Fig. 3 legend. After the microinjections, oocytes were 
incubated in MBS-H for 12 h, and then lysed and immunoprecipi- 
tated as described in Materials and Methods. Immunoprecipitates 
were formed in the absence ( - )  or presence (+) of the competing 
peptide. The immune complexes were then subjected to an in vitro 
kinase assay using "y-[a2P]ATP. Phosphorylated proteins were ana- 
lyzed by SDS-PAGE and autoradiography. The gel was exposed to 
film for 3 d with an intensifying screen. Lanes 1-4 are immunopre- 
cipitates from mos=-injected oocytes and lanes 5 - 8  are from v-mos- 
injected oocytes. Immunoprecipitations were performed with 
anti(mos=)-serum, shown in lanes 1, 2, 7, and 8; or with anti(37- 
55)-serum, which recognizes the NH2-termini of both v-mos and 
mos ~, lanes 3-6. The arrow indicates the position of the phos- 
phorylated v-mos protein. Molecular weight markers are shown on 
the right side of the autoradiograph. 

The remaining unlabeled oocytes were immunoprecipi- 
tated with the two mos antisera and subjected to an immune 
complex kinase assay as described in Materials and Methods 
(Fig. 4). Only the v - m o s  protein immunoprecipitated with 
anti(37-55)-serum was specifically phosphorylated. We did 
not observe phosphorylation of the mos ~ protein when ei- 
ther of  the m o s  antisera were used for the immunoprecipita- 
tion. Although the amount of  v - m o s  protein synthesized in 
this experiment was ,,ol.8-fold higher than that of the m o s  xc 

protein (Fig. 3, lanes 5 and 7), phosphorylation of the v - m o s  

protein was ~110 times that of  the background level in the 
corresponding region of  the mos xc lanes (estimated by scan- 
ning laser densitometry). These results clearly show that the 
v-mos protein expressed in X e n o p u s  oocytes can be phos- 
phorylated in vitro and that under comparable conditions, 

Figure 5 (A) Transient expression of v-mos and mos ~ in COS-1 
cells. The v-mos and the mos xe genes were inserted into an SV-40 
late expression vector and transfected into COS-1 cells as outlined 
in Materials and Methods. The cells were labeled for 2 h with 
[35S]cysteine and [35S]methionine. Cell lysates were subjected to 
immunoprecipitation with anti(37--55)-serum and resolved by SDS- 
PAGE followed by fluorography for 3 d. (lane 1 ) Mock transfection; 
(lane 2) mos ~ protein; (lane 3), v-mos protein. The arrows indi- 
cate the positions of the mos ~ (upper arrow) and the v-mos pro- 
teins (lower arrow). (B) In vitro kinase assay. Cell lysates were pre- 
pared from COS-I cells transfected with the v-mos or mos = genes. 
The lysates were immunoprecipitated with anti(37--55)-serum and 
subjected to an immune complex kinase assay. The phosphorylated 
proteins were resolved by SDS-PAGE. Autoradiography was per- 
formed for 17 h with an intensifying screen. (lane 1) Mock trans- 
fection; (lane 2) mos "~ transfection; (lane 3) v-mos transfection. 
The arrow indicates the position of the v-mos protein. The positions 
of molecular weight markers are shown on the left side of the fluoro- 
graph in A. 
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Figure 6. Cleavage arrest of Xenopus embryos by v-mos. One blastomere of a two-cell embryo was microinjected with either v-mos RNA 
(A) or mos x~tRg°) RNA (B) as described in Materials and Methods. The embryos were photographed (25x) 4 h after injection. 

they exert similar biological activities when expressed in oo- 
cytes. 

Microin jec t ion  o f  v-raos R N A  Causes  Mi to t i c  A r r e s t  in 
X e n o p u s  Embryos  

Recently, the mos "~ protein was shown to function not only 
as an inducer of oocyte maturation, but also as a component 
of CSE an activity found in unfertilized Xenopus eggs that 
is believed to be responsible for maintaining meiotic arrest 
at metaphase II (Sagata et al., 1989b). CSF activity is de- 
tected by its ability to induce mitotic arrest when extracts 
from unfertilized eggs are injected into cleaving embryos 
(Masui and Markert, 1971). When mos ~" RNA is injected 
into one blastomere of a two-cell embryo, mitotic cleavage 
is arrested in the injected blastomere while the uninjected 
half continues to divide normally. Thus, we wished to exam- 
ine whether v-mos, like mos~% is able to induce mitotic ar- 
rest in Xenopus embryos. 

