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ABSTRACT
KRAS is frequently mutated in a variety of cancers including lung cancer. Whereas the mitogen-
activated protein kinase (MAPK) is a well-known effector pathway of KRAS, blocking this pathway
with MEK inhibitors is relatively ineffective. One major contributor to limited efficacy is attributed to
the reactivation of MAPK signal following MEK inhibition by multiple feedback mechanisms. In a
recent study, we have identified that epithelial-to-mesenchymal transition defines feedback
activation of receptor tyrosine kinase signaling following MEK inhibition in KRAS mutant lung
cancer. In epithelial-like cells, this feedback was mediated by ERBB3. In contrast, in mesenchymal-
like cells, the feedback was attributed to the fibroblast growth factor receptor 1 (FGFR1) pathway.
FGFR1 was dominantly expressed in mesenchymal-like cells: suppression of SPRY proteins by MEK
inhibition relieved negative feedback control of basal FGFR-FRS2 function, resulting in reactivation
of MAPK signaling via FGFR1. Therapeutically, the combination of MEK inhibitor trametinib with an
FGFR inhibitor induced tumor regressions in tumor xenografts derived from mesenchymal-like KRAS
mutant cancer cell lines as well as a patient derived xenograft model with a representative
mesenchymal phenotype. Collectively, feedback activation of MAPK by FGFR1 signaling mitigates
the effect of MEK inhibitor in mesenchymal-like KRAS mutant lung tumors, and combinations of
clinically available FGFR1 inhibitors and MAPK inhibitors constitute a therapeutic approach to treat
these cancers effectively.
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KRAS is the most frequently mutated gene in cancer
including lung adenocarcinoma in which 15 to 25% of
patient harbor KRAS mutations. Mutations in KRAS
impair the intrinsic GTPase activity of KRAS, causing it
to accumulate in a constitutively active GTP-bound
state.1,2 In contrast to the successful development of ATP-
competitive small molecule inhibitors blocking mutant
EGFR and translocated ALK, the identification of GTP
competitive inhibitors has been more difficult. This is pri-
marily because KRAS binds much at high picomolar
affinities to GTP/GDP.

Identifying alternative ways to target KRAS mutant can-
cers, like in other cancers driven by currently undruggable
driver oncogenes,3 have been attempted.1,2 Among them,
targeting the mitogen-activated protein kinase (MAPK),
the best characterized downstream pathway of KRAS, has
been explored. However, MEK inhibitor monotherapy
demonstrates only modest efficacy in vitro and in vivo due
to 2 primary reasons.4,5 The first reason is inhibition of
MEK and suppression of ERK activity relieves negative
feedback from ERK at multiple levels of MAPK signaling.

Initially, ERK inhibition results in upregulation of RAF and
MEK activities by dephosphorylating inhibitory phