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The pineal gland is a neuroendocrine gland which produces melatonin, a neuroendocrine

hormone with critical physiological roles in the circadian rhythm and sleep-wake

cycle. Melatonin has been shown to possess anti-oxidant activity and neuroprotective

properties. Numerous studies have shown that melatonin has significant functions in

cardiovascular disease, and may have anti-aging properties. The ability of melatonin

to decrease primary hypertension needs to be more extensively evaluated. Melatonin

has shown significant benefits in reducing cardiac pathology, and preventing the

death of cardiac muscle in response to ischemia-reperfusion in rodent species.

Moreover, melatonin may also prevent the hypertrophy of the heart muscle under some

circumstances, which in turn would lessen the development of heart failure. Several

currently used conventional drugs show cardiotoxicity as an adverse effect. Recent

rodent studies have shown that melatonin acts as an anti-oxidant and is effective in

suppressing heart damage mediated by pharmacologic drugs. Therefore, melatonin has

been shown to have cardioprotective activity in multiple animal and human studies.

Herein, we summarize the most established benefits of melatonin in the cardiovascular

system with a focus on the molecular mechanisms of action.

Keywords: cardiovascular disease, pathophysiology, melatonin, antioxidant, cardiotoxicity

INTRODUCTION

Cardiovascular disease (CVDs) accounts for the majority of deaths worldwide (1, 2), and is more
predominant in older generation (3). According to WHO report, CVDs accounted for 17.9 million
deaths in 2019, representing 32% of all global deaths (3–8). Although the mortality rate is now
being reduced, the prevalence of CVDs still remains too high (9). The CDC reports that ∼610,000
people die due to CVDs each year in the USA (10).

Cardiovascular disease encompasses a group of disorders involving blood vessels or the heart
(11), including coronary artery disease, myocardial infarction, angina, hypertensive heart disease,
heart failure, cardiomyopathy, arrhythmia, congenital heart disease, valvulopathy, aortic aneurysm,
carditis, rheumatic heart disease, venous thrombosis, thromboembolic disease, and peripheral

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://doi.org/10.3389/fcvm.2022.888319
http://crossmark.crossref.org/dialog/?doi=10.3389/fcvm.2022.888319&domain=pdf&date_stamp=2022-06-20
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles
https://creativecommons.org/licenses/by/4.0/
mailto:Hamblin.lab@gmail.com
mailto:asemi.9o8i@gmail.com
mailto:mirzaei-h@kaums.ac.ir
mailto:h.mirzaei2002@gmail.com
https://doi.org/10.3389/fcvm.2022.888319
https://www.frontiersin.org/articles/10.3389/fcvm.2022.888319/full


Tobeiha et al. Melatonin and Cardiovascular Disease

vascular disease (4, 7, 11, 12). Coronary artery disease accounts
for the majority of cases, causing∼375,000 deaths per year in the
USA (10, 13).

The beneficial effects of melatonin in treating various human
diseases has been broadly investigated (14–20). Melatonin is an
indoleamine-derived molecule, which is synthesized at night in
the pineal gland of the brain under control by the hypothalamic
suprachiasmatic nucleus (21–24). The traditional function of
melatonin could be exert as an endogenous synchronizer
of circadian and seasonal rhythms, which modulates sleep
patterns (22, 23). In addition, melatonin exhibits many other
biological functions, such as anti-inflammatory, antioxidant,
anti-excitatory, immunomodulatory, metabolic, and vasomotor
activities (25, 26). In particular, endogenous melatonin plays
a significant role in numerous CVDs and metabolic disorders,
which can result in the development of heart failure (15, 17, 27–
29).

The effects of melatonin in the cardiovascular system have
been investigated in several previous studies (30–34). Melatonin
has direct interactions with the nervous system, and indirect
interactions with blood vessels and the heart (29, 32, 34).
Melatonin exerts its direct functions by a receptor-dependent
signaling pathway, and its indirect functions as a free radical
scavenger (33, 35). The receptors for melatonin are G-protein
coupled receptors, such as membrane receptors type 1 (MT1,
Mel1A, MTNR1A) and type 2 (MT2, Mel1B, MTNR1B), as
well as the retinoid-related orphan nuclear receptors RZR and
RORα (26, 33). Upon binding to these receptors, melatonin
can exert modulatory effects in the blood vessels and the heart
(33). Various signaling pathways have been shown to mediate
the downstream effects of melatonin, such as adenylate cyclase,
phospholipase C, protein kinase C (PKC), guanylate cyclase,
potassium channels, calcium channels, and phospholipase A2.
Some of these mediate the anti-adrenergic effects of melatonin
(33, 36, 37).Melatonin receptors play an essential role in reducing
the risk of heart failure (37–41) and cardiomyopathy (28, 42–
44) after myocardial infarction. In this review the authors aim to
point out therapeutic potentioals of melatonin in the treatment of
CVDs with an emphesis on the molecular mechanisms of action.
Moreover, current clinical trials using melatonin in heart disease
are discussed.

THE BIOLOGICAL FUNCTIONS OF
MELATONIN AS A NEUROHORMONE AND
ANTIOXIDANT

When melatonin binds to MT1 and MT2 receptors, it exerts its
regulatory function on the circadian rhythm, sleep-wake cycle,
and body temperature cycles (Figure 1) (46–54). Administration
of melatonin to humans results in sleepiness, fatigue and
reduced sleep latency (55). Impaired circadian rhythms have
been associated with poor health and sleep disorders (56). For
instance, pediatric populations with various neuropsychiatric,
developmental, or health disorders often exhibit a deficiency of
melatonin (57). Following the restoration of melatonin levels,
circadian rhythms, as well as developmental, mood, behavioral,

and health disorders may be improved. Improved intellectual
ability and even control of seizures may be obtained (56, 58).
It is known that circadian rhythms are critical for the normal
development and function of the nervous system, and their
disruption eliminates neurogenesis in laboratory animal models
(59–62).Melatoninmay also play an important role in embryonic
development, with direct effects on the placenta and neuroglial
structures. Additionally, melatonin has important functions in
several stages of ontogenesis, including establishing diurnal
rhythms and synchronization of the biological clock in the fetus
(63, 64).

In addition to the well-established role of melatonin in sleep-
wake rhythmmodulation, melatonin functions as an endogenous
chronobiotic and synchronizing agent, which strengthens
oscillations and regulates central biological clock timing in the
hypothalamic suprachiasmatic nucleus resulting in stable bodily
rhythms (65). Moreover, a study by Pevet and Challet (66)
showed that melatonin can serve as both an endogenous-time
regulator, and can control the master clock output in complex
circadian networks. Melatonin transfers temporal signals to
various tissues possessing melatonin receptors, which results
in the induction and regulation of circadian rhythms in a
number of organs. These organs include the adenohypophysis,
and peripheral tissues such as the liver, pancreas, lungs, heart,
kidneys, adipose tissue, gastrointestinal tract, as well as the
fetal adrenal gland. Circadian rhythms and the circadian clock
network enable biological processes to be temporally organized
in response to episodic environmental changes, thus providing
environmental adaptability (67).

Melatonin exerts its anti-oxidant effects via a cell surface
receptor-independent pathway, since the MT3 receptor is a QR2
(quinone oxidoreductase 2) cytosolic enzyme. Melatonin reduces
the generation of new free radicals and reactive oxygen species
(ROS). The ability of melatonin to scavenge ROS was present in
mammalian species from the evolutionary period (68).Melatonin
acts as a natural antioxidant and scavenger, and can reduce
both reactive nitrogen species and ROS (69). Melatonin binds
directly to the cytosolic QR2 catalytic site, and regulates the
function of QR2 in order to detoxify or reduce production of ROS
(70, 71). The detoxification mediated by melatonin maintains
redox homeostasis in cells, and protects cells against damage
and oxidative stress (72). The QR2 MT3 receptor is involved in
protection against neurodegeneration in brain cells, and reduces
ulceration and carcinogenesis in the gastrointestinal tract.

The pineal gland is also involved in the regulation of the
immune system responses (73), as shown by the reduced
cell-mediated immunity and humoral responses following
pharmacological inhibition (administration of propranolol) or
functional inhibition (constant light condition) of melatonin
synthesis in mouse models. The immune system and the
pineal gland display bidirectional interactions, because cytokines,
interleukins, and interferon-γ can alter the production and
release of melatonin (74). The transcription factor NF-κB
plays a crucial role in inflammatory responses. NF-κB activity
is typically blocked by binding of a specific protein IκB
(inhibitor of NF-κB). In inflammation, the release of pro-
inflammatory mediators, ROS generation, and TLR (toll-like
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FIGURE 1 | Signaling of melatonin and their receptors. This figure adapted from Millet-Boureima et al. (45).

receptor) activation stimulates a kinase enzyme (IκB kinase),
which phosphorylates IκB and promotes its dissociation from
NF-κB, allowing NF-κB to translocate to the nucleus. In
the nucleus, NF-κB regulates the transcription of many pro-
inflammatory genes. Melatonin suppresses the activation as well
as the translocation of NF-κB in various cells, including T
cells, neuronal cells and macrophages (75–77). There are two
RAR Related Orphan Receptors (RORγ and RORα), which can
modulate the inflammatory response. RORγ stimulates Th17
cell lineage differentiation, and modulates the expression of
numerous pro-inflammatory mediators (IFN-γ, IL-17F, IL-17,
IL-2, and TNF-α) (78, 79). Melatonin binds to ROR/RZR nuclear
receptors, and affects gene transcription and thus inflammatory
responses (80).

Melatonin has also been shown to have anti-cancer activity
in several previous studies, and has the potential to protect
against tumorigenesis. Melatonin has shown anti-proliferative
effects, anti-oxidant properties, and can activate the anti-tumor
immune response. However, there are some studies showing
that melatonin can promote tumor formation and growth,

particularly when melatonin is given in the morning. These
observations suggest that the anti-cancer activity of melatonin
may be dependent on the stage of the circadian cycle (81). In
metastatic non-small cell lung carcinoma, a controlled clinical
trial found that simultaneous administration of cisplatin and
etoposide combined with melatonin could improve treatment
outcomes in terms of both quality of life and survival rate (82).

Reduced overall production of melatonin and dysregulated
nocturnal synthesis of melatonin have been associated with
several disorders of the CNS (central nervous system), including
schizophrenia, obsessive-compulsive disorder, and stroke
(Figure 2) (84). The human brain accounts for only 2% of
total body weight, but consumes 20% of the overall intake of
oxygen and glucose in the body. Cells in brain tissue produce
more ROS in comparison with other tissues. There is a high
concentration of ascorbic acid and polyunsaturated fatty acids in
brain tissue, which are vulnerable to free radical-mediated injury,
when enzymatic antioxidants are inadequate. Melatonin has a
neuroprotective effect in several diseases, including amyotrophic
lateral sclerosis, epilepsy, Parkinson’s disease, Alzheimer’s
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FIGURE 2 | First, the suprachiasmatic nucleus (SCN) translates stimulation to the spinal cord and the superior cervical ganglia (SCG) of the sympathetic nervous

system and subsequently activates adrenergic fibers to secrete norepinephrine (NE), which binds to adrenergic receptors in pinealocytes. These changes result in the

up regulation of N-acetyltransferase (AANAT), the key enzyme in melatonin synthesis, via activating CAMP signaling. This change causes an increase in the

concentration of N-acetyl serotonin, which is converted to melatonin by hydroxyindole-O-methyltransferase (HIOMT). This figure adapted from Song et al. (83).

disease, traumatic brain injury, and brain ischemia (85, 86). In
the majority of these disorders, there is a progressive loss of
neurons, accompanied by mitochondrial dysfunction, glutamate
excitotoxicty, and free radical damage (86).

Melatonin has many beneficial effects on cardiovascular
system. In this context, melatonin can regulate heart rate
(87), and reduce nocturnal blood pressure in patients with
hypertension (88, 89). Moreover, melatoninmay serve as a potent
protective agent in the cardiovascular system, and diminish
the risk of developing reperfusion injury after myocardial
infarction (90). The benefits of melatonin are related to its
ability to scavenge free radicals, reduce oxidative stress, modulate
metabolic activity, regulate production of cytokines, and prevent
against apoptosis. These findings have been confirmed by
various preclinical and animal studies (91, 92). Nevertheless,
a larger number of clinical studies are required to confirm
these benefits in humans. Beta-blockers are often administered

to patients with hypertensive disorders, and these drugs
can block endogenous secretion of melatonin. Consequently,
hypertensive patients may experience insomnia as an adverse
effect of beta-blockers. Administration of exogenous melatonin
supplements can improve the quality and amount of sleep in
these patients (93).

Melatonin can affect multiple cardiovascular functions, such
as cardiac output, blood pressure, heart rate, and seasonal
rhythms. The functions of melatonin are related to the activity
of the melatonergic system and the suprachiasmatic nucleus
(94). After resection of the pineal gland, the essential source
of melatonin circulating in plasma, the blood pressure in rats
was elevated, while administration of melatonin to rats with
hypertension can reduce arterial pressure, baroreflex response,
and heart rate. The mechanism for this effect involves a decrease
in CAMP and an increase in hydrolysis of phosphatidylinositol-
4,5-bisphosphate (95). It has also been speculated that melatonin
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can activate endothelial cells via binding to MT2 receptors,
leading to the synthesis of nitric oxide which promotes the
generation of soluble guanylate cyclase in smooth muscle
cells. This leads to an increase in cGMP production and
hence to vasodilation. ROS and reactive nitrogen species are
known to contribute to the pathogenesis of cardiac ischemic
reperfusion injury. Melatonin exerts its ROS scavenging function
in mitochondria, with beneficial effects in ischemic heart
disease and prevents ischemia reperfusion-mediated myocardial
damage. Moreover, melatonin shows therapeutic efficacy in
vasculopathy caused by nicotine. Administration of nicotine has
been associated with significant endothelial injury and aortic
vasoconstriction, which can be counteracted by melatonin (96,
97). The reduced levels of superoxide dismutase and nitric oxide
synthase caused by chronic nicotine administration may also be
improved by melatonin.

MELATONIN PROTECTIVE EFFECTS
AGAINST DRUG-INDUCED
CARDIOTOXICITY

Doxorubicin (Dox) is a commonly used anticancer
chemotherapeutic drug in the class of anthracyclines, which has
been extensively used in the management of both hematologic
and solid tumors (98). However, the therapeutic application of
Dox has been limited, because it causes cardiac hypertrophy and
heart failure. A study showed that administration of trastuzumab
plus anthracyclines in patients led to increased left ventricular
afterload and preload, whereas it resulted in reduced strain,
heart rate and ejection fraction. In addition, recovery from these
effects was not observed even after a 2-year-follow up (99, 100).
Dox produces cardiac toxicity viamultiple pathways, including a
large increase in ROS proudction (101). Myocytes have abundant
mitochondria which are needed for production of sufficient
ATP for heart contraction, and maintaining cell viability in the
myocardium (102, 103). Dox accumulates in the mitochondria,
where it damages the mitochondrial membrane, reducing the
MMP (mitochondrial membrane potential) and producing
ROS, leading to the death of cardiomyocytes (104). In addition,
studies have found that Dox can trigger apoptosis by decreasing
the anti-apoptotic protein Bcl2, and inceasing pro-apoptotic
Bax (105–107).