To test whether v-raos can function in place of mos x° as a 
component of CSE we microinjected v-mos RNA into one 
blastomere of a two-cell embryo. Just before completion of 
the first cleavage, the embryos were microinjected with ei- 
ther mos x° RNA, v-mos RNA, or RNA synthesized from 
the mos '~Rg°) gene (Freeman et al., 1989) which encodes a 
point mutation in the canonical ATP-binding site. Microin- 
jection of 30 ng of mos ~ RNA into embryos resulted in 
cleavage arrest, usually before the start of the first or second 
cleavage of the injected blastomere (data not shown). In- 
terestingly, cleavage of blastomeres injected with 30 ng of 
v-mos RNA was arrested at the same stage as for those in- 
jected with 30 ng of mos x" RNA (Fig. 6). However, micro- 
injection of mos ~tg°) RNA did not inhibit cleavage of the 
embryo. Staining of the v-mos-arrested embryos with a fluo- 
rescent DNA-binding dye revealed that the arrested blasto- 
meres contained condensed chromosomes and were arrested 
in mitosis (data not shown). Thus, like mosx% v-mos can 
function to arrest cleavage in developing embryos. 

Discussion 

We have compared the activities of the v-mos and mos x° 
proteins when expressed in Xenopus oocytes and embryos. 
Microinjection of v-mos RNA induced GVBD in oocytes in 
a dose-dependent manner comparable to mos x°. Oocytes 
that had been injected with a mosxe-specific antisense oligo- 
nucleotide, rendering then insensitive to progesterone treat- 
ment, were induced to mature by microinjection of v-mos 
RNA. Immunoprecipitation of the v-mos and mos x° proteins 
expressed in oocytes showed that equivalent amounts of the 
two proteins were synthesized; however, the v-mos protein 
was much more active in in vitro kinase assays. Similar 
results were obtained when the two proteins were expressed 
in mammalian COS-1 cells, demonstrating that the v-mos 
protein possesses much greater kinase activity than the 
mos ~ protein as measured by autophosphorylation in vitro. 
Like mos~% v-mos was able to induce cleavage arrest of mi- 
totic Xenopus embryos. Thus, it would seem likely that both 
the mos xe and v-mos proteins can interact with the same cel- 
lular substrates. 

We were somewhat surprised to find similar frequencies 
of GVBD in oocytes injected with either v-mos RNA or 
mos ~ since the v-mos and mos x" genes transform murine 
NIH3T3 cells with widely different efficiencies (Freeman et 
al., 1989). This could be explained if the two proteins have 
similar substrate affinities in Xenopus oocytes and if the 
mos ~ protein has a much lower affinity for murine sub- 
strates. The testing of this hypothesis awaits the identification 
of the substrates for the rnos ~ and v-raos proteins in oocytes 
and in transformed cells. Alternatively, the enzymatic activ- 
ity of the v-mos protein could be greater than that of the 
mos x~ protein. Our in vitro studies demonstrating that the 
v-mos protein possesses significantly greater kinase activity 
than the mos x° protein would seem to support this second 
hypothesis. However, our results from a previous study com- 
paring the kinase and transforming activities of several v-mos 
mutants suggest that the extent of in vitro autophosphory- 
lation may not necessarily reflect the level of in vivo kinase 
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activity of m o s  (Freeman and Donoghue, 1989). Thus, the 
v - m o s  a n d  m o s  ~ proteins may have similar enzymatic ac- 
tivities in X e n o p u s  oocytes yet differ greatly in their ability 
to autophosphorylate in vitro. 

