
PEARLS

Conquering Neutrophils
Simon Döhrmann1, Jason N. Cole1,2, Victor Nizet1,3*

1 Department of Pediatrics, Division of Host-Microbe Systems and Therapeutics, UC San Diego, La Jolla,
California, United States of America, 2 The School of Chemistry and Molecular Biosciences, The University
of Queensland, St Lucia, Queensland, Australia, 3 Skaggs School of Pharmacy and Pharmaceutical
Sciences, UC San Diego, La Jolla, California, United States of America

* vnizet@ucsd.edu

Introduction
Neutrophils are the most abundant innate immune cells, making up 50%–70% of all leuko-
cytes. Neutrophils are the “first responders” of host defense, preventing infections by deploying
sophisticated antimicrobial strategies acting in concert. As neutrophils are short-living cells,
they are continuously produced and released from the bone marrow in abundance (>1011 per
day). Circulating neutrophils are terminally differentiated, fully equipped with pre-stored anti-
microbial molecules [1], and also contribute to shaping adaptive immune responses, as
reviewed recently [2].

Neutrophils present challenges and limitations to experimentation, as they are short-lived,
non-dividing, and genetically non-modifiable. Furthermore, no adequate cell lines exist that
fully recapitulate the cellular and physiological functions of neutrophils, and murine neutro-
phils differ in number and (re)activity from their human counterparts. On the plus side, neu-
trophils can be relatively easily and quickly purified in large quantities from the blood of
healthy human volunteers.

In this article, we discuss the suite of mechanisms employed by neutrophils to clear bacterial
infections and the corresponding counterattack mounted by bacterial pathogens. Focusing pri-
marily on the host response, we illustrate how a single human-specific pathogen, Streptococcus
pyogenes (group A Streptococcus [GAS]), has developed an impressive range of strategies to
thwart neutrophil clearance [3]. This capacity correlates to an estimated 700 million infections
and 150,000 deaths annually from GAS disease, a “top 10” cause of infection-related mortality
worldwide [4].

Evidence for the Essential Role of Neutrophils in Fighting Infection
Neutrophils are potent killers of invading pathogens and rapid responders, as they migrate in
large quantities to sites of infection initiated by bacteria, fungi, or parasites. The essential role
of neutrophils in host defense is illustrated by genetic disorders of neutrophil function such as
chronic granulomatous disease (CGD), characterized by reduced nicotinamide adenine dinu-
cleotide phosphate (NADPH) oxidase activity and reactive oxygen species (ROS) production,
or leukocyte adhesion deficiency (LAD), characterized by mutations in β2 integrin/CD18 and
poor neutrophil chemotaxis, in which patients suffer recurrent infections or the high risk of
invasive bacterial and fungal infections in cancer patients with chemotherapy-induced neutro-
penia. In mice, antibody-depletion of neutrophils is temporary, as low neutrophil numbers
trigger a feedback loop to increase granulopoiesis, highlighting adaptive mechanisms in place
to support the crucial defense role of these specialized leukocytes.
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GAS: A Model Invasive Human Bacterial Pathogen
Healthy individuals are at low risk for invasive bacterial infections. Yet, a few notable human
pathogens are able to produce serious disease even in previously healthy children and adults. The
ability of GAS to resist intact host defenses bespeaks what might be called an “innate immunity to
our innate immunity.” The cause of several hundred million self-limited mucosal infections (e.g.,
“strep throat”) worldwide each year, GAS is also the etiologic agent of potentially life-threatening
invasive infections such as necrotizing fasciitis (“flesh-eating disease”) and toxic shock syndrome.
Recurrent GAS infections may trigger autoimmune diseases such as post-streptococcal glomerulo-
nephritis and rheumatic heart disease [5]. GAS can be genetically manipulated and is virulent in
small animal models of skin, lung, or bloodstream infections. These features allow researchers to
generate and test isogenic GAS mutants to ascertain how individual virulence factors contribute
to host innate immune evasion. In this article, we highlight the indispensable role of neutrophils
for prevention and control of bacterial infections and how the notorious GAS pathogen subverts
key neutrophil antibacterial functions to promote survival and systemic spread.

Antibacterial Arsenal Deployed by Neutrophils and Disarming by
GAS
Neutrophils are the most predominant and first innate immune cells arriving at the site of bac-
terial inoculation, where they exert diverse antimicrobial activities to prevent pathogen dissem-
ination to normally sterile sites. To promote its own survival within the host, GAS has evolved
an array of specific mechanisms to thwart neutrophil recruitment, phagocytosis, oxidative
burst, degranulation, and neutrophil extracellular traps (NETs), summarized in Fig 1 and
Table 1 and described individually below. This review focuses on GAS evasion mechanisms to
neutrophil killing, but an extension of certain evasion strategies can be envisioned to apply to
other innate immune cell types that are present at, or migrate toward, the site of infection.