Yes-associated protein (YAP) is a down-stream component
of the Hippo signaling pathway, which affects several cardiac
physiological and pathological processes. These include the
development of cardiac muscle, formation of new blood vessels,
cellular apoptosis, autophagy, hypertrophy, and metabolic
homeostasis (108). Suppression of YAP leads to aggravated heart
failure after myocardial infarction, and apoptosis and fibrosis in
cardiac muscle cells (109). In previous studies, YAP was found to
decrease myocardial injury after MI, and increase the survival of
cardiomyocytes by increasing the expression of YAP-target genes,
which ultimately improves heart performance. Activation of
genes involved in the cell cycle are involved in the YAP response
(110). Both post-MI heart failure and non-ischemic heart failure
are related to the Hippo signaling pathway. Systolic heart failure

following MI can be inhibited by suppression of the Hippo
pathway (111). Furthermore, YAP can regulate the antioxidant
activity within heart cells. Inhibition of YAP expression leads
to suppression of the activity of FoxO1 transcription factor and
lower expression of anti-oxidant genes, which in turn worsens
myocardial ischemia-perfusion injury (112).

Li et al. carried out a study to explore the potential anti-
oxidant effects of melatonin, and whether it could protect
against apoptosis mediated by Dox in cardiac muscle cells
(113). Their study showed that treatment with Dox increased
apoptosis and decreased viability of H9c2 cells. They found
increased TUNEL positive cells, elevated expression of Bax, and
reduced expression of Bcl2. This effect was linked to decreases
in MMP, and increases in ROS. Treatment with Dox for 5 weeks
was associated with significant LV dysfunction detected by
echocardiography in vivo. Although Dox-mediated apoptosis
was higher by TUNEL staining, concomitant administration of
melatonin and Dox reduced ROS generation in cardiomyocytes,
and inhibited apoptosis by increasing the MMP. Moreover,
melatonin-Dox combined therapy decreased Dox-induced
cardiac damage in vivo. In vivo immunohistochemistry staining,
in vitro immunofluorescence, and Western blotting showed
that treatment with Dox significantly suppressed expression of
YAP, while YAP levels were unchanged following concomitant
administration of melatonin plus Dox. The protective effects
of melatonin against toxicity in cardiac muscle cells were
counteracted by YAP suppression mediated by siRNA, which
led to increased ROS and apoptosis. Taken together, melatonin
therapy decreased the cardiotoxicity mediated by Dox through
maintaining YAP levels, leading to lower apoptosis and oxidative
stress (113).

AGO (agomelatine) is a small molecule anti-depressant
drug, but also acts as an M1 and M2 melatonergic receptor
agonist, and 5-HT2C serotonergic receptor antagonist (114).
AGO shows marked affinity for M2 and M1 receptors, and has
similar antioxidant properties to melatonin (115). AGO protects
against ischemia-reperfusion injury by improving anti-oxidant
capacity (116).

Aygun and Gul performed a study to evaluate the
cardioprotective properties of AGO, melatonin, and AGO
+ melatonin combined against Dox-induced cardiotoxicity
using electrocardiographic, biochemical, and scintigraphic
methods (117). In this study, 49 male Wistar rats were randomly
allocated to seven different groups, namely control, AGO,
melatonin, Dox, Dox + AGO, Dox+melatonin, and Dox +

AGO + melatonin. AGO and melatonin were administered
intraperitoneally to rats at a dose of 40 mg/kg/day for 7
days; doxorubicin was administered intraperitoneally at 18
mg/kg/day on days 5–7 to induce cardiotoxicity. They carried
out 99mTc PYP (technetium-99m pyrophosphate) scintigraphy
and ECG (electrocardiography) on the 8th day of the study, in
addition to biochemical measures, like BUN, cardiac troponin
T (cTnT), and creatine kinase (CK) in the rats. To define acute
cardiotoxicity induced by Dox, the following criteria were used:
ECG disturbance (reduced duration of QRS and p, ST-elevation,
and increased QT and RR intervals), elevated serum CK,
BUN and cTnT1, and enhanced uptake of 99mTc PYP in the
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heart. Pretreatment with AGO, melatonin, or AGO+melatonin
could efficiently restore Dox-induced ECG abnormalities to
near normal (p < 0.001). Furthermore, 99mTc PYP uptake
and serum biochemical markers showed that pretreatment
with AGO, melatonin, or AGO + melatonin showed equal
protective benefits against Dox-induced cardiotoxicity (p <

0.001). Their study showed that 99mTc PYP could be an
appropriate non-invasive method to monitor Dox-mediated
cardiotoxicity (117).

AMPK (adenosine monophosphate activated protein kinase)
is a serine/threonine protein kinase (118), which plays a
crucial role in regulating endogenous defense mechanisms
in cardiomyocytes (119–121). PGC1α controls mitochondrial
energy homeostasis by modulating expression of genes, such
as UCP2, TFAM, and NRF1 (122, 123). Previous studies have
shown that treatment with Dox suppresses the PGC1α and
AMPK signaling pathways, leading to exacerbation of myocardial
injury (120–122). On the other hand, melatonin activates PGC1α
and AMPK signaling pathways, and results in protection of
myocardial mitochondrial function (38, 124, 125).

In a study by Liu et al. C57BL/6 mice and H9c2 cells were
used to assess the effects of melatonin against acute cardiotoxicity
caused by Dox. They studied mitochondrial function, cell
viability, apoptosis, oxidative stress, and the AMPK/PGC1α
pathway activity (99). Dox caused acute cardiotoxicity in both
C57BL/6 mice and H9c2 cells, which was ameliorated by
melatonin both in vivo and in vitro. Melatonin suppressed
Dox-mediated mitochondrial dysfunction, apoptosis, cellular
morphological abnormalities, and oxidative stress, through
activating the AMPK/PGC1α axis, and its target genes (UCP2,
NRF1, and TFAM). In vitro, either PGC1α siRNA or AMPK
siRNA were able to block these effects. In vivo, the AMPK
inhibitor compound C also abrogated the benefits of melatonin.
They concluded that melatonin improved Dox-induced acute
cardiotoxicity by activating the AMPK/PGC1α pathway (99).

Reiter et al. (126) reviewed the high concentration of
melatonin in the mitochondria, and its antioxidant effects.
Previous studies have suggested that mitochondria originally
entered eukaryotic cells by the process of endosymbiosis.
Additionally, mitochondria have been found to have the potential
to effectively synthesize melatonin (127). Melatonin can feasibly
diffuse across biological membranes due to its amphiphilic
nature, however the high intra-mitochondrial concentration
was found to be related to localized mitochondrial membrane
transporters, peptide transporters 1 and 2 (PEPT1/2) (128).
Melatonin was suggested to be superior to commonly used
mitochondrial antioxidants, since its metabolites including
N [1]-acetyl-5-methoxykynuramine (AMK) and N1-acetyl-N2-
formyl-5-methoxykynuramine (AFMK) also show antioxidant
properties, in addition to melatonin itself. Therefore, melatonin
may exert its antioxidant effects in a cascade manner (129, 130).
Melatonin serves to promote the antioxidant defense systems of
the organism, as both pharmacological and physiological doses
of melatonin can promote the expression of genes associated
with antioxidant activity (CAT, GPx, SOD, GRd) (131–133).
Moreover, melatonin (in contrast with the vast majority of small
molecule antioxidants) is not able to carry out redox cycling

(134). The majority of antioxidants can also act as pro-oxidants
by producing relatively stable free radicals, which can then
generate additional free radicals. Considering the electron-rich
structure of melatonin, it can covalently bind to free radicals
producing stable water-soluble molecules (134). As a result,
melatonin is a suicidal/terminal antioxidant (as distinct from
other antioxidants) (134).

Furthermore, several studies have assessed the effects of
melatonin combined with various chemotherapeutic drugs in
patients with advanced stage cancer who have an unfavorable
clinical prognosis. According to these studies, melatonin
could significantly enhance the efficiency of chemotherapy,
and reduce Dox-related cardiotoxicity (135–137). In this
context, melatonin has both cardioprotective and anticancer
properties. The cardioprotective potential of melatonin against
Dox-mediated cardiotoxicity is most likely due to indirect
antioxidant activity combined with direct free radical scavenging
properties. Comprehensive studies on the effects of melatonin on
mitochondrial bioenergetics, mitochondrial fusion and fission,
cell death and mitophagy, and mitochondrial sirtuin, would
improve our understanding of the protective mechanisms against
Dox-induced cardiotoxicity.

Govender et al. demonstrated the effects of melatonin on
cell death, mitochondrial fission and fusion, cardiac function,
sirtuin and PGC1-α expression, in a rat model of acute Dox-
mediated cardiotoxicity in vivo. Moreover, they investigated ATP
synthesis and mitochondrial structure in acute Dox-induced
cardiotoxicity in vitro. According to their results, administration
of melatonin prior to Dox treatment can preserve mitochondrial
function in DOX-mediated cardiotoxicity, and improve survival
of cardiomyocytes (138). In vitro H9c2 rat cardiomyoblasts
received melatonin as pre-treatment (10µM, 24 h), which was
followed by administration of Dox (3µM, 24 h). Mitochondrial
structure and ATP levels in cells were evaluated. Dox caused
cell death and fission of mitochondria, both of which were
decreased following administration of melatonin. The in vivo
study employed Sprague Dawley rats bearing breast cancer
tumors (LA7) which received a Dox injection with or without
melatonin in their drinking water for 14 days. Rats receiving
melatonin in combination with Dox showed higher cardiac
output in comparison to rats receiving Dox alone. The mean
tumor volume on day 8 was remarkably lower in rats receiving
melatonin plus Dox, compared to rats treated with Dox alone.
The combined melatonin and Dox treatment was associated with
higher intracellular ATP levels, SIRT1, and PGC1-α expression
levels, compared to Dox alone. They concluded that melatonin
provides a dual anticancer and cardioprotective benefit by
increasing mitochondrial and cardiac functions (138).

The anticancer effects of melatonin have been shown in
numerous tumor types, such as ER+ breast cancer (139–142).
SOD (superoxide dismutase) is an enzyme which produces
hydrogen peroxide and oxygen molecules from superoxide
radicals, and thus plays a major role in protecting against
cellular injury mediated by ROS. GPx (glutathione peroxidase)
is another antioxidant enzyme extensively found in vivo. This
enzyme serves as an antioxidant, preventing the accumulation of
lipid peroxides (LPO) in cellular membrane. LPO are generated
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from polyunsaturated fatty acids present in cell membranes. Cell
membrane oxidative damage has been associated with a wide
range of diseases.

Floyd et al. reported that LPO, GPx, and SOD to be involved
in Dox induced cardiotoxicity (143). They observed a negative
correlation between GPx and SOD and the damage induced by
Dox, meanwhile LPO showed a positive correlation. Melatonin
has demonstrated a significant role in protection against lipid
peroxidation and oxidative membrane damage. This mechanism
may explain why melatonin protects against Dox associated
myocardial injury (144–147).

In a study by Zhang et al. the cardioprotective properties
of melatonin and its role in enhancing the anticancer effects
of Dox were investigated. They used a model of rat ER+

breast tumor to study the effects of melatonin (148). After
induction of the breast tumor, they randomly distributed the rats
between five groups: no treatment control, solvent [dehydrated
alcohol: physiological saline (1:9)], melatonin alone, Dox alone,
melatonin+ Dox (M+ D). They measured LPO, GPx, and SOD
levels in the myocardium, myocardial tissue was evaluated by
electron and light microscopy, and they followed the survival
rates of the different groups for a 1-month period. Breast tumor
was identified in 116 rats. In comparison to the control group,
the group receiving Dox showed high lipid peroxides, whereas
GPx and SOD activity were considerably lower. M+D group
had higher GPx and SOD activity (P < 0.05), whereas lipid
peroxide was lower than Dox alone (P < 0.05). Moreover, the
rats group exposed to M + D had less significant myocardial
damage compared toDox alone, and 1-month life expectancy was
higher in the group receiving M + D in comparison with Dox
alone. Consequently, melatonin can decrease oxidative damage
mediated by Dox inmyocardial tissue and play a cardioprotective
role (148).

Table 1 lists some studies on the effects of melatonin on
drug-induced cardiotoxicity and heart damage.

MELATONIN AND STEM CELL THERAPY
FOR HEART REGENERATION:
SYNERGISTIC EFFECTS ON CARDIAC
PROGENITOR CELLS

Myocardial infarction (MI) is the most common cause of
morbidity and mortality globally. Despite the success of surgical
intervention and pharmacological therapy, which have reduced
MI-related mortality, the heart does not possess the ability to
naturally regenerate itself, and hence cardiac function is often
impaired in the long term after MI (168). Stem cells possess
the potential for multi-lineage differentiation, and combined
with paracrine signaling, their transplantation offers a potential
treatment for the regeneration and repair of injured cardiac and
vascular tissue following MI (169). Nonetheless, transplanted
stem cells are prone to death by necrosis and/or apoptosis within
the ischemic cardiac muscle, and the presence of inflammatory
mediators and oxidative stress in the infarcted region can
significantly limit the efficiency of stem cell transplantation (170,
171). Several techniques have been proposed for improving stem

cell viability after transplantation into infarcted heart tissue (172).
For example, the survival rate of stem cells was increased by
transferring genes encoding anti-apoptosic proteins, like Bcl-
2 (173) or survivin (174). Several small molecule chemical
compounds, like melatonin have also been tested for this
purpose (175). Moreover, other tissue engineering techniques
such as cellular aggregates or cellular sheets, have been tested to
improve the survival rate in transplanted stem cells (176, 177).
Among the approaches listed above, pre-treatment with a natural
supplement (melatonin) may be more practical and economical.

According to previous studies, melatonin pre-treated stem
cells show a higher resistance to oxidative stress damage,
and several mechanisms have been proposed to explain this
observation, including direct ROS detoxification, and indirect
stimulation of antioxidant defense enzymes (126, 178–180).
However, melatonin does not apprear to exert a prolonged
protective effect on transplanted stem cells to ensure their long-
term engraftment (181).

Nanoscale drug delivery carriers can regulate the release of
drugs from polymeric nanoparticles, to enhance bioavailability
and decrease dosage to avoid adverse effects (182). This
approach could be used for drug pretreatment before strem
cell transplantation. Nonetheless, whether nano drug delivery
carriers for melatonin are more effective compared to free
melatonin, had not been tested.

Ma et al. (183) described the preparation of melatonin
nanoparticles (Mel-NPs) by encapsulating melatonin inside
the biodegradable, non-antigenic, and non-toxic polymer,
PLGA-mPEG. The protective effects and the underlying
mechanisms of the melatonin nanoparticles were investigated. A
hypoxia/reperfusion (H/R) model was utilized to reproduce the
oxidative stress microenvironment following MI. They evaluated
the association between p53-cyclophilin D (CypD) complex,
which controls mPTP (mitochondrial permeability transition
pore) opening and melatonin. In their study, the protective
effects of melatonin nanoparticles (Mel-NPs) on adipose derived
stem cells (ADSC) were evaluated and compared to those of
melatonin alone in vitro and in vivo. In vitro, Mel-NPs inhibited
the p53-cyclophilin D complex, suppressed mPTP opening, and
alleviated H/R damage in ADSCs. In addition, Mel-NPs resulted
in longer survival rates of ADSCs in infarcted myocardial tissue
of rats, compared to free melatonin, and the therapeutic benefits
were more pronounced. Taken together, the combined approach
of stem cell transplantation and Mel-NPs for treament of MI,
may be a novel and efficient strategy (183).