Experiments using mosx~-spec i f i c  antisense oligonucleo- 
tides have provided insight into the temporal relationship be- 
tween mos ~" action and some of the events associated with 
maturation. Since GVBD induced by either progesterone 
or insulin is blocked by mos ~° antisense oligonucleotides 
(Sagata et al., 1988), m o s  x° must function downstream of 
the point where the pathways for progesterone and insulin- 
induced maturation merge. This is further substantiated by 
the demonstration that microinjection of mos x° antisense 
oligonucleotides inhibits maturation induced by the p21 r~ 
protein (Barrett et al., 1990). The endogenous X e n o p u s  c - ras  

protein is believed to mediate insulin-induced maturation but 
not maturation in response to progesterone (Deshpande et 
al., 1987; Korn et al., 1987). Two kinase activities normally 
associated with maturation, histone H1 kinase activity, and 
ribosomal protein $6 kinase activity, are abolished by injec- 
tion of oocytes with m o s  ~ antisense oligonucleotides (Bar- 
rett et al., 1990). Histone H1 kinase activity has been as- 
sociated with the cdc2 protein kinase (Arion et al., 1988), 
a subunit of active MPF (Dunphy et al., 1988; Gautier et al., 
1988). In progesterone-stimulated oocytes, $6 kinase activ- 
ity peaks at approximately the same time that MPF activation 
is maximal (Cicirelli et al., 1988). Thus, as might he ex- 
pected, active MPF cannot be recovered from progesterone- 
treated oocytes preinjected with m o s  ~ antisense oligonucle- 
otides (Sagata et al., 1989a). Clearly, the expression of 
m o s  x" protein is a prerequisite for MPF activation in oo- 
cytes. 

The induction of GVBD as well as oncogenic transforma- 
tion by v - m o s  and mos x° is likely to be a function of mos 
serine/threonine kinase activity. This is supported by the ob- 
servation that a point mutation in the ATP-binding domain 
of the mos xc protein abolishes the ability of mos X" to trans- 
form cells or induce GVBD in oocytes (Hannink and 
Donoghue, 1985; Freeman et al., 1989). Although we do not 
detect in vitro kinase activity associated with the mos "~ pro- 
tein immunoprecipitated from microinjected oocytes or 
transfected COS-1 cells, in vitro phosphorylation of mos ~e 
has been reported in kinase assays performed on immuno- 
precipitates from progesterone-matured oocytes (Watanabe 
et al., 1989). The apparent discrepancy between these two 
results may be due to a number of factors. As mentioned 
above, our kinase assays were performed on m o s  ~ protein 
immunoprecipitated from a small number of microinjected 
oocytes, whereas the kinase assay of Watanabe et al. (1989) 
utilized endogenous mos "~ protein immunoprecipitated from 
as many as 1,000 progesterone-matured oocytes. In addition, 
different immunological reagents were used to immunopre- 
cipitate the mos xc protein. For example, the COOH-ter- 
minal antipeptide serum used in our experiments was raised 
against a peptide that is a subset of the epitope recognized 
by the antibody of Watanabe et al. (1989); thus, these an- 
tisera are similar, although not identical. The other antibody 
which we used, the anti(37-55)-serum, recognizes a region 
conserved in both the v-mos and mos xe proteins; this is the 
only mos-specific antibody known that permits v-mos auto- 
phosphorylation in immune complex kinase assays (Maxwell 
and Adinghaus, 1986b; Singh et al., 1986a). Obviously, 

a direct comparison of the kinase activities of v-mos and 
mos x~, using the conditions and reagents described by Wa- 
tanabe et al. (1989) may be needed to resolve this issue. 
Nonetheless, the results reported here clearly indicate a 
significant difference in the in vitro kinase activity of the 
v-mos and mos x° proteins, despite their similar activity in 
the microinjection experiments described above. 