Recruitment
Neutrophils are recruited from the blood to tissue sites of infection through a multistep cascade
known as extravasation. Resident epithelial cells and macrophages at the infection site release
cytokines such as interleukin-1β (IL-1β), IL-8, and tumor necrosis factor-α (TNF-α) to induce
the expression of P-, E-, and L-selectins on the luminal surface of endothelial cells [6]. Circulat-
ing neutrophils attracted by the chemokines bind to the induced selectins via β-integrins, and
these low-affinity interactions decelerate the neutrophil and allow it to roll along the inner sur-
face of the blood vessel. LAD patients with β-integrin or selectin ligand deficiencies exhibit
poor neutrophil chemotaxis and are more prone to recurrent bacterial infections, highlighting
the crucial role of efficient granulocyte migration to the infection site. Upon penetrating the
basement membrane, neutrophils migrate through interstitial space along a local chemotactic
gradient. To recruit additional neutrophils, macrophages, and other immune cells to the infec-
tion site, activated neutrophils release IL-1β to stimulate the production of IL-8 by epithelial
and endothelial cells in a positive feedback loop. A GAS surface-associated serine protease,
SpyCEP (also designated ScpC), cleaves human IL-8 to suppress chemokine-mediated neutro-
phil recruitment [7]. SpyCEP enhances GAS resistance to neutrophil killing and is required for
full virulence in a mouse model of systemic GAS infection [8,9]. Similarly, neutrophil recruit-
ment is impaired via streptococcal esterase (Sse) and streptococcal C5a peptidase A (ScpA) by
inactivation of the chemotactic platelet-activating factor that also contributes to bacterial viru-
lence in vivo [10] or by cleavage of the complement factor C5a [11]. Degradation of chemotac-
tic factors is thus a key neutrophil evasion strategy contributing to GAS pathogenesis.
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Phagocytosis
Phagocytosis is a specific form of endocytosis wherein phagocytic immune cells such as neutro-
phils and macrophages rapidly engulf pathogens by an actin-myosin contractile system to
form a defined vacuole known as the phagosome. The phagosome subsequently fuses with a
lysosome to form the phagolysosome, which contains proteolytic enzymes (e.g., lysozyme),
antimicrobials (e.g., defensins, lactoferrin, LL-37), and highly toxic ROS generated by NADPH
oxidase and myeloperoxidase (MPO) capable of destroying internalized pathogens [6]. Phago-
cytosis is activated through the binding of microbe-associated molecular patterns (MAMPs) to
surface expressed receptors (e.g., Toll-like receptors) or the deposition of opsonins such as
complement and antibodies on the pathogen’s surface to engage opsonic receptors on the
phagocyte (e.g., FcγR and C-type lectin receptors). GAS has evolved several strategies to inhibit
this process. The surface-anchored M protein inhibits phagocytosis by recruiting inhibitory
complement factors (e.g., protein H, C4-binding protein), subverting antibody function
through non-immune binding of the Fc domain or sequestering fibrinogen to interfere steri-
cally with complement and antibody interactions [12]. Furthermore, the GAS hyaluronan

Fig 1. Direct anti-microbial mechanisms from neutrophils and the GAS counterattack. Neutrophils are equipped with multiple anti-infective
strategies including the bacterial uptake (phagocytosis), the phagolysosomal degradation of bacteria via reactive oxygen species (oxidative burst), the
release of antimicrobial molecules (degranulation), and the formation of a web-like structure composed of chromatin, histones, and antimicrobials
(neutrophil extracellular traps [NETs]). GAS is equipped with a magnitude of neutrophil resistance factors (grey boxes) allowing the pathogen to
uniquely counteract each anti-bacterial strategy of neutrophils.

doi:10.1371/journal.ppat.1005682.g001
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(HA) capsule is a molecular mimic of the common host glycosaminoglycan and, therefore, pro-
vides a non-immunogenic “cloak” for the bacterium to hide surface opsonic targets from
immune detection [13].

GAS pore-forming cytolytic toxins streptolysin S (SLS) [14] and streptolysin O (SLO) [15]
promote resistance to phagocytosis by triggering accelerated lysis or apoptosis of immune cells,
including macrophages and neutrophils. During the transition to invasive infection, mutations
within the GAS control of virulence regulatory sensor kinase (covRS) two-component regulon
are selected and result in the up-regulation of several neutrophil resistance factors, including
the HA capsule and SLO, thereby, increasing resistance to neutrophil phagocytosis and killing
[16,17]. Though applicable to multiple host cell types, the voiding intracellular killing via
induction of accelerated cell death is of particular importance in resistance to short-lived neu-
trophils present in abundance during the acute stages of infection.