The normal protein PrPC (cellular prion protein) is an
ubiquitous glycoprotein anchored to the cell membrane via
glycosylphosphatidylinositol, which is conserved across species
(184). Despite the fact that the abnormal prion protein (PrP)
plays a role in pathogenesis of neurodegenerative disorders
and prion diseases (185), accumulating evidence suggests that
the normal PrPC plays a major role in the proliferation
and self-renewal of stem cells (186–188), and could enhance
their protective role against neurodegenerative disorders (189).
Several studies have shown that PrPC has a critical function in
the differentiation of progenitor and/or stem cells (190, 191),
neurogenesis (188, 192), and formation of blood vessels (193).
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TABLE 1 | Effects of melatonin on drug-induced cardiotoxicity and protection against heart damage.

Drug or

agent

Melatonin

dose

Treatment

duration

Biochemical measures Effects Model References

Doxorubicin 4 mg/kg 2 days Malondialdehyde (MDA) Protected the heart from dox-induced damage In vivo (rat) (149)

Doxorubicin 10 mg/kg 7 days MDA, glutathione (GSH) Prevented lipid peroxidation and myocardial

lesions

In vivo (rat) (150)

10 mg/kg 120 h, 3

weeks

MDA, 4-hydroxyalkenals Significantly reduced cardiac muscle lesions In vivo (rat) (151)

Daunorubicin 10 mg/kg 120 h, 3

weeks

MDA, 4-hydroxyalkenals Significantly reduced cardiac muscle lesions In vivo (rat) (151)

Doxorubicin 50 µg/kg 10 days MDA, GSH, 4-hydroxyalkenals Reduced oxidative damage In vivo (rat) (152)

Doxorubicin 10 mg/kg 5 weeks Yes-associated protein (YAP) Attenuated Dox-induced cardiotoxicity,

decreased oxidative stress, & apoptosis

In vivo

(mice)

(153)

Doxorubicin 5 mg/kg 10 days Troponin I, leptin, triglycerides,

cholesterol, LDL-cholesterol, T3,

T4, and IL-1a

Reduced oxidative stress, activated antioxidant

enzymes in cardiac cells

In vivo (rat) (154)

Doxorubicin 10 mg/kg 5 days – Protected against Dox-induced cardiotoxicity

without interfering with its antitumor effect

In vivo

(mice)

(155)

Doxorubicin 40

mg/kg/day

7 days BUN, CK, cTnT Reversed cardiac damage caused by Dox In vivo (rat) (117)

Doxorubicin 20 mg/kg 4 weeks Glutathione peroxidase (GPx),

SOD, catalase (CAT), GSH, MDA,

4-HDA

Blocked cardiac injury caused by Dox In vivo (rat) (156)

Doxorubicin 20 mg/kg 7 days AMPK/PGC1α Attenuated DOX-induced cardiac dysfunction

and pathological changes

In vivo

(mice)

(99)

Doxorubicin 10 mg/kg 7 days – Protected against Dox-induced cardiotoxicity In vivo (rat) (157)

Doxorubicin 10 mg/kg 15 days LPO, SOD, GPx Reduced Dox-induced cardiac oxidative

damage

In vivo (rat) (148)

Doxorubicin 6 mg/kg 14 days PGC1-α, Sirtuin Suppressed oncogenesis and cardiac damage

through enhancing mitochondrial function

In vivo (rat) (138)

Epirubicin 200 µg/kg 10 days MDA, nitric oxide (NO), GSH,

fibronectin, laminin

Suppressed epirubicin-induced nitrosative

stress, reduced degeneration in heart tissue

In vivo (rat) (158)

Doxorubicin 10 mg/kg 6 days MDA, lactate dehydrogenase

(LDH), serum creatine kinase

Protected against Dox-induced cardiotoxicity

and enhanced its antitumor activity

In vivo (rat) (137)

Doxorubicin 84 mg/kg 3 weeks Thiobarbituric acid reactive

substances (TBARS)

Significantly decreased heart to body weight

ratio, arterial pressure, left ventricular fractional

shortening, reversed Dox-induced

cardiomyopathy

In vivo (rat) (159)

Doxorubicin +

trastuzumab

10 mg/kg 5 days MDA, SOD, GPx, serum creatine

phosphokinase (CK-MB)

Significantly reversed oxidative stress markers In vivo (rat) (160)

Doxorubicin 1, 5 mg/kg 5 days Non-protein sulfhydryls (NP-SH),

nitrate/nitrite (NO), plasma

aminotransferases, LDH, CK-MB

Inhibited Dox-induced lipid peroxidation in

heart, liver, and kidney

In vivo

(Mice)

(161)

Cyclosporine A 1 mg/kg/d 21 days Thiobarbituric acid reactive

substances (TBARS), GSH, CAT,

SOD

Increased antioxidant enzymes, normalized

cardiac morphology

In vivo (rat) (162)

Doxorubicin 10

mg/kg/d

7 days CK, CK-MB, AST, LDH, SOD,

GPx, MDA

Inhibited Dox-induced cardiac damage In vivo (rat) (163)

Epinephrine 50µM 10, 15,

20min

– Cardioprotective effects In vivo (rat) (164)

Doxorubicin 5 mg/kg/d 30 days GSH, SOD Protected against Dox-induced cardiotoxicity,

enhanced Dox antitumor activity

In vivo

(mice)

(165)

Doxorubicin 6 mg/kg 15 days TBARS, conjugated dienes (CD) Protected against Dox toxicity In vivo

(mice)

(166)

Doxorubicin 1mM 1h LDH Protected against Dox induced mitochondrial

damage

In vitro

(primary

myocytes)

(167)
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Nevertheless, the underlying mechanism by which PrPC protects
transplanted stem cells in various pathophysiological disorders,
remains poorly understood.

Lee et al. investigated the beneficial effects of melatonin
in improving the biological activity of mesenchymal stem
cells in the ischemic myocardium. Their study showed that
melatonin could increase the expression of PrPC, which in
turn regulated resistance to oxidative stress, proliferation, and
the immunomodulatory properties of mesenchymal stem cells.
Subsequently, the potential capacity of melatonin activated
mesenchymal stem cells to promote neovascularization was
evaluated in a mouse model of hind-limb ischemia (194).
Administration of melatonin promoted the proliferation of
mesenchymal stem cells and self-regeneration by increasing the
expression of PrPC. Furthermore, melatonin decreased apoptosis
in mesenchymal stem cells during oxidative stress by different
mechanisms, such as regulating apoptotic proteins, caspase-
3, PARP-1, BCL-2, and BAX in a PrPC-dependent manner.
Additionally, melatonin could modulate the immunomodulatory
properties of mesenchymal stem cells through the PrPC-IDO
(Indoleamine 2,3-dioxygenase) axis. Furthermore, melatonin
stimulated stem cells improved limb salvage, blood flow
perfusion, and angiogenesis while lowering macrophage
infiltration in the model of hind-limb ischemia. The therapeutic
effects of melatonin were suppressed by blocking the expression
of PrPC. According to their study, melatonin could enhance
the performance of mesenchymal stem cells and stimulate
angiogenesis in ischemic tissues via increasing the expression of
PrPC. Melatonin-mediated PrPC targeting may provide a novel
treatment approach in mesenchymal stem cell therapy (194).

As mentioned above, melatonin has been shown to stimulate
antioxidant enzymes, like SOD and catalase, which could
increase mesenchymal stem cell resistance to apoptosis induced
by hydrogen peroxide (195, 196). Regulating the ischemic
environment through inhibiting excessive inflammation and
oxidative damage could improve the efficacy of mesenchymal
stem cell transplantation in ischemic tissues (197, 198).

Han et al. performed a study to assess whether the
cardioprotective effect of AD-MSCs (adipose-derived
mesenchymal stem cells) could be promoted by melatonin
(199). The mechanism of action of melatonin on SIRT1 signaling
was evaluated in a cell model of hypoxia/serum deprivation
(H/SD) in vitro. SIRT1 or sirtuin 1 (silent mating type
information regulation 2 homolog 1) is a deactylating enzyme
in the nucleus that activates transcription factors. In vivo,
melatonin increased transplanted AD-MSC survival as well as
promoting cardiac function following MI. They demonstrated
that melatonin could enhance the survival rate of AD-MSCs
in the ischemic myocardium and synergistically improve
cardiac function in combination with AD-MSCs. Melatonin
resulted in less oxidative stress, apoptosis and inflammation
in the ischemic tissue in vivo. Mechanistically melatonin may
promote SIRT1 signaling, resulting in an increase in Bcl2 and
inhibition of Bax, Ac-p53, Ac-NF-κB and Ac-FoxO1. Therefore,
melatonin may be a promising treatment strategy to improve
MSC therapy in ischemic cardiac disease, by regulating SIRT1
signaling (199).

Table 2 lists some studies on the synergistic effects of
melatonin and progenitor cells for cardiac regeneration.

MELATONIN FOR
ISCHEMIA-REPERFUSION INJURY AND
PREVENTING MYOCARDIAL DAMAGE

Two melatonin receptor subtypes (MT1 and MT2) are present
in mammalian cells. Both of these receptors are coupled to
Gi/o-type proteins, while MT1 is also coupled to Gq-type
proteins (80, 204). Melatonin affects a wide range of physiological
processes in mammals, by activating membrane receptors (80,
205). Melatonin membrane receptors in the myocardium have
been shown to regulate numerous survival signaling pathways,
such as SIRT1 and Hes1 (33, 206, 207). Nevertheless, the
exact mechanism by which melatonin exerts its effects in the
myocardium is still poorly understood. Melatonin receptors can
modulate various signaling pathways within the cells, including
cAMP, PKA (protein kinase A), PKG (protein kinase G), cGMP,
and PLC (phospholipase C) signaling pathways (80, 204, 205).
Amongst the pathways listed above, PKG and cGMP signaling
have been shown to act as major mediators of cardiac protection
(208). cGMP-PKGmay be involved in cardioprotective pathways
in MI or reperfusion injury, particularly in patients with diabetes
(209–211). Up to now, how exactly melatonin regulates cGMP-
PKG remains to be understood. Melatonin may decrease or
increase the intracellular levels of cGMP, depending on the
pathological or physiological conditions, and on the cell type
(212–215). Nrf-2 (nuclear factor-erythroid factor 2-related factor
2) is a transcription factor that modulates several antioxidant
genes and protective enzymes, which is ubiquitously expressed
in the cardiovascular system (216). In previous studies, Nrf-
2 and its target HO-1 (heme oxygenase-1) showed protective
effects against MI and reperfusion injury in patients with diabetes
(216, 217). In several different organs, an association between
Nrf-2/HO-1 and cGMP-PKG activity has been demonstrated
(218). Additionally, the cGMP-PKG axis could regulate the
MAPK (mitogen-activated protein kinase) cascade in ischemic
myocardium. Alterations in JNK, ERK, and p38 kinase,
could modulate apoptosis in cardiac muscle cells (219–221).
Nevertheless, it is not clear if these signaling pathways play a role
in melatonin-related cardioprotection or how they interact with
melatonin membrane receptors.

Yu et al. designed a study to evaluate how cGMP-PKG,
the Nrf-2-HO-1 axis, and the MAPK cascade were involved
in the cardioprotective effects of melatonin (222). They used
an in vivo model of Sprague-Dawley rats with diabetes
induced by streptozotocin, while in vitro studies used H9c2
cardiomyoblasts incubated in high-glucose medium. Melatonin
increased intracellular levels of cGMP, expression of PKGIα, the
p-VASP/VASP ratio, as well as regulating the MAPK and Nrf-
2-HO-1 signaling pathways in the myocardium. These effects
were abrogated by KT5823, which is a selective PKG inhibitor,
or by PKGIα siRNA, with the exception of intracellular cGMP
levels, which remained unchanged. In addition, their study
showed that 4P-PDOT (selective antagonist of MT2 receptor)
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TABLE 2 | Studies on the synergistic effects of melatonin and progenitor cells for cardiac regeneration.

Type of stem cell Stem cell

origin

Melatonin

dose

Target Effect Model References

Mouse embryonic

stem cells

– 100µM,

100 nM

Hypoxia inducible factor (HIF) Promoted cardiac differentiation and

maturation of mESCs

In vitro (200)

Mesenchymal

stem cells

Mouse

adipose

tissue

5µM Catalase, Cu/Zn SOD, IGF-1,

basic fibroblast growth factor,

hepatocyte growth factor (HGF),

EGF

Inhibited H2O2 induced apoptosis in

MSCs

In vitro (196)

Improved viability of engrafted MSCs

in cardiac tissue

In vivo

Mesenchymal

stem cells

Mouse

adipose

tissue

20 mg/kg/d SIRT1 Enhanced viability of cardiac

transplanted AD-MSCs,

synergistically increased

cardioprotective effects

In vivo (199)

Mesenchymal

stem cells

Bone

marrow

5µM – Increased proliferation of MSCs,

improved LVEF & LV wall thickness

In vivo (201)

Mesenchymal

stem cells

Adipose

tissue

20 mg/kg/d Cellular prion protein (PrPC) Enhanced MSC proliferation &

self-renewal via upregulation of PrPC

In vivo (194)

Mesenchymal

stem cells

Adipose

tissue

0.5mM Melatonin-nanoparticles improved

ADSC survival rates, & efficiency of

stem cell transplantation

In vivo (202)

Mesenchymal

stem cells

Bone

marrow

10–200 nM Phospho-P38MAPK &

phospho-ERK1/2

Improved survival of MSCs in hypoxia

and serum deprivation condition

In vitro (203)

or luzindole (non-selective antagonist of melatonin receptors)
suppressed the protective property of melatonin, and prevented
the regulation of cGMP-PKGIα, Nrf-2-HO-1, and MAPK axes
in vitro. They concluded that melatonin could ameliorate
oxidative stress, reduce apoptosis, and restore cardiac function
by regulating MAPK and Nrf-2-HO-1 axes in MI reperfusion
injury in diabetic subjects. cGMP-PKGIα signaling coupled with
membrane receptors, particularly MT2 receptors, plays a major
role in this process (222).

Mitochondrial fission is a process by which the mitochondrial
structure is initially fragmented into small particles during
MI and/or reperfusion injury (223). Abundant mitochondrial
fission results in damage to the mitochondrial DNA. These
degraded mitochondria cannot generate adequate mitochondrial
respiratory complexes, which results in enhanced synthesis of
ROS and reduced oxidative phosphorylation (224). Furthermore,
fragmented mitochondria release pro-apoptotic mediators
such as cytochrome c into the cytoplasm, which triggers
the mitochondrial apoptosis pathway (225). According
to previous studies, reducing mitochondrial fission could
ameliorate damage after MI and/or reperfusion injury. The
opposite process of mitochondrial fusion can stimulate
the mitochondria, and allow damaged mitochondria to
repair themselves (226). The mitochondrial fusion molecule
OPA1 (optic atrophy 1) is a GTPase involved in the repair
of mitochondrial DNA, or the disposal of unrepairable
mitochondria by the process of mitophagy (227). Maintenance
of the OPA1 level interferes with the process of mitochondrial
fission, leading to the suppression of reperfusion injury
in the brain (228) and the liver (229). Likewise, a cardiac
reperfusion model suggested that upregulation of OPA1 could

maintain the viability of cardiac muscle cells and provide
mitochondrial homeostasis (230). The inhibitory activity of
melatonin against mitochondrial fission has been reviewed in
prevuious publications (231, 232). Nevertheless, the upstream
mediators of OPA1-induced mitochondrial fusion remain
poorly understood.

Yap is a main downstream regulator of the Hippo pathway,
and has been shown to be involved in cardioprotection in
myocardial reperfusion injury (233). High Yap levels suppress
the expression of Mst1, which decreases reperfusion-induced
apoptosis in cardiac muscle cells (234). The Yap–Hippo pathway
can also inhibit mitochondrial fission mediated by Drp1
(dynamin-related protein 1) and thus ameliorate reperfusion
injury in the heart or the brain (235). Up-regulation of Yap
promotes mitochondrial autophagy and reduces mitochondrial
fission (43). The cross-talk between Yap–Hippo signaling and
mitochondrial fission has been shown in previous studies (236).
Nonetheless, if Yap plays a role in mitochondrial fusion during
reperfusion was uncertain.

In a study by Ma and Dong the beneficial effects melatonin
on mitochondrial fusion induced by OPA1 were studied in
MI and/or reperfusion injury (237). According to their study,
melatonin could preserve myocardial function, decrease the
infarct area and reduce death of cardiac myocytes in response
to cardiac reperfusion stress. Melatonin increased expression of
OPA1, which largely restored the mitochondrial fusion, which
had been inhibited by MI or reperfusion. Silencing of OPA1
abrogated the protective effects of melatonin on mitochondrial
apoptosis and mitochondrial energy metabolism. Furthermore,
their study showed that melatonin could regulate expression of
OPA1 via the Yap–Hippo pathway, inhibition of which resulted
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in death of cardiac muscle cells and damage to mitochondria
despite the treatment with melatonin (237).

The JAK/STAT axis regulates several biological activities,
such as proliferation, differentiation, tumor metastasis, and
inflammation. Upregulating the JAK2/STAT3 axis can decrease
apoptosis and oxidative stress in response to MI and/or
reperfusion. Furthermore, the JAK2/STAT3 signaling pathway
could be involved in cardiac protection in ischemia and/or
reperfusion injury (238, 239). It still remains unclear whether the
JAK2/STAT3 signaling pathway is involved inmelatonin-induced
cardiac protection in the heart.

The success of heart transplantation is critcally dependent
on the satisfactory functioning of the donor heart when
removed from the donor after circulatory death (DCD). Lan
et al. developed a DCD heart model to identify the effects
of melatonin on myocardial function in donor hearts, and
investigated whether JAK2/STAT3 signaling was involved in the
mechanism of action (240). Donor hearts were obtained from
DCD model rats, which had received melatonin pre-treatment
or not. They took biopsies 3, 12, and 24 h following heart
transplantation. Myocardial edema was measured by the wet/dry
ratio and water content, while hematoxylin and eosin staining
assessed inflammation. Levels of expression of IL-6, TNF-α, and
matrix metalloproteinase-9 were measured. Oxidative stress was
quantified by the activity of GPx and SOD, MDA levels, and
expression of cytochrome-C, Nrf2, andNQO1. Cellular apoptosis
was determined by measuring Bcl-2, Bax, cleaved caspase-3, and
total caspase-3. To assess JAK2/STAT3 activity, p-STAT3 and p-
JAK2 levels were measured by Western blotting. Melatonin was
shown to exert cardiac protection against MI and/or reperfusion
by decreasing myocardial inflammation and edema, inhibiting
apoptosis and oxidative stress, and activating the JAK2/STAT3
axis. The JAK inhinitor AG490 (tyrphostin) suppressed all of
these effects. In conclusion, melatonin may protect cardiac
muscle against reperfusion injury caused by ex vivo perfusion
in a DCD heart transplant model by activating the JAK2/STAT3
signaling pathway (240).

Mitophagy is a way of eliminating defective mitochondria
by destroying them inside lysosomes (241, 242). Two proteins,
PINK1 (PTEN-induced kinase 1) and Parkin (E3 ubiquitin ligase)
have been shown to control mitophagy (241, 243). Alternative
(non-conventional) mitophagy may act to reduce ischemic stress
in the heart, as suggested by recent research. A recent study
showed that the proteins ULK1, Rab9, Rip1, and Drp-1 were
involved in alternative mitophagy in cardiomyocytes under
stress. This kind of mitophagy is thought to be the most common
type during stressful conditions, and is distinctly different from
PINK1-Parkin dependent mitophagy (244).

Melatonin helps in closing the mitochondrial permeability
transition pores (MPTPs) (245, 246). When the subcellular
distribution of melatonin was measured, it was found that
the concentration inside the mitochondria was much higher
than that measured in the blood (128, 247). Besides passive
diffusion, melatonin is actively transported into mitochondria,
which enhances cell tolerance to different insults (128, 248).

Aralkylamine N-acetyltransferase (AANAT) and
acetylserotonin o-methyltransferase (ASMT) are two important

enzymes involved in melatonin biosynthesis, which were recently
found to be expressed in the mitochondrial matrix of mouse
brain (249). The outer mitochondrial membrane contains
the highly specific MT1 receptor, which has high affinity for
melatonin. Adenylate cyclase activity is inhibited by melatonin,
as is the release of cytochrome C in response to stressful
conditions (250). More research is required to understand the
importance of melatonin in the mitochondria, and whether
they can take up or synthesize this hormone. Moreover, how
melatonin affects mitochondrial dynamics under stressful
conditions, and whether it can protect the heart from oxidative
stress is uncertain.

Dube et al. (251) investigated how both conventional and non-
conventional mitophagy could affect oxidative phosphorylation
in rat hearts. The hearts were isolated and perfused for
30min, then exposed to ischemia for 20min, and then
reperfused for another 30min. Biopsy samples were used
to assess mitochondrial oxygen consumption. Melatonin was
administered before ischemia and after reperfusion. Melatonin
had a minimal effect on mitochondrial O2 consumption, which
was notably decreased after reperfusion. Beclin 1 was shown to
be decreased by ischemia and increased after reperfusion, but
in both states, PINK1 and Parkin were reduced. Reperfusion
increased p62 expression. During myocardial IR, Rab9 activates a
surrogate type of mitophagy. Hemorrhage lowered the cytosolic
expression of ULK1, while reperfusion enhanced it, which
was linked with Rab9 and Drp1 being redistributed from the
mitochondria to the cytosol. Melatonin significantly reduced
mitochondrial p62 expression in IR injury. Overall, melatonin I
increased levels of ULK1, Rab9, and P-ULK1, while decreasing
levels of pDrp1 as well as the mitochondrial P/t Drp1 ratio.
This suggests that melatonin may be able to inhibit fission of
mitochondria. Fusion was also affected, but to a lesser extent
compared to the other processes. Although cardioprotection by
melatonin is linked to its effects on mitophagy, the relevance of
these findings has yet to be established (251).

Cardiac cell degeneration following IR injury significantly
involves apoptosis (252, 253). The pan-caspase inhibitorz VAD
is able to reduce cellular death triggered by reperfusion (254–
257). Apoptosis and necroptosis are the primary modes of
death following IR injury, according to these studies. On a
molecular level, Ripk3 (receptor-interacting serine/threonine-
protein kinase 3) activity can regulate necroptosis (258).
Ripk3 stimulates PGAM5 (phosphoglycerate mutase 5) to open
MPTPs, disturbs energy generation, and therefore can make the
organelles or cells swell in size (259, 260). But how IR and
necroptosis are connected at the microvascular level, and how
Ripk3 affects MPTPs was unclear. Some clinical trials have used
melatonin to reduce the size of the infarct after MI, however,
its effect on microvascular protection has not been clearly
shown (126, 261–264). HowMelatonin could prevent endothelial
damage by necroptosis, because earlier studies have shown that
it can prolong microvascular blood flow, resulting in decreased
endothelial damage during myocardial IR (232, 265).

In a study by Zhou et al. the researchers sought to
determine how IR injury and necroptosis were connected
at the microvascular level, and whether interactions between
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Ripk3, PGAM5, and mPTP could be inhibited by melatonin
(266). It has been shown that Ripk3 is the primary mediator
of microvessel barrier failure, endothelial necrosis, capillary
hyperpermeability, and inflammatory response in IR injury. After
the genetic deletion of Ripk3, myocardial IR damage, and the
endothelial function was improved, and the same benefits were
provided by melatonin, which inhibited Ripk3 and gave a pro-
survival advantage during IR. Ripk3 upregulates PGAM5, which
phosphorylates CypD, and causes the MPTPs to open thus
leading the endothelial cells toward necroptosis. Melatonin was
able to suppress this process resulting in reduced necroptosis.
A novel route for IR-mediated microvascular damage and
endothelial necroptosis was demonstrated by these studies,
namely the Ripk3-PGAM5-CypD/mPTP axis. Melantoin therapy
on the other hand decreased cellular necroptosis by inhibiting
the Ripk3/PGAM5/CypD/mPTP cascade, and protecting the
endothelial system under IR stress (266).

IR damage is caused by Ca2+ excess, which leads to
cardiomyocyte death under these conditions. Melatonin may
protect the heart from IR damage by regulating intracellular
calcium homeostasis, although this is not completely understood.
Myocardial damage caused by prolonged hypoxia may be
protected by melatonin, according to Yeung et al. Melatonin is
thought to enhance calcium handling in cardiomyocytes by an
antioxidant mechanism (267). Ca2+ overload under acute IR
stress has not been well-investigated, so the effects of melatonin
and the underlying mechanism are not well-understood. Cellular
intracellular calcium handling and cell death are mediated by the
cardiac proteins IP3R and SERCA2a, both of which are involved
in intracellular calcium handling, cell contractility, and cell death
(268–271). A recent study has demonstrated that IR activates
an anti-apoptotic pro-survival kinase mechanism, e.g., ERK1/2
(extracellular signal-regulated kinase) and p42/p44 (272, 273).

In their study Hu et al. sought to determine if melatonin
could protect cardiomyocytes from IR injury by regulating
IP3R (inositol triphosphate receptor) and SERCA2a
(sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a) to
decrease calcium overload via the ERK1 pathway (274).
H9C2 cells were used in an in vitro study to simulate
hypoxia/reoxygenation (H/R). The actin filament organization
in cardiomyocytes was assessed by phalloidin staining, while
Fura-2/AM was used to assess intracellular Ca2+ levels. Using
a myocardial ischemia/ reperfusion (I/R) paradigm in rats,
immunofluorescence labeling was used to identify the expression
of IP3R and SERCA2a in the myocardium. H/R cardiomyocytes
treated with melatonin showed a reduction in calcium overload
as well as a decrease in IP3R expression and an increase in
SERCA2a expression, mediated via ERK1. These effects could
be reversed by PD98059, a small molecule inhibitor of MEK1
activation and MAP kinase signaling. IP3R and SERCA2a can
regulate ERK1 to maintain intracellular calcium concentration
at a stable level. They concluded that melatonin-induced
cardioprotection against IR injury was at least in part due to
ERK1 (274).

Table 3 lists some studies on the therapeutic effects of
melatonin on ischemia reperfusion injury.

MELATONIN AND BLOOD PRESSURE:
RECENT EVIDENCE AND SIGNALING
PATHWAYS

Nitric oxide (NO) has protective effects on the cardiovascular
system, and shows antiproliferative, antifibrotic, and
antihypertensive activity (296, 297). Prolonged administration of
L-NAME (Nγ-nitro-L-arginine methyl ester) to rats inhibits NO
synthesis and release, causing organ damage and hypertension
(298–300). Another effect of L-NAME is to weaken the renal
artery by affecting RAAS (renin–angiotensin–aldosterone
system) and promoting renin release (295, 296).

When rats were subjected to continuous light exposure and
experimental pinealectomy, the resulting melatonin deficiency
led tomyocardial fibrosis and hypertension (301, 302). Melatonin
has pleiotropic effects via nuclear receptors as well as membrane
receptors (303, 304). Furthermore, it provides cardiovascular
protection by ROS scavenging, and endothelial protection via
sympatholytic effects (19, 25, 126, 301, 305, 306). However, how
melatonin affects neurohumoral pathways, including the RAAS
was not clear.

Simko et al. evaluated the structural and hemodynamic
effects of L-NAME and its connection with the RAAS, and
how melatonin could benefit them (307). Wistar rats were
divided into 4 groups. The first group received melatonin, the
second group received L-NAME, the third group received l-
NAME + melatonin, and the fourth group was an untreated
control group. Hypertension and LV fibrosis were quantified
by measuring soluble, insoluble, and total collagen levels.
Melatonin led to a decrease in the amount of total and insoluble
collagen in the left ventricle, and also lowered systolic blood
pressure. L-NAME decreased serum angiotensin II (Ang2) and
its derivatives, but these they were unaltered by melatonin.
The L-NAME group showed elevated serum aldosterone as well
as increased aldosterone to Ang2 ratio (AA2-ratio), while the
melatonin group showed no change in these two measures.
In conclusion, L-NAME exerts its hypertensive effects through
lowering Ang II and increasing aldosterone, while melatonin
reverses hypertension without modifying the RAAS (307).

The most common treatment for hypertension involves
a constant drug dosage, which ignores the daily cycle and
rhythm of blood pressure. Hermida et al. showed that
antihypertensive medication that takes into account the body’s
natural rhythms and cycles was more effective compared to
traditional blood pressure treatment. This regimen provided a
bigger reduction in hemorrhagic and ischemic strokes, fewer
myocardial infarctions, and reduced cardiovascular death (308).
Because the RAAS is active during sleep, antihypertensive
medication during the night has more benefits and reduces
cardiovascular complications (308, 309). The results revealed
that blood pressure treatment without taking into account the
circadian rhythm was not so successful; therefore, physicians
should consider antihypertensive chronotherapy. Different types
of brain hormones, such as melatonin, must synchronize with
the body clock in order to maintain appropriate blood pressure
(310, 311). Two additional characteristics of melatonin make
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TABLE 3 | Therapeutic effects of melatonin against ischemia-reperfusion injury.