Since the events initiated by mos are most likely a function 
of phosphorylation, what is it that mos phosphorylates? As 
described above, mos functions as an activator of MPF in oo- 
cytes. MPF exists in a latent form in oocytes and appears to 
be activated, at least in part, by phosphorylation (Gerhart et 
al., 1984; Cyert and Kirschner, 1988). In several species, ac- 
tivated MPF appears to consist of a complex containing the 
edc2 protein kinase and a cyclin protein (Draetta et al., 
1989; Pines and Hunter, 1989; Labbe et al., 1989a). Cyclins 
comprise a family of homologous proteins that were origi- 
nally identified by their dramatic accumulation during inter- 
phase and subsequent destruction at the metaphase-anaphase 
transition (Evans et al., 1983). The phosphorylation state of 
the cdc2 protein appears to regulate MPF kinase activity. Al- 
though it has been suggested that the most highly phosphor- 
ylated forms of the cdc2 protein associate with cyclin during 
G2 phase (Draetta and Beach, 1988; Pines and Hunter, 
1989), tyrosine dephosphorylation of the cdc2 protein dur- 
ing mitosis correlates with maximum historic H1 ldnase ac- 
tivity and is thought to be a critical event in fully activating 
MPF (Labbe et al., 1989b; Dunphy and Newport, 1989; 
Morla et al., 1989). The kinases that phosphorylate the cdc2 
protein in vivo and the mechanism by which it is dephos- 
phorylated remain to be identified; although in fission yeast, 
both protein kinases (Russell and Nurse, 1987a,b) and pro- 
tein phosphatases (Ohkura et al., 1989; Booher and Beach, 
1989) which may regulate cdc2 activity have been isolated. 
Cyclin in also phosphorylated in vivo and can be phosphor- 
ylated by the cdc2 protein kinase in vitro (Pines and Hunter, 
1989; Meijer et al., 1989). Moreover, the phosphorylation 
of cyclin has recently been shown to correlate with histone 
H1 kinase activation in sea urchin eggs (Meijer et al., 1989). 
Thus, both the edc2 protein and the cyclin protein are poten- 
tial substrates for the mos protein kinase. 

The rapid and complete inactivation of MPF at the meta- 
phase-anaphase transition is likely to be, at least in part, the 
result of proteolytic degradation of cyclin (Murray et al., 
1989). The finding that mos xe degradation closely parallels 
MPF inactivation in fertilized X e n o p u s  eggs (Watanabe et 
al., 1989), raises the possibility that m o s  may act to inhibit 
cyclin proteolysis. This possibility is further suggested by the 
association of mos xe with CSF, an activity that can stabilize 
MPF activity in cleaving X e n o p u s  embryos (Sagata et al., 
1989b). This could occur directly, if phosphorylation of cy- 
clin by mos rendered cyclin less sensitive to proteolysis, or 
indirectly, i f m o s  stabilized cyclin by phosphorylating and in- 
hibiting a protease. Thus, two possible mechanisms for a 
role for mos in a stabilizing MPF involve (a) regulation of 
the phosphorylation state of the cdc2 protein, or (b) the inhi- 
bition of cyclin degradation. 

The ability of mos to function as an activator of MPF sug- 
gests an attractive model for oncogenic transformation of so- 
matic cells by v-mos. The transformed phenotype may be the 
consequence of inappropriate mos-induced cell cycle transi- 
tions. Our demonstration that v - m o s  induces GVBD in oo- 
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cytes independent of m o s  xe translation is important because 
it demonstrates that v - m o s  can directly interact with compo- 
nents of the cell cycle machinery. However, the observation 
that v-mos can block the cell cycle by inducing mitotic arrest 
in X e n o p u s  embryos suggests that mos may also function af- 
ter the initiation of mitosis. It is possible that elevated levels 
of m o s  expression in somatic cells may also result in mitotic 
arrest. Interestingly, the time at which v-mos synthesis peaks 
in cells acutely infected with Moloney murine sarcoma virus 
immediately precedes a wave of cell death (Papkoff et al., 
1982). Thus, low levels of mos protein may be involved in 
inducing mitosis, whereas higher levels may act to sustain 
the mitotic state, possibly leading to cell death. Conse- 
quently, transformed cells may express a level of m o s  protein 
that is insufficient to induce mitotic arrest but that is capable 
of activating MPE Our results, demonstrating that v - m o s  can  

directly influence the X e n o p u s  cell cycle in inducing GVBD 
and arresting mitotic cleavage, strongly support the idea that 
v-mos interacts closely with the cell cycle machinery in m o s -  

transformed cells. 
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