Oxidative burst
Upon phagocytosis of bacteria, neutrophils and macrophages produce an oxidative (respira-
tory) burst resulting in the rapid release of highly bactericidal ROS, including superoxide
anion, hydrogen peroxide, and hydroxyl radicals. ROS damage DNA—proteins and enzymes
to which most bacteria are highly susceptible. SLO suppresses the generation of ROS

Table 1. Neutrophil anti-bacterial functions subverted by GAS. GAS produces a large suite of virulence factors to counteract specific neutrophil clear-
ance mechanisms during the pathogenesis of invasive infection.

Neutrophil function
inhibited

Virulence factor Gene Function Ref.

Chemotactic
recruitment

Streptococcus pyogenes cell
envelope protease (SpyCEP/ScpC)

cepA Surface-associated serine protease that impairs neutrophil recruitment to
the infection site by degrading chemokine IL-8.

[7–9]

Streptococcal serine esterase (SsE) sse Secreted esterase that impairs neutrophil recruitment by inactivation of
the platelet-activation factor.

[10]

Streptococcal C5A peptidase A scpA C5a-peptidase that reduces complement-mediated neutrophil
recruitment.

[11]

Phagocytosis M protein emm Surface protein that binds complement inhibitory proteins to prevent
complement deposition and phagocytosis.

[5]

Hyaluronan (HA) capsule hasA Inhibits binding of antibodies and complement to the GAS cell surface to
enhance resistance to opsonophagocytosis via molecular mimicry.

[5]

Streptolysin S (SLS) sagA Direct cytotoxicity, inflammatory activation, and inhibition of neutrophil
phagocytosis.

[14]

Streptolysin O (SLO) slo Disrupts the integrity of host cell membranes, inducing rapid caspase-
dependent apoptosis in neutrophils.

[15]

Oxidative burst Streptolysin O (SLO) slo Rapid suppression of oxidative burst. [19]

Degranulation M protein emm Stimulates MPO release from neutrophils and inhibits azurophilic granule
fusion with the phagosome to promote GAS intraphagosomal survival.

[21,22]

Streptococcal collagen-like surface
(Scl-1) protein

scl1 Inhibits the release of MPO to promote bacterial survival. [23]

Streptodornase 1 (Sda1)/strepto-
coccal nuclease A (SpnA)

sda1/
spnA

Nuclease Sda1/SpnA releases GAS entrapped in NETs by degrading the
DNA backbone of NETs.

[17,31]

NETs Streptococcal collagen-like surface
(Scl-1) protein

scl1 Promotes survival within NETs by resistance to LL-37. [23]

Hyaluronan (HA) capsule hasA Surface trapping of LL-37 by GAS capsule prevents antimicrobial activity
and engaging of inhibitory Siglec-9 by capsule impairs NET formation.

[32,33]

M protein emm LL-37 binding by M protein prevents antimicrobial action of LL-37. [34]

Group A carbohydrate antigen gacI The N-acetyl glucosamine side chain of the group A carbohydrate cell
wall polysaccharide impedes LL-37 access to the GAS cell membrane.

[35]

SpyCEP/ScpC cepA Degradation of IL-8 impairs NET formation. [7]

doi:10.1371/journal.ppat.1005682.t001
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independent of cytotoxicity [18]. In addition, GAS deploys a number of strategies to survive
phagocyte-induced oxidative stress. GAS produces a superoxide dismutase (SodA) to enzymat-
ically detoxify superoxide generated by neutrophils upon encounter into hydrogen peroxide.
GAS harbors multiple peroxidases that subsequently decompose hydrogen peroxide [19].
Other more indirect strategies include the repair of protein or DNA damage and metal ion
sequestration [19]. These evasion strategies employed by GAS provide defense against all ROS-
producing cells but are especially critical to resist neutrophils, which generate the most rapid
and intense oxidative burst.

Degranulation
Degranulation is a process used to kill invading pathogens that involves the release of protein-
ases, e.g., neutrophil elastase (NE), MPO, and antimicrobial peptides by activated myeloid
cells. Neutrophils are “pre-packed” with multiple types of granules that fuse with phagocytic
vacuoles to facilitate pathogen destruction [20]. Granules also help to initiate an inflammatory
response and contain alkaline phosphatase, lactoferrin, lysozyme, and NADPH oxidase [20].
The surface-anchored GAS M protein inhibits the fusion of granules with the phagosome to
circumvent the host innate response and promote intraphagosomal GAS survival [21] while
simultaneously triggering the extracellular release of granules potentially causing host tissue
damage [22]. The surface protein streptococcal collagen-like 1 (Scl-1) protein also reduces the
release of MPO, increasing bacterial neutrophil resistance [23]. In addition to neutrophils,
other myeloid cell types, including mast cells and eosinophils, can release preformed granular
content to kill pathogens, but it has yet to be investigated whether the GAS suppressive mecha-
nisms facilitate immune evasion against these other cell types.

NETs
A parallel anti-infective strategy of neutrophils involves a unique form of cell death termed
NETosis [24,25]. While the full mechanistic basis of NETosis is still being elucidated, multi-
ple neutrophil components have been shown to contribute, including NE, MPO, ROS, and
peptidylarginine deiminase 4 (PAD4). Established NET-inducing stimuli include microbial
factors, host immune mediators, and pharmacological agents [26]. NETs consist of extruded
chromatin along with histones, allowing them to trap and kill bacterial pathogens extracellu-
larly [27]; localized entrapment of microbes also prevents systemic dissemination [28].
NETs are highly decorated with antimicrobial molecules such as histones, LL-37, and DNA
[27,29].

Several bacterial pathogens including GAS have evolved sophisticated mechanisms to sup-
press, escape, and/or resist NETs. One highly conserved anti-NET factor among bacteria is the
expression of nucleases to degrade the DNA backbone of NETs. GAS produces nucleases that
promote GAS escape from NETs, resulting in enhanced bacterial survival [17,30,31]. GAS can
also suppress NET production by degrading the neutrophil stimulatory chemokine IL-8 with
peptidase SpyCEP [7] or HA capsule engagement of the inhibitory neutrophil receptor Siglec-9
[32]. Other GAS resistance factors contribute to GAS resistance to antimicrobial components
within the NETs by counteracting cationic peptides, including M1 protein, Scl-1 protein, and
the GlcNAc side chain of the group A carbohydrate cell wall antigen [23,33–36]. These lines of
experimental evidence underscore the importance of NETs in innate immunity. A similar phe-
nomenon has been described for mast cells in innate immune defense [37], and it is likely that
the GAS immune defense strategy extends to these specialized leukocytes as well. The forma-
tion of NETs represents a conserved and robust response to a large number of pathogens and
has been demonstrated in vitro and in vivo.
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Future Perspectives on Boosting Neutrophil Antimicrobial Activity
Humans with dysfunctional neutrophils or low neutrophil numbers are at high risk for invasive
and recurrent (bacterial) infections. The medical challenge is more pressing as several impor-
tant human pathogens develop multi-drug resistance, and antibiotics become increasingly less
effective. Therefore, continued research to define pathways by which neutrophil function can
be supported to counteract the intrinsic resistance mechanism of leading bacterial pathogens is
warranted. For instance, pharmacological strategies to augment the antimicrobial functions of
neutrophils in the context of acute infection have emerged as new avenues of research to
attempt to overcome antibiotic resistance and neutrophil resistance strategies employed by
leading pathogens such as GAS. For example, stabilization of the transcriptional regulator hyp-
oxia-inducible factor 1 (HIF-1) enhances neutrophil energy generation, antimicrobial activities,
and treatment outcomes in a mouse model [38], innate defense regulator peptides (IDRs)
increase neutrophil antimicrobial peptide production and bacterial killing [39,40], and nicotin-
amide (vitamin B3) boosts neutrophil bactericidal activity to provide prophylactic and thera-
peutic activity against Staphylococcus aureus in vivo [41]. Furthermore, NET formation and
bacterial killing are boosted in vitro and in vivo by treatment with familiar pharmacological
agents such as the breast cancer drug tamoxifen [42] or cholesterol-lowering statins [43].
Indeed, the use of statins is currently in phase IV clinical trials (EudraCT number: 2012-
003343-29) to enhance the antimicrobial activities of neutrophils in elderly patients with septic
pneumonia [44].

Although these alternative approaches are still in preclinical or early clinical development,
boosting neutrophil function during infection has the potential to provide a critical new ele-
ment to the treatment of potentially life-threatening antibiotic-resistant infections by harness-
ing the multifaceted antimicrobial properties of these sentinel immune defense cells. In
contrast to broad-spectrum antibiotics, host-directed strategies may minimize collateral effects
on the human microbiome [45] and the risk for development of antibiotic resistance. New
treatment options are desperately needed in face of the continual emergence of multi-drug–
resistant bacterial pathogens and the paucity of new candidates in the antibiotic development
pipeline.
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