Melatonin

dose

Route of

administration

I/R duration Treatment duration Target Effect Model References

10 mg/kg Intraperitoneal 30 min/3 h, or 30

min/6 h

5 days cGMP, PKG, Nrf-2-HO-1,

MAPK

Ameliorated diabetic I/R injury,

reduced cardiac cell apoptosis,

and oxidative stress

In vivo (rats) (222)

10µM or

10 nM

Administered into

perfusion solution

20/40min 5min before ischemia,

also simultaneous with

reperfusion

– Decreased arrythmia and VF

caused by reperfusion

In vivo (rats) (275)

50mg Intraoperative – 3 days Troponin I (TpI) Reduced cardiac damage Humans (261)

10mg Oral

10 mg/kg – 30/120min 10 days Fas, cytochrome b-245

beta chain (Cybb), irisin,

nuclear factor-κB (Nf-κB)

Improved protective effect of

remote ischemic preconditioning

(RIPerC) against I/R injury

In vivo (rats) (276)

50mM Added to

reperfusion

solution

30 min/60min 20min ROS Reduced mitochondrial oxidative

stress, increased mitochondrial

membrane potential

In vivo (rats) (277)

10 mg/kg Intravenous 30/120min 10min GSH, MDA Increased antioxidants in cardiac

cells, inhibited lipid peroxidation

In vivo (rats) (278)

2/5, 5, 10

mg/kg

Intraperitoneal 10/15min 10min – Inhibited myocardial apoptosis

during IR, protected

mitochondrial structure &

function

In vivo (rats) (279)

5µM – 12/12 h 12 h ERK1, IP3R, SERCA2a Inhibited cardiomyocyte

apoptosis, improved actin

filament organization

In vitro (274)

20 mg/kg Intraperitoneal 30 min/2 h 12 h IP3R and SERCA2a Induced cardioprotection against

IR injury

In vivo (rats) (274)

50µM Administered into

perfusion medium

30/15min 15min Cardiolipin Improved cardiac cell viability by

keeping MPTPs closed

In vivo (rats) (280)

6 mg/kg Intraperitoneal 30/30min 3 weeks TBARS, MDA Prevented microvascular injury &

ventricular arrhythmia

In vivo

(hamsters)

(281)

50 mg/kg Intraperitoneal 20/20min 30min Troponin T (cTn-T), MDA,

SOD, myeloperoxidase

(MPO)

Protected against cardiac IR

injury

In vivo (rats) (282)

20 mg/kg Intraperitoneal 30 min/2 h 12 h Beclin 1, LC3-II, AMPK,

mTOR

Protected CMECs against IRI by

inhibiting autophagy

In vivo (rats) (283)

5, 10, 20,

50µM

Melatonin added

to perfusion

solution

10 min/– 10min – Decreased arrhythmia,

suppressed oxidative damage

In vivo (rats) (284)

50µM Administered into

perfusion medium

30/45min 3min MDA Significantly suppressed of

apoptosis

In vivo (rats) (285)

10 mg/d

20 mg/d

Oral – 5 days Troponin-I, IL-1β, iNOS,

caspase-3

Suppressed IR damage Humans (262)

10 mg/kg Intraperitoneal 30 min/3 h 5 days Sirt3 Protected against IR injury,

alleviated myocardial oxidative

stress

In vivo

(mice)

(286)

50µM – 35/30 or 120min 40min p38MAPK, ERK, PKB/Akt,

NOS, guanylyl cyclase

Cardioprotective effects,

anti-adrenergic activity

In vivo (rats) (36)

10 mg/kg

20 mg/kg

Intraperitoneal 45 min/4 h 24 h OPA1, LDH, CK-MB,

troponin T, TNFα, IL-6, and

MCP1

Promoted mitochondrial fusion,

restored energy generation,

prevented myocardial IR injury

In vivo (rats) (287)

10, 20µM – 45 min/ 4 h 24 h OPA1 Reversed IR-mediated

myocardial dysfunction

In vitro (287)

0.025 µg/h Infusion into

hypothalamic

paraventricular

nucleus (PVN)

30 min/6 h 1 week Cu/Zn-SOD, NOX2, NOX4,

IL-1b, NF-kB, p65, IL-10

Modulated oxidative stress &

inflammatory pathways in PVN,

reduced myocardial IR injury

In vivo (rats) (288)

(Continued)

Frontiers in Cardiovascular Medicine | www.frontiersin.org 13 June 2022 | Volume 9 | Article 888319

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Tobeiha et al. Melatonin and Cardiovascular Disease

TABLE 3 | Continued

Melatonin

dose

Route of

administration

I/R duration Treatment duration Target Effect Model References

10 mg/kg Intraperitoneal 15/30min 7 days MMP-9, IL-6, TNF-α, MDA,

SOD, GPx, Nrf2, NQO1,

cytochrome-C, Bax, Bcl-2,

caspase-3, p-JAK2,

p-STAT3

Decreased edema, inflammation,

oxidative damage, & apoptosis in

cardiomyocytes

In vivo (rats) (240)

20 mg/kg 30min

0.3, 50µM – 20/30min 10 + 10min Cytosolic beclin 1, LC3 II/I,

p62, ULK1, Rab9, Drp1

Prevented mitochondrial fission,

modulated non-conventional

mitophagy, promoted autophagy

In vivo (rats) (251)

50µM Melatonin added

to perfusion

solution

30/15min 15min – Preserved mitochondrial

complexes I, III, cardiolipin from

oxidative damage

In vivo (rats) (246)

0.3mM Melatonin and

HTK (histidine,

tryptophan,

ketoglutarate)

added to Tyrode’s

solution

80/45min 30min ROS Attenuated postischemic ROS

burst, but was unable to improve

the functional recovery provided

by HTK

In vivo

(guinea

pigs)

(289)

20 mg/kg Intraperitoneal 45 min/4 h 24 h OPA1 Protected cardiac function,

increased survival

In vivo

(mice)

(290)

5µM – 45 min/4 h 12 h OPA1 Reversed loss of MMP, restored

energy production in cardiac

cells

In vitro (290)

20 mg/kg Intraperitoneal 30 min/3 h 10min Sirtuin-3 (SIRT3), lactate

dehydrogenase

Improved post-ischemic cardiac

structure & function, decreased

apoptosis, & oxidative damage

In vivo

(mice)

(291)

20 mg/kg Intraperitoneal 45 min/6 h 12 h Ripk3-PGAM5-CypD-MPTP

cascade, LDH, troponin T,

CK-MB

Decreased endothelial

necroptosis

In vivo

(mice)

(266)

20 mg/kg Intraperitoneal 2/4 h 12 h PPARγ Suppressed HR damage,

inhibited platelet activation,

reduced FUNDC1 (FUN14

domain-containing protein 1)

mediated mitophagy

In vivo

(mice)

(292)

12 mg/kg/d Intraperitoneal 30 min/4 h, 30

min/6 h, 30

min/72 h

3 days+15min PERK, eIF2α, ATF4, RISK,

SAFE pathway, ERK1/2

pathway

Reduced myocardial apoptosis &

oxidative stress, improved

cardiac function

In vivo

(mice)

(293)

20 mg/kg/d Oral 30 min/4 h, 30

min/6 h, 30

min/72 h

1 week MDA, SOD, PERK, eIF2a,

ATF4, CHOP, SIRT1

Ameliorated reperfusion-induced

oxidative & ER stress, reduced

MI/R damage, improved cardiac

function

In vivo (rats) (294)

5µM Melatonin added

to perfusion

solution

45/60min 5min JAK2/STAT3 signaling

pathway, SOD, H2O2,

MDA, LDH, GSH

Melatonin pretreatment

attenuated IR injury, reduced

mitochondrial oxidative damage

In vivo (rats) (295)

this neurohormone suitable for protecting against hypertension,
its antioxidant and anti-inflammatory properties (312–314).
Pechanova et al. discussed the peripheral and central effects of
melatonin on blood pressure regulation, highlighting the fact
that melatonin reduced inflammation, oxidative damage, and
promoted endothelium function (34). The effects of melatonin
on blood pressure may involve the modulation of nitric oxide
(NO), angiotensin II (Ang II), and endothelin (ET) (315–
317). When human umbilical vein endothelial cells (HUVEC)
were treated with 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-
phosphocholine (POVPC), a product of oxidized low-density

lipoprotein that acts as a proinflammatory lipid, they developed
a deficiency in NO production and eNOS activity, as typically
found in atherosclerosis (318). In a HUVEC model, melatonin
decreased angiogenesis triggered by VEGF (319).

Shao et al. also usedHUVECs to assess howmelatonin affected
endothelial function, circadian changes in blood pressure and
hypertension, and also the molecular mechainism (320). To
simulate hypertension, they incubated HUVECs under 25 kPa
external pressure, and incubated them with melatonin. They
measured vasoactive agents, namely Ang II, endothelin (ET),
eNOS, and NO. Melatonin significantly reduced endothelin at
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18 and 24 h and angiotansin II at 18 h after treatment, and led
to a rise in NO levels and elevated eNOS activity at 6–12–18
and 24 h. Melatonin could regulate genes related to circadian
rhythm, cGMP-PKG activity, NO production, and renin/insulin
metabolism, possibly explaining its effects on blood pressure. In
conclusion, melatonin exerts its circadian protective effects on
hypertension by lowering Ag II and ET, and elevating NO and
eNOS (320).

Melatonin, in addition to its antioxidant properties, appears to
play a role in epigenetic regulation, according to recent research
(321). Epigenetic modification mediated by melatonin could
prevent cellular programmes that affect hypertension (322, 323).
The effects of melatonin on programming complications related
to endangered pregnancies have been recognized (324), but
how it affects programmed hypertension over long periods is
unclear. However, some theories have been suggested, such as
corticosteroid effects, oxidative damage, epigenetic modification,
RASS modification, and reversing the loss of nephrons in the
kidney (325).

Tain et al. investigated if high fructose (HF) consumption
by the mother could cause programmed hypertension, and if
melatonin was able to protect against this process through
epigenetic regulation (326). During pregnancy and lactation,
Sprague-Dawley rats were fed ordinary chow, chow + HF, or
chow + HF + melatonin. HF comsumption by the mother
increased the blood pressure in the 12-week old offspring.
Melatonin inhibited this process by increasing kidney levels of
NO. Melatonin downregulated SEH (soluble epoxide hydrolase)
a gene which is involved in blood pressure regulation. In
addition, they found that there were some genes involved in
arachidonic acid metabolism that may mediate hypertension
triggered by HF, and melatonin could regulate them. Their
results suggested that melatonin can increase NO levels in the
kidney, inhibit SEH expression, and epigenetically modulate
blood pressure-controlling genes (326). eNOS and ADMA
(asymmetric dimethylarginine) are able to induce hypertension
by inducing oxidative stress (327). In rats born from mothers
with malnutrition/diabetes, a defective ADMA-NO axis and a
reduction in nephrons were linked to hypertension (328, 329).
In addition, a low protein diet may cause hypertension through
epigenetic changes affecting RASS (330). HDAC1-3 is widely
expressed in nephron precursors, and HDAC enzymes can affect
nephron generation (331). In a rat model, melatonin treatment
inhibited oxidative stress as well as reducing hypertension (332).
It also prevented Ang II induced hypertension (333). New
data has clarified how melatonin could epigenetically modulate
HDACs (321, 334, 335). Melatonin has a protective role in the rat
placenta against oxidative/nitrosative mitochondrial damage and
IR injury (336). Melatonin can pass through the placenta during
pregnancy where it plays a key role in fetal development, but its
epigenetic activity needs more research (324).

Tain et al. assessed the protective effects of melatonin on
programmed hypertension triggered by corticosteroids during
pregnancy (322). They divided young rats into four groups: (1)
control; (2) dexamethasone (DEX); (3) control plus melatonin;
(4) DEX plus melatonin. Pregnant rats were administered with
the above agents, and hypertension occurred in group 2 at week

16, which was decreased bymelatonin in group 4. If the nephrons
were reduced, DEX will accumulate in the kidneys, which could
be inhibited by melatonin therapy. All groups had equal kidney
contents of superoxide and NO. DEX upregulated prorenin and
renin receptors, as well as histone deacetylase-1 (HDAC-1) in
the kidneys of 4-month old rats. Melatonin increased the weight
of the kidneys in group 4, and upregulated HDAC-1, HDAC-2,
and HDAC-8 in the kidneys of groups 3 and 4. Melatonin could
inhibit hypertension triggered by DEX during pregnancy, by
altering RAS components, protecting nephrons, and regulating
HDACs (322).

Chronic kidney disease (CKD) is accompanied by high blood
pressure whenNO production is reduced (337, 338). Endogenous
inhibitors of NOS, such as ADMA can lead to a decrease in
NO synthesis. CKD and high ADMA levels are often seen in
patients with hypertension (327). Many experimental models
have been used to produce renal failure leading to hypertension.
As spontaneously hypertensive rats (SHR) get older, the onset
of CKD is an inevitable consequence (339). Mature SHRs
treated with L-NAME, a NOS inhibitor, developed accelerated
glomerulosclerosis as well as premature kidney failure (340). It
was shown that melatonin produced by the pineal gland prevents
the ADMA level from rising, and reduces the blood pressure
in young SHRs (332). Melatonin may suppress hypertension
by upregulating DDAH (an enzyme that degrades ADMA) in
the kidneys of SHRs (332). It has also been shown that a
reduction in renal ADMA concentrations may be protective
against hypertension (341). However, whether L-NAME could
induce nephrosclerosis in mature SHRs, or even in young SHRs
was uncertain (327).

Young SHRs were used by Cheng and colleagues to investigate
the interactions between L-NAME, ADMA, andmelatonin (312).
They randomly allocated 4-week old SHR rats into three groups:
(1) control; (2) L-NAME; (3) L-NAME + melatonin. Rats were
sacrificed at 10 weeks old. L-NAME caused renal dysfunction,
glomerular sclerosis, and high blood pressure in young SHRs. L-
NAME led to a lower arginine-to-ADMA ratio, but increased the
total level of ADMA, but melatonin could reverse these effects.
The researchers were able to restore DDAH (dimethylarginine
dimethylaminohydrolase) activity with melatonin treatment.
Melatonin therefore led to a decrease in ADMA concentration,
restored the production of NO, increased the arginne-to-ADMA
ratio, and decreased the amount of 8-hydroxydeoxyguanosine
immunostaining (a marker of DNA oxidative damage) in SHR
kidneys treated with L-NAME (310). They also proved that young
SHRs were amenable to L-NAME effects.

Table 4 lists some studies on the effects of melatonin on high
blood pressure.

EFFECTS OF MELATONIN ON
ATHEROSCLEROTIC PLAQUE

Atherosclerosis-related cardiocerebrovascular diseases
include, peripheral vascular disease (PVD), stroke, acute
coronary syndrome (ACS), and stable angina pectoris (375).
Atherosclerosis (AS) is characterized by the subendothelial
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TABLE 4 | Effects of melatonin and blood pressure.

Drug or

pharmacological

agent

Melatonin

dose

Treatment

duration

Targets Effects Model Disease or condition References

Melatonin – – – Ameliorated hypertension in

pregnant mice

In vivo (mice) Gestational hypertension (342)

Melatonin 6 mg/d 8 weeks – Controlled blood pressure Humans Type 2 diabetes mellitus (343)

Melatonin 10 mg/kg/d 11 days Antioxidant capacity,

plasma MDA, sFlt-1, Nrf2,

PlGF, HO-1

Markedly lowered blood

pressure

In vivo (rats) L-NAME-associated

pre-eclampsia

(344)

Melatonin 6 mg/d 12 weeks – Improved blood pressure Humans Non-alcoholic fatty liver

disease (NAFLD)

(345)

Melatonin 30 mg/kg/d 15 days ROS Effectively reduced baseline

MAP

In vivo (rats) Neurogenic hypertension (346)

Melatonin 24 mg/d 4 weeks – No statistical effect on

nighttime or daytime systolic

or diastolic blood pressure

Humans Essential hypertension (347)

Melatonin 10

mg/kg/day

4 weeks Renin-angiotensin-

aldosterone system

(RAAS)

Reduced systolic blood

pressure

In vivo (rats) L-NAME-induced

hypertension

(307)

Melatonin 10 mg/d 12 weeks NO, MDA, protein carbonyls

(PCO), HDL-cholesterol,

hs-CRP

Improved blood pressure Humans Type 2 diabetes & CAD (348)

Melatonin 5 mg/kg/d 20 days TNF-a, IL-6, VEGF, sFlt-1 Decreased blood pressure In vivo (rats) Pre-eclampsia (349)

Melatonin 10 mg/kg/d 6 weeks NOS, NF-κB Had no effect on SBP In vivo (rats) Lactacystin-induced

hypertension

(350)

Melatonin 5 mg/kg/d 3 weeks KCNQ & KCNH2 genes Prevented increase in blood

pressure

In vivo (rats) Pinealectomy &

L-NAME-induced

hypertension

(351)

Melatonin 10µM 6, 12, 18,

24 h

Endothelin, Ang II, NO,

eNOS

Circadian antihypertensive

effects

In vitro

(HUVECs)

Hypertension (320)

Melatonin 10 mg/kg/d 3 weeks eNOS & nNOS protein

expression

Decreased blood pressure In vivo (rats) Metabolic syndrome (314)

Melatonin 6mg – Lowered systolic, diastolic &

mean blood pressure

Humans Laryngoscopy &

endotracheal intubation

(352)

Melatonin 5 mg/kg Cortisol, Ang I, Ang II,

aldosterone, ANP, CRH,

ACTH, endothelin

Reduced fetal hypertension In vivo

(sheep)

Fetal blood pressure (317)

Melatonin 5 mg/kg/d 6 weeks MDA, uric acid, renal

aquaporin-3 (AQP-3)

Decreased systolic blood

pressure

In vivo (rats) Metabolic syndrome (353)

Melatonin 1.5 mg/d 2 weeks – Reduced SBP & DBP levels Humans Elderly (354)

Melatonin 3, 5 mg/d 8 weeks - Regulated blood pressure in

circadian rhythm, reduced

nocturnal hypertension

Humans Type 2 diabetes &

hypertension

(355)

Melatonin 0.01%

melatonin in

drinking

water

Entire

duration of

pregnancy &

lactation

Ephx2, Col1a2, Gucy1a3,

Npr3, Aqp2, Hba-a2, Ptgs1

genes, NO, soluble epoxide

hydrolase (SEH)

Blunted maternal high

fructose (HF)-induced

hypertension

In vivo (rats) Maternal HF-induced

hypertension

(326)

Melatonin 0.01%

melatonin in

drinking

water

Entire

duration of

pregnancy &

lactation

Renal superoxide, NO,

renin–angiotensin system,

Mas protein, histone

deacetylase (HDAC)-1,

HDAC-2, HDAC-8

Attenuated prenatal DEX

induced hypertension

In vivo (rats) Dexamethasone-induced

hypertension

(322)

Melatonin 10 mg/kg/d 6 weeks – Partially prevented

increased systolic blood

pressure

In vivo (rats) Continuous light-induced

hypertension

(356)

Melatonin 25µg/mL in

drinking

water

10 weeks Hypophysial-testicular axis Significantly blunted SBP In vivo (rats) Metabolic syndrome (357)

(Continued)

Frontiers in Cardiovascular Medicine | www.frontiersin.org 16 June 2022 | Volume 9 | Article 888319

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Tobeiha et al. Melatonin and Cardiovascular Disease

TABLE 4 | Continued

Drug or

pharmacological

agent

Melatonin

dose

Treatment

duration

Targets Effects Model Disease or condition References

Melatonin 0.01%

melatonin in

drinking

water

6 weeks Asymmetric

dimethylarginine (ADMA),

arginine, dimethylarginine

dimethylaminohydrolase

(DDAH), NO,

8-hydroxydeoxyguanosine

Lowered blood pressure In vivo (rats) Spontaneous hypertension

+ L-NAME

(312)

Piromelatine

(melatonin

agonist)

5, 15, 50

mg/kg/d

5 weeks Plasma glucose, insulin,

triglyceride, adiponectin,

total cholesterol, HDL &

LDL/VLDL cholesterol

Reduced blood pressure In vivo (rats) Spontaneous hypertension (358)

Melatonin 10 mg/kg/d

Melatonin 10 mg/kg/d 4 weeks Oxidative stress Prevented

doxorubicin-induced

increase in systolic blood

pressure

In vivo (rats) Doxorubicin-induced

nephrotoxicity

(359)

Melatonin 10 mg/kg/d Beginning of

pregnancy

up to 3rd

week

postpartum

Renal GPx, glutathione

s-transferase (GST), total

glutathione, SOD, catalase,

glutathione reductase

Lowered systolic blood

pressure, delayed but not

completely eliminated

hypertention

In vivo (rats) Spontaneous hypertension (360)

After

weaning until

16 weeks

Melatonin 5 mg/d 2 months Glucose, serum lipids,

C-reactive protein,

fibrinogen, catalase, GPx,

SOD, TBARS

Lowered blood pressure Humans Metabolic syndrome (361)

Melatonin 10 mg/kg 5 weeks Conjugated dienes, NOS,

COX-1, COX-2

Slight antihypertensive effect In vivo (rats) L-NAME-induced

hypertension

(362)

Melatonin 5 mg/d 90 days – Decreased nocturnal blood

pressure, increased daytime

blood pressure

Humans Coronary artery disease,

circadian hypertension

(363)

Melatonin 10 mg/kg/d 5 weeks NOS, eNOS, NF-κB,

conjugated dienes,

collagenous proteins,

hydroxyproline

Reduced systolic blood

pressure

In vivo (rats) Spontaneously hypertensive

rats

(364)

Melatonin 1 mg/kg/d 15 days Angiotensin II, GABA(A)

receptors

Prevented blood pressure

increase, reduced blood

pressure in developed

hypertension

In vivo (rats) Stress-induced

hypertension

(365)

Melatonin 0.1 µL of

0.1 or

1.0mM

14 days Glutamate, GABA, taurine,

MT1, MT2, and MT3

Reduced blood pressure In vivo (rats) Stress-induced

hypertension

(366)

Melatonin 2 mg/d 4 weeks – Reduced nocturnal systolic

blood pressure

Humans Nocturnal hypertension (367)

Melatonin 10 mg/kg 5 days – Reduced blood pressure In vivo (rats) L-NAME-induced

hypertension

(368)

Melatonin 3 mg/d 3 weeks – Reduced nocturnal blood

pressure

Humans

(women)

Essential hypertension (369)

Melatonin 10 mg/d 7 days – Lowered blood pressure Humans Type 1 diabetes (370)

Melatonin 5 mg/d 1 week – Reduced nocturnal diastolic

blood pressure

Humans Type 1 diabetes (371)

Melatonin 2.5 mg/d 3 weeks – Reduced nocturnal blood

pressure

Humans Essential hypertension (88)

(Continued)
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TABLE 4 | Continued

Drug or

pharmacological

agent

Melatonin

dose

Treatment

duration

Targets Effects Model Disease or condition References

Melatonin 0.1 µL of

0.1 or

1.0mM

15 days ML1, ML2 receptors Reduced mean arterial

pressure

In vivo (rats) Stress-induced

hypertension

(372)

Melatonin 2.5, 5

mg/kg

– Did not affect blood

pressure

In vivo (rats) – (373)

Melatonin 1mg 2 days – Reduced blood pressure Humans

(men)

– (374)

Melatonin 10, 50

ng/kg

– Reduced blood pressure In vivo

(Atlantic cod)

– (375)

Melatonin 5 mg/d 4 weeks – Reduced blood pressure Humans Normotensive (376)

accumulation of plaques in arteries, consisting of oxidized-LDL,
and inflammatory cells like macrophages, T lymphocytes, and
DCs (dendritic cells) (377, 378). The pathology starts with
gradually progressive endothelial damage, which induces initial
vascular lesions, eventually leading to the rupture of vulnerable
plaque and the formation of thrombosis (379). Pyroptosis plays a
crucial role in the pathophysiology of atherosclerosis, according
to recent research (380). Pyroptosis is distinct from apoptotic
cell death, instead representing a form of highly inflammatory
necrotic cell death, wherein the plasma membrane ruptures and
inflammatory factors such as interleukin (IL)-1β and IL-18 are
released, along with other components from the cytoplasm (381).

Smoking can cause both inflammation and oxidative stress,
thereby damaging the endothelial function (382). However, there
has been little research into the relationship between smoking-
induced oxidative stress and pyroptosis. A recent study suggested
that nicotine could induce endothelial cell pyroptosis via the
ROS/NLRP3 axis (383), and that the ROS pathway may interact
with the pyroptosis-related pathway in inflammatory signaling.

Nrf2 acts as the major regulator of antioxidant enzymes
like HO-1 (384). The Nrf2 pathway is activate under stressful
conditions, and it is essential for sensing oxidative stress to
protect cells against ROS (385). Nrf2 may have beneficial roles
in cardiac IR damage (386), sepsis (387), and neurodegenerative
diseases (388). Furthermore, Nrf2 has been shown to attenuate
inflammation in smoking-induced chronic obstructive
pulmonary disease, emphysema, and asthma (389, 390).
However, the involvement of Nrf2 in smoking-induced vascular
endothelial injury and its mechanism was unclear.

Zhao et al. investigated the interactions between melatonin
and cigarette smoke in vascular injury (391). Cigarette smoke
extract (CSE) could cause human aortic endothelial cells
(HAECs) to undergo pyroptosis by affecting NLR Family Pyrin
Domain Containing 3 (NLRP3). Furthermore, HAECs increased
ROS production and Nrf2 activity in response to CSE. Nrf2-
specific siRNA as well as an Nrf2 inhibitor were able to
prevent CSE from activating the ROS/NLRP3 axis. In addition,
Nrf2 increased cell survival and upregulated VEGF and eNOS.
Melatonin suppressed intimal hyperplasia in a model of carotid
artery injury. Melatonin also upregulated Nrf2, while suppressing

the ROS/NLRP3 axis. In conclusion, melatonin could suppress
atherosclerosis triggered by cigarette smoke by affecting the
Nrf2/ROS/NLRP3 axis (391).

Macrophages are an important contributor to AS (392, 393).
In the atheromatous plaque, they phagocytize oxidative LDL (ox-
LDL) and form a necrotic core; they also secrete many pro-
inflammatory mediators, resulting in degenerative and fibrotic
changes, which increases the plaque size while reducing its
stability, exposing it to rupture and thrombus formation (392).
Melatonin was discovered to suppress ox-LDL modification in
vitro, which may translate into less production of atherogenic
plaques in vivo. Melatonin may also increase the plaque stability
(393, 394). One study has been conducted to investigate whether
melatonin could ameliorate vascular endothelial dysfunction,
inflammation, and AS by inhibiting the Toll-like receptor 4
(TLR4)/nuclear factor kappa B (NF-κB) pathway in high-fat-fed
rabbits (377). In this study rabbits were randomly divided into
three groups: a standard diet (control group), a high-cholesterol
diet (atherosclerosis group), and a high-cholesterol diet plus 10
mg/kg/day melatonin (melatonin group) for 12 weeks. When
compared to the control group, a high-fat diet dramatically
elevated serum lipid and inflammatory markers in rabbits with
atherosclerosis. Results revealed that melatonin improves lipid
metabolism, vascular endothelial dysfunction, and inflammation,
as well as slowing the progression of atherosclerosis in high-
fat-fed rabbits. Furthermore, it suggests that suppressing the
TLR4/NF-κB system in local vasculature with atherosclerotic
damage is critical for melatonin’s protective effects (377).
Endothelial dysfunction is linked to cholesterol feeding. Pita
et al. (395) demonstrated that long-term administration of
melatonin altered the fatty acid content of rat plasma and reduced
fatty infiltration in the intima caused by cholesterol feeding. A
research group shown that melatonin administration prevents
in vitro smooth muscle cell inflammation and proliferation, as
well as atherosclerosis in apolipoprotein E-deficient mice (396).
Hepatocyte growth factor (HGF) may also exert beneficial effects
in the cardiovascular system (397). Considerable evidence has
recently been provided to show that HGF acts as a potent anti-
inflammatory agent (377, 396–406). Cardiovascular pathology
and AS have been observed to be associated with reduced local
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amounts of HGF in cardiac and vascular cells (398–400). Several
drugs such as ARBs (angiotensin II receptor blockers) (400–402),
ACEIs (angiotensin-converting-enzyme inhibitors) (399, 400,
403) and PPAR-γ agonists (404) have been shown to upregulated
HGF, resulting in suppression of AS (402, 405). Interestingly,
melatonin has also been shown to upregulate HGF expression
both in vitro (189, 190) and in vivo (407).

The ability of melatonin to prevent macrophage infiltration
and improve plaque stability by activating the HGF/c-Met
(HGF receptor) axis was assessed by Hu et al. in rabbits,
using USPIO-enhanced MRI to monitor AS plaques (406).
They randomly assigned rabbits into three groups: (1) standard
diet; (2) high-fat diet; (3) high-fat diet + melatonin. In the
atherosclerotic abdominal aorta, melatonin notably reduced the
signal voids in 3D-TOF MRI, decreased the standard signal
intensity in T2WI MRI, and decreased the aortic luminal area
in 2D-TOF MRI. Furthermore, melatonin reduced serum IL-
6, intima/media thickness ratio, and CD68+ as well as USPIO-
positive regions of the intima. Melatonin increased serum IL-10,
HGF, and c-Met, and induced smooth muscle cells and collagen
fibers to accumulate in the intima. In conclusion, melatonin
notably prevented macrophage infiltration in the plaque, and its
increased stability could be partially attributed to the HGF/c-Met
axis (406).

The nuclear receptor RORα can regulate circadian rhythm,
immune response, and cellular metabolism (408, 409). It has been
proposed that some melatonin effects, like its anti-inflammatory
activity could be attributed to RORα (410–412). In addition,
some cardiovascular benefits of melatonin have been proposed
to be mediated by RORα (42, 303, 413).

How melatonin affects atheromatous plaque and
whether it was mediated by RORα was investigated by
Ding et al. (393). They used ApoE−/− mice with high
cholesterol and elevated blood pressure to assess plaque
vulnerability to rupture. The rate of plaque rupture was
markedly reduced by melatonin. Melatonin suppressed
inflammation inside the plaque by preventing plaque
macrophages from differentiating into the M1 phenotype,
by affecting RORα. Additional evidence has supported
the fact that melatonin can modify the macrophage
phenotype through RORα and affecting the AMPKα-STATs
axis (393).

Collagen metabolism is regulated by the P4H (prolyl 4-
hydroxylase) enzyme (407). The P4H α subunit (P4Ha1) converts
procollagen into a mature and stable form of collagen (414).
P4Ha1 inhibition led to a reduction in mature collagen, which
reduced plaque stability (415).

Li et al. used ApoE−/− mice to assess how melatonin
affected plaque stabilization (394).Melatonin upregulated P4Hα1
expression in leiomyocytes in vitro by phosphorylating Akt
and activating Sp1. This effect was blocked by small molecule
inhibitors LY294002 (Akt inhibitor) or MTM (mithramycin
a Sp1 inhibitor). Furthermore, melatonin stabilized plaque
in vivo by upregulating P4Hα1, and MTM blocked this
effect (394).

Table 5 lists some studies on the effects of melatonin on
atherosclerosis and intimal hyperplasia.

MELATONIN AND CARDIAC ARRHYTHMIA

Cardiac arrhythmias may lead to many complications including
death (421). VT (ventricular tachycardia) and ventricular
fibrillation (VF) commonly occur after cardiac IR injury,
which may be fatal if untreated. Appropriate antiarrhythmic
agents may prevent these outcomes. Oxidative stress occurring
during IR injury may explain the onset of cardiac rhythm
abnormalities. The “Metabolic sink” hypothesis (422–424) is as
follows: superoxide anions pass through the mitochondrial inner
membrane which induces a drop in the 1ψm (MMP) and a
reduction in cellular ATP levels. In response to these effects
the sarcolemmal ATP-sensitive potassium current (IKATP)
is increased. As voltage-gated potassium channels open to
repolarize the membrane, the potassium conductance increases
dramatically to bring the membrane potential closer to the
equilibrium potential for potassium. ROS may also inhibit the
sodium current (INa) to cause rhythm abnormalities (425).
Melatonin ameliorates the shortened action potential, and
upregulates connexin 43 during ischemia (426), which may
explain its antiarrhythmic activity, along with its antioxidant
effects (18). However, further resaerch is needed to confirm
the relationship between melatonin, oxidative stress and cardiac
rhythm abnormalities.

Sedova et al. used an IR injury model to assess how
VT and VF, oxidative damage, cardiac electrophysiological
parameters, andmelatoninmay be connected to each other (427).
Melatonin reduced the rate of VT and VF, shortened baseline
activation times (ATs), as well as activation-repolarization
intervals, and also improved recovery of repolarization times
(RTs). SOD activity was observed to be elevated in the melatonin
group. In vitro, melatonin restored the action and resting
membrane potentials even more In conclusion, melatonin
affected repolarization through exerting antioxidant effects, while
its suppression of arrhythmia could be attributed to its ability to
improve ventricular function (427).

The anti-arrhythmic effects of melatonin could be attributed
to its effects on action potential length (284, 428). Melatonin
may suppress VF (426) by upregulating connexin-43 in the
myocardium, which is the major mediator of electrical coupling.
The probability that myocardium upregulates connexin-43 in
acute hypokalemia is low, however melatonin may enhance the
coupling between cells (429, 430).

Prado et al. investigated whether melatonin was able
to suppress arrhythmia triggered by hypokalemia (431). A
hypokalemic medium was employed, and melatonin and its
receptor antagonist, luzindole, were added. They measured the
connexin-43 concentration, and how it was dephosphorylated
and distributed. Melatonin suppressed VF development, induced
a delay in its development, as well as restoring potassium
currents and accelerated sinus rhythm. Melatonin prevented
the widening of the QRS, accelerated the development of
action potentials, and shortened their length. Melatonin also
inhibited the dephosphorylation of connexin-43, and normalized
its distribution (not lateralized). Luzindole reversed all the above-
mentioned effects. In conclusion, melatonin suppressed VF
triggered by hypokalemia, prevented the action potential from
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TABLE 5 | The effects of melatonin on atherosclerosis and intimal hyperplasia.

Drug or

pharmacological

agent

Melatonin

dose

Treatment

duration

Targets Effects Model References

Melatonin 10 mg/kg/d 4 weeks VEGF, eNOS,

Nrf2/ROS/NLRP3 signaling

pathway

Reduced rat carotid artery intimal

hyperplasia, attenuated smoking-induced

atherosclerosis

In vivo (rats) (391)

Melatonin 5, 10

mg/kg/d

2 weeks Vaspin, visfatin, DDAH,

STAT-3

Protected against atherosclerosis,

anti-inflammatory effects

In vivo (rats) (416)

Melatonin 10 mg/kg/d 12 weeks HGF/c-Met axis Reduced number of macrophages in

plaque, increased stability

In vivo (rabbits) (406)

Melatonin 10 mg/kg/d 9 weeks RORα, AMPKα-STAT

pathway

Regulated plaque inflammation, increased

plaque stability

In vivo (mice) (393)

Melatonin 0.3, 3, 30

mg/kg/d

8 weeks P4Hα1, Akt, Sp1 Stabilized plaque In vitro, in vivo

(mice)

(394)

Melatonin 10 mg/kg/d 7, 15 weeks TNF-α, PDGF-BB Suppressed atherosclerosis In vitro, in vivo

(mice)

(396)

Melatonin 20 mg/kg/d 4 weeks NLRP3,

Sirt3/FOXO3a/Parkin

signaling pathway

Inhibited progression of atherosclerosis In vitro, in vivo

(mice)

(417)

Melatonin 20 mg/kg/d 4 weeks Myosin light chain kinase

(MLCK), ERK, JNK, p38

Inhibited atherosclerosis In vivo (rabbits) (418)

Melatonin 10 mg/kg/d 12 weeks TLR4, MyD88, NF-κB, p65,

IκB

Improved endothelial function, suppressed

plaque formation

In vivo (rabbits) (377)

DTBHB 0.02%

wt/wt

16-weeks IL-6, TNFa Did not modify atherosclerosis In vivo (mice) (419)

Melatonin 0.02%

(w/w)

16 weeks – Increased atherosclerosis In vivo (mice) (420)

widening, enhanced the electrical activity of the ventricles, and
corrected connexin-43 misdistribution (431).

Diez et al. used both fructose-fed rats (FFR) and SHRs to
assess the effects of melatonin on cardiac arrhythmia induced
by IR injury (428). Both of these groups of rats exhibited
abnormal metabolic features, including decreased ability of the
myocardium to protect against oxidative stress, hypertension,
reduced eNOS activity, etc. Melatonin suppressed the occurrence
of VF in both groups and reducedVT severity.Melatonin affected
both the length and amplitude of the action potentials, the length
was shortened and the amplitude was restored. Therefore, the
anti-arrhythmic effects of melatonin could be observed even in
rats with genetic cardiac disease (428).

Table 6 lists some studies on the effects of melatonin on
cardiac arrhythmias.

MELATONIN AND HEART FAILURE

Heart failure (HF) is a complex clinical disease in the aging
population characterized by the heart’s inability to pump enough
blood to the body as a result of structural and/or functional
cardiac abnormalities (435). This syndrome is also associated
with inadequate clearance of metabolic end products, leading
to cardiovascular loss, followed by reparative fibrotic repair,
ventricular remodeling, and eventually HF (39, 436). More
than 37.7 million people worldwide are affected by HF, and
this prevalence is rising (437). Importantly, despite recent

advances in HFmedical care and management, novel therapeutic
approaches are required to reverse HF and restore heart tissue
function. In this context, several experimental studies report the
beneficial effects of melatonin treatment in variety HF models,
including chronic intermittent hypoxia-induced HF, post-
infarction HF caused by the left anterior descending coronary
artery ligation, and isoproterenol-induced myocardial infarction
(435, 438, 439). In these models, melatonin via its antioxidant
properties cures significant pathogenic processes associated with
HF including oxidative stress, apoptosis, necrosis, necroptosis,
fibrosis, autophagy, inflammation, and pathological remodeling
and dysfunction. Melatonin administration normalizes the blood
pressure circadian rhythm, reduces cardiomyocyte loss, and
improves the left ventricular function in patients with HF with
reduced ejection fraction (HFrEF) (440). Melatonin is a molecule
with a lot of electrons that may react with free radicals for
directly scavenging them as well as up-regulating antioxidant
enzymes. It acts as an antioxidant and protects cardiac tissue from
ischemia and reperfusion injury caused by free O2 radicals and
their byproducts. Melatonin also activates many antioxidative
enzymes, such as glutathione peroxidase (GSH), modifies gene
expression for various protective enzymes, and lowers lipid
peroxidation (436). Melatonin reduces oxidative stress-induced
cardiac tissue damage by increasing cardiac Na+/K+ATPase and
Sarco/endoplasmic reticulum calcium ATPase (SERCA) activity
and decreasing myeloperoxidase (MPO) activity, caveolin-3,
caspase-3 expression, and malondialdehyde (MDA) levels (441).
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TABLE 6 | Melatonin and cardiac arrhythmia.

Melatonin

dose

Treatment

duration

Targets Effects Model References

10 mg/kg/d 7 days SOD Lowered VT, prevented VF occurrence In vitro, in vivo

(rats)

(427)

100µM – Connexin-43 Suppressed VF triggered by hypokalemia, prevented

action potential from widening, enhanced electrical

activity of the ventricles

In vivo (rats) (431)

50µM – NADPH oxidase, eNOS Protected against ventricular fibrillation when

administered at reperfusion

In vivo (rats) (428)

40µg/mL 5 weeks Cx43/PKC axis Protected against lethal arrhythmias In vivo (rats) (426)

5, 10, 20,

50µM

– Total antioxidant

capacity (TAC)

Reduced the incidence of reperfusion arrhythmia In vivo (rats) (284)

6 mg/kg/d 3 weeks Lipid peroxides,

nitrosative stress

Prevented ventricular arrhythmia In vivo

(hamsters)

(281)

10µM – – Prevented reperfusion-induced arrhythmia In vivo

(hamsters)

(432)

0.4 mg/kg – – Lowered VF occurrence In vivo (rats) (433)

1/50,000 (v/v) – – Reduced cardiac arrhythmia In vivo (rats) (434)

Melatonin’s protective impact has been related to its ability
to increase antioxidant enzymes such as Cu/Zn superoxide
dismutase, stimulate phosphorylated protein kinase B (p-
Akt), and block caspase cascade activation, hence decreasing
mesenchymal cell death (196, 442). Furthermore, the antioxidant
effects of melatonin are most likely due to its inhibitory influence
on NOS expression. Nitric oxide generates peroxynitrite and
hydroxyl radicals, which cause membrane lipid peroxidation and
oxidation of other molecules. Superoxide generation contributes
to ventricular remodeling in heart failure, and as an antioxidant,
melatonin appears to reduce myocardial remodeling (196).

Simko et al. in their study on rats with isoproterenol-induced
heart failure found that melatonin declines the insoluble and
total collagen and enhanced survival by modulating remodeling
(443). Catecholamines and glucocorticoids, which are stress
hormones, are also up-regulated in HF, boosting catabolic state
and worsening cardiac failure. Melatonin is thought to lower
catecholamine and cortisol levels in animal studies and may
reverse their effects via antioxidant capabilities and activation
of anabolic signaling pathways (444). Melatonin stimulates
GH/IGF-1 signaling via the PI3k/AKT/mTOR pathway, activates
AMPK pathway, and controls mitochondrial biogenesis to
promote protein synthesis and reduce apoptosis.

Melatonin activates miR-200a-NF-E2-related factor 2 (Nrf2)
in cardiomyocytes, causing adipose tissue to secrete C1q/tumor
necrosis factor-related protein 3 (CTRP3). Because CTRP3
deficiency is linked to increased oxidative stress and cell death
in cardiomyocytes, the influence of melatonin on CTRP3
secretion into the circulatory system and increased cardiac
CTRP3 expression may help to prevent obesity in patients with
heart failure with preserved ejection fraction (445). According to
epidemiological research melatonin levels as a useful biomarker
for HF reduced in patients with both acute and chronic HF. In
this setting, serum melatonin levels have a negative correlation
with N-terminal pro-brain natriuretic peptide (NT-pro-BNP), a

well-known HF indicator (446). Surprisingly, it is also linked
to reversal remodeling following cardiac resynchronization
therapy in HF conditions (447). Melatonin affects homeostasis of
extracellular matrix (ECM) in the left ventricular myocardium by
improving the balance of MMP-1 and TIM-1 protein expression
(445). Moreover, in ovariectomized rats with HF, melatonin
prevents apoptosis and restores hypertrophy of contractile
cardiomyocytes in the left ventricular myocardium. In one study
decreased melatonin levels has been shown in patients admitted
to hospital with congestive heart failure, so it is concluded that
low melatonin levels exacerbate congestive heart failure (448).

Melatonin’s cytoprotective impact is dependent on the timing
of delivery. Melatonin, when given early in the course of a
myocardial infarction, has been shown to slow the progression of
heart failure (444). Thanks to its antioxidant, anti-inflammatory
and immunomodulatory properties, melatonin protects the heart
against ischemic heart disease with myocardial cell death as
well as post-infarction cardiac dysfunction and ischemic HF.
Arterial hypertension and pulmonary hypertension induce both
cardiac fibrosis and pathological regeneration (cardiomyopathy)
with ventricular dysfunction and HF. Melatonin reverses these
effects and prevents HF (435). Overall, melatonin seems to be
an important, safe, and affordable molecule for the treatment of
HF via improving cardiac defense mechanisms, which restores
the myocardial function, muscle wasting, and cardiac cachexia.
The beneficial effects of melatonin in HF have been illustrated in
Figure 3.

MELATONIN AS A PROTECTIVE AGENT
AGAINST SEPTIC CARDIOMYOPATHY

Approximately 60% of patients diagnosed with sepsis
suffer the most common complication, namely septic
cardiomyopathy. Elderly patients with septic cardiomyopathy
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FIGURE 3 | Beneficial effects of melatonin in reducing heart failure.

have an estimated 30% risk of death, and the lack of effective
therapies leads to a poor prognosis. Therefore, there is a
need to for more research to clarify the pathogenesis of
septic cardiomyopathy to improve the patient prognosis.
Molecular studies have revealed that the pathogenesis of
septic cardiomyopathy is related to endoplasmic reticulum
(ER) stress and mitochondrial damage, because mitochondrial
damage disturbs the energy supply of the myocardium, while
ER stress inhibits protein turnover (266, 449). BAP31 (B-
cell receptor-associated protein 31) regulates the apoptosis
mediated by ER stress. Down-regulation of BAP31 suppresses
cervical cancer development by altering the mitochondrial
apoptosis pathway (450). BAP31 also affects apoptosis
in colorectal cancer, and is linked to caspase-12. BAP31
regulates mitochondrial activity by interacting with TOMM40

(translocase of outer mitochondrial membrane 40), which
explains the connections between the ER and mitochondria
(451). BAP31 also transmits apoptosis signals from the ER to the
mitochondria by interacting with CDIP1 (cell death-inducing
p53-target protein 1) (452). Furthermore; BAP31 has been
shown to be involved in Alzheimer’s disease, hepatic steatosis,
immunomodulation, and lipid metabolism (450–453). The
MAPK/ERK axis increases cell survival through regulating genes
connected to apoptosis. Pharmacological stimulation of the
ERK pathway can reduce toxicity caused by lipopolysaccharide
(LPS) in cardiomyocytes (453, 454). Furthermore, the ERK
pathway appears to have a variety of effects on mitochondrial
activity as well as ER stress. ERK influences ROS production
in mitochondria, mitochondrial energy matabolism and
membrane potential (455, 456). The ER has many functions
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in cells, including calcium homeostasis, protein synthesis,
and the caspase-12 apoptotic pathway, which is controlled
by the ERK pathway (457–459). Recent studies have revealed
a close connection between BAP31 and the ERK pathway
(455, 460).

Zhang et al. investigated the dual protective effects of
melatonin on both mitochondria and ER, focusing on the BAP31
and ERK pathways. Their study investigated how BAP31 could
affect the development of septic cardiomyopathy, and clarified
the effect of melatonin on the ERK pathway, ER stress, and
mitochondrial function (456). An in vivo septic cardiomyopathy
model was created using lipopolysaccharide (LPS). Western
blotting, quantitative-PCR and immunofluorescence were
used to investigate the pathways. Due to the overwhelming
inflammatory response and loss of cardiomyocytes, heart
function was significantly disturbed after exposure to LPS.
Melatonin treatment might increase cardiomyocyte survival
by enhancing mitochondrial activity and decreasing ER stress.
LPS suppressed BAP31 transcription, but melatonin restored
BAP31 levels, which may be attributed to the MAPK-ERK axis.
Inhibition of ERK and BAP31 blocked these effects. Overall, their
study showed that melatonin affected the ERK-BAP31 axis to
regulate ER-mitochondrial interactions during sepsis to prevent
septic cardiomyopathy (456).

Irisin is a polypeptide hormone (112 amino acids) produced
by proteolytic cleavage of the membrane bound FNDC5
(fibronectin type III domain-containing protein 5). Irisin and
melatonin have both been investigated to see whether they
can prevent the development of sepsis-related cardiac damage
(457, 458). Irisin and melatonin have beneficial effects by
control of ROS production, management of calcium homeostasis,
and inhibition of cardiomyocyte apoptosis (458). Melatonin
protects mitochondria in various conditions, including brain
damage following cerebral hemorrhage, diabetic retinopathy,
ARDS, IR injury in the liver, and endothelial cell oxidative
dmage (461, 462). Irisin has protective effects on mitochondrial
function in ischemia of the lung parenchyma, obesity, cardiac
hypertrophy following hypertension, and cardiac IR injury (459,
463). According to numerous recent studies, Mst1 (mammalian
STE20-like kinase 1) is a major subunit of the Hippo axis, which
appears to be a primary regulator of mitochondrial homeostasis.
High levels of Mst1 inhibited BCL2 activity and induced
mitochondrial apoptosis. Furthermore, the posttranscriptional
Mst1 levels directly regulate oxidative status and mitochondrial
respiration (464). However, if theMst1 level is low,mitochondrial
autophagy would be activated to mediate the repair or
elimination of mitochondria (464). Mst1 deletion also efficiently
inhibited mitochondrial fission, and prevented the reduction in
mitochondrial membrane potential and cardiomyocyte apoptosis
(464). Despite the fact that Mst1 has been implicated in the
regulation of mitochondrial homeostasis in numerous studies, it
was unclear if it was involved in septic cardiomyopathy. JNK is a
marker of myocardial damage since it is a downstream effector
of Mst1. Increased JNK levels might promote Bax-mediated
mitochondrial apoptosis by translocating it to the mitochondrial
surface. Active JNK may also induce phosphorylation of Drp1
and c-Jun (465). Drp1 has been linked to mitochondrial fission,

while c-Jun acts as a transcription factor for a number of genes
that favor apoptosis (461, 466).

Ouyang et al. investigated whether melatonin combined with
irisin could ameliorate septic cardiomyopathy by affecting the
Mst1–JNK axis (462). According to their study, melatonin plus
irisin decreased the depressive effect of LPS on the myocardium.
LPS strongly activated Mst1, while the melatonin/irisin
combination treatment substantially blocked this activation.
Mst1 induced JNK activity, which increased oxidative damage,
mitochondrial dysfunction, and apoptosis. The Mst1-JNK
pathway was efficiently inhibited by melatonin plus irisin
co-treatment, promoting myocardial viability and mitochondrial
function. Upregulation of Mst-1 inhibited the beneficial effects of
irisin and melatonin in the animal model, and also in cell culture,
suggesting that irisin plus melatonin co-treatment inhibited
septic cardiomyopathy by regulating the Mst1/JNK axis (462).

Autophagy is a process in which injured damaged proteins
and dysfunctional organelles are degraded in lysosomes and
recycled (463). The LC3-II/LC3-I ratio can measure autophagic
activity. By binding to LC3-II, p62 is incorporated into
autophagosomes and then destroyed during autophagy. As a
result, p62 is negatively correlated with autophagy (467, 468).
New studies have shown the involvement of autophagy in
cardiac function, and have suggested that induction of autophagy
could enhance heart function during sepsis (469, 470). On
the other hand, a deficiency in autophagy exacerbated sepsis-
induced heart failure (471). Recent research has shown that
melatonin treatment could prevent the progress of cardiac
dysfunction and reduce mortality and morbidity in sepsis (472,
473). SIRT1 is a histone deacetylase involved in many cellular
processes, including senescence, inflammation, apoptosis, and
autophagy (474–477). In a murine model of septic cardiac injury,
upregulation of SIRT1 enhanced heart function (478). Melatonin
has protective effects against cardiac dysfunction, and could also
regulate SIRT1 activity in various diseases (206, 472, 473, 479,
480).

Zhang et al. examined the effects of melatonin on heart
function in a mouse model of LPS-induced sepsis, and the
involvement of SIRT1 (481). They assigned C57BL/6 mice into
four groups: (1) control; (2) LPS; (3) LPS + melatonin; (4)
LPS + melatonin + EX527 (SIRT1 inhibitor). The heart was
examined for myocardial damage biomarkers, cardiac function,
cardiomyocyte apoptosis, cardiac histology, autophagosomes,
and expression of SIRT1, cleaved caspase-3, LC3-II/LC3-I
ratio, and p62. When compared to the LPS group, melatonin
reduced heart dysfunction, downregulated CK as well as CK-
MB, decreased structural heart damage, prevented apoptosis, and
promoted autophagy. Furthermore, melatonin also upregulated
SIRT1 in cardiomyocytes, whereas EX527 inhibition of SIRT1
abrogated the cardioprotective effects of melatonin in sepsis.
Melatonin rescued mice from septic heart damage by modulating
apoptosis and autophagy, and activating SIRT1 (481).

Activation of Ripk3 is involved in the pathological
development of inflammation (482). Ripk3 promoted
mitochondrial dysfunction, which increased sepsis-induced
kidney damage (483). This discovery was further reinforced
by the finding that genetic deletion of Ripk3 decreased
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cardiomyocyte death by increasing mitochondrial homeostasis
in a myocardial IR injury model (266). Furthermore, Ripk3
activity and ER stress have been observed to be connected in
several diseases (484). Ripk3 appears to be able to reduce damage
to mitochondria as well as ER stress (485, 486), and could also
affect sepsis-induced cardiac injury. Tryptophan and melatonin
both affect the immune system, cell apoptosis, and microvascular
vasoconstriction in numerous disease models, including heart
IR injury, hepatic steatosis, acute renal injury (ARI), Parkinson’s
disease (PD), and cancer (14, 232, 487–489). Melatonin has
also been extensively studied for the treatment of sepsis, and
many protective mechanisms have been postulated. These
have included, inflammasome inhibition, PI3K/Akt pathway
activation, and antioxidant activity. Researchers reported that
melatonin inhibited the activation of Ripk3, and had pro-
survival effects in the reperfused heart (266). However, the
effect of melatonin on Ripk3 in septic cardiomyopathy had not
been shown.

One study explored how Ripk3 levels affected cardiac
dysfunction induced by sepsis, and whether melatonin could
improve it and the molecular mechanism (458). Following
induction of inflammation in the myocardium by LPS,
Ripk3 was elevated in heart tissue samples, along with
cardiomyocyte death. Septic myocardial damage was reduced
after treatment with melatonin, which had the same effect
as genetic deletion of Ripk3. Molecular studies have shown
that Ripk3 can regulate mitochondrial activity, ER stress, and
cytoskeleton organization, resulting in a cardioprotective activity.
To summarize, melatonin-mediated inhibition of Ripk3 in
cardiomyocytes enhanced bioenergetics and decreased oxidative
damage in the mitochondria. Melatonin also alleviated the
effects of ER stress in cells and restored calcium recycling.
When LPS-treated hearts were infected with an adenovirus
expressing Ripk3, melatonin treatment became ineffective due
to the overexpression of Ripk3. It was concluded that Ripk3
overexpression was associated with septic cardiomyopathy,
which could be suppressed by melatonin, presumably by
inhibiting Ripk3 (458).

Table 7 lists some studies on the effects of melatonin on septic
cardiomyopathy.

CLINICAL TRIALS USING MELATONIN FOR
CARDIOVASCULAR DISEASES

The experimental studies led to clinical trials, in which melatonin
was administered in combination with heart disease medications
for the prevention and treatment of CVDs.

According to an analysis of the results of numerous clinical
trials, melatonin is useful in decreasing nocturnal hypertension
when supplied in a controlled-release form, but useless when
administered as a fast-release formulation. A patent issued in the
United States in December 2011 describes a formulation for the
prevention and treatment of hypertension symptoms in people
who are resistant to classical hypertension (496). This formula
contains an antihypertensive drug (e.g., captopril, diltiazem,
etc.) and melatonin, which is expected to lower blood pressure,

especially nocturnal hypertension, in patients with nocturnal
hypotension. Treatment with this combination can also reduce
cortisol production and postpone serum cortisol levels, thereby
lowering the risk of morning ischemic attacks. The compound
is prescribed in a controlled-release formulation because the
patent reports that fast-acting or controlled-release melatonin
has different effects on blood pressure, cortisol levels, and mood
of patient. In particular, melatonin with controlled-release lowers
diastolic and systolic blood pressure throughout the day without
having a significant effect on patients with normal blood pressure,
but regular formulation of melatonin (5mg) has been observed to
lower blood pressure in individual with normal blood pressure.
This patent does not provide any information about the co-
administration of melatonin and an antihypertensive drug (496).

Ahsanova et al. have lunched a study to assess the efficacy
and safety of melatonin therapy in patients with hypertension
based on the evaluation of daily blood pressure monitoring
(497). They reported that after melatonin intake, average 24 h
brachial systolic (SBP) and diastolic blood pressure (DBP)values
decreased significantly from 124.6± 12.1 to 121.0± 10.2 mmHg
and 79.7 ± 8.8 to 77.3 ± 6.5 mmHg, respectively, as well as
average day-time SBP and DBP values from 128.2± 13.2 to 122.5
± 9.9 and 82.3± 9.7 to 78.5± 7.2 mmHg, considerably (497).

In another study, melatonin 5mg reduced nocturnal blood
pressure but increased daytime blood pressure in non-dippers
with coronary artery disease (363). However, melatonin 24mg
sustained-release had no effect on nocturnal blood pressure in
African Americans with essential hypertension (NCT01114373)
(347). Melatonin administration prior to coronary artery bypass
grafting increased EF, decreased heart rate, and lowered markers
of reperfusion injury in a dose-dependent manner (10 vs. 20mg,
5 days before surgery), and in another study, 10mg melatonin
administration for 1 month prior to coronary artery bypass
grafting increased antioxidant defense. Likewise, 12 weeks of
10mg melatonin treatment had a positive effect on antioxidant
capacity, glycemic management, HDL cholesterol, and blood
pressure in diabetic patients with coronary heart disease (348).
One study has been conducted in order to compare the efficacy
of melatonin monotherapy (MT) and combined treatment (CT)
in elderly patients (mean age 64 years) with arterial hypertension
(AH) and coronary heart disease (CHD) (498). The results
indicate that MT has an antihypertensive effect. In the control
groups, CT with melatonin and antihypertensive medications
outperformed standard therapy. Melatonin inclusion in CT
of CHD produced significant anti-ischemic and anti-anginal
benefits, as well as corrected oxidant/antioxidant balance (498).
Therefore, melatonin should be considered as an important
element of MT and CT of cardiovascular disorders. In recently
published paper, evaluation of the effect of melatonin on
endothelial function in HF explored that oral melatonin for 24
weeks had a beneficial effect on endothelial function in patients
with HF with reduced ejection fraction (HFrEF) (499).

Melatonin supplementation (20mg for 8 weeks) has been
shown in a randomized controlled trial to improve fatigue,
appetite, and quality of life in HF patients with cachexia, and
the combination of melatonin and branched chain amino acids
amplifies these effects (500).
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TABLE 7 | Effects of melatonin on septic cardiomyopathy.

Melatonin

dose

Route of administration Effects Model References

20 mg/kg Intraperitoneal Suppressed septic cardiac injury, by regulating mitochondrial and

ER activity, cytoskeletal organization

In vivo (mice) (458)

30 mg/kg Intraperitoneal Mitigated septic cardiac injury via activation of PI3K/Akt signaling In vivo (rats) (472)

30 mg/kg Intraperitoneal Prevented sepsis-dependent mitochondrial injury, improved

mitochondrial respiration

In vivo (mice) (490)

30 mg/kg Intraperitoneal & subcutaneous Suppressed iNOS/imtNOS activity triggered by sepsis, restored

mitochondrial function

In vivo (mice) (491)

30 mg/kg Intraperitoneal & subcutaneous Inhibited iNOS/imtNOS activity, enhanced mitochondrial function,

& nNOS/c-mtNOS

In vivo (mice) (492)

30 mg/kg Intraperitoneal Regulated autophagy & apoptosis through modifying UCP2 In vivo (mice) (473)

100 nM – Regulated autophagy & apoptosis through modifying UCP2 In vitro (473)

30 mg/kg Intraperitoneal & subcutaneous Reduced NLRP3 level & activity, inhibited caspase-1 and IL-1β In vivo (mice) (493)

30 mg/kg Intraperitoneal & subcutaneous Upregulated cytochrome c oxidase, promoted systolic cardiac

activity, reduced mortality

In vivo (rats) (494)

30 mg/kg Intraperitoneal Activated SIRT1, regulated apoptosis & autophagy, suppressed

septic cardiomyopathy

In vivo (mice) (481)

10 mg/kg Intraperitoneal Prevented organ damage, free radical scavenger, & antioxidant

activity

In vivo (rats) (495)

10, 20 mg/kg

10–20µM

Intraperitoneal Stabilized BAP31 via ERK pathway, preserved cardiac function in

septic cardiomyopathy

In vivo (mice)

In vitro

(456)

CONCLUSIONS

The study of the pineal gland, and the effects of melatonin on
a wide range of organs and bodily systems is a growing field
of research. It has long been known that the cardiovascular
system is affected by circadian rhythms, and this connection has
now been realized to have therapeutic significance. Melatonin
is a ubiquitous component of the human diet, and is also
widely available as a healthfood supplement. While many of
the applications of melatonin supplements have been directed
to normalizing sleep patterns, treating jet-lag and insomnia,
the benefits of melatonin for other conditions are becoming
increasingly understood. It is well-known that melatonin is
an antioxidant and free redical quencher, but the discovery
of high affinity receptors for melatonin expressed in many
tissues has widened the scope of mechanistic investigations.
Nevertheless, although research into the role of melatonin in
CVDs has only recently begun in earnest, the literature on
this subject has been expanding to such an extent, that it is
difficult to summarize in a single article. Nearly all the studies
have reported positive effects of melatonin on cardiovascular
physiology, and the prevention of damage to the myocardium

after heart attack, IR injury, or sepsis. Melatonin can also
help blood pressure and heart arrythmia. Since melatonin is
inexpensive and non-toxic if consumed in reasonable quantities,
it should be tested in many more extensive clinical trials to assess
its efficacy in a variety of cardiovascular disorders. Moreover,
some clinical studies indicated that utilization melatonin in
CVDs is associated with more inconsistencies regarding its
cardioprotective effects (501, 502). “Apart from dosage issues
and mode of administration, previous failures could be partially
explained by the use of young and healthy animals with eventual
lack of various cardiovascular risk factors, comorbidities and
comedications which are characteristics of patients suffering
an acute myocardial infarction or undergoing cardiovascular
surgery (503). Considering the current disappointment, further
well-planned preclinical and clinical studies are needed to better
delineate the cardiovascular benefits of melatonin” (15).
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effect of melatonin on circadian blood pressure in patients with type
2 diabetes and essential hypertension. Arch Med Sci. (2014) 10:669–
75. doi: 10.5114/aoms.2014.44858

356. Simko F, Pechanova O, Repova Bednarova K, Krajcirovicova K, Celec P,
Kamodyova N, et al. Hypertension and cardiovascular remodelling in rats
exposed to continuous light: protection by ACE-inhibition and melatonin.
Mediators Inflamm. (2014) 2014:703175. doi: 10.1155/2014/703175

357. Bernasconi PA, Cardoso NP, Reynoso R, Scacchi P, Cardinali DP.
Melatonin and diet-induced metabolic syndrome in rats: impact on the
hypophysial-testicular axis. Horm Mol Biol Clin Investig. (2013) 16:101–
12. doi: 10.1515/hmbci-2013-0005

358. Huang L, Zhang C, Hou Y, Laudon M, She M, Yang S, et al. Blood
pressure reducing effects of piromelatine and melatonin in spontaneously
hypertensive rats. Eur Rev Med Pharmacol Sci. (2013) 17:2449–56.

359. Hrenák J, Arendášová K, Rajkovičová R, Aziriová S, Repová K,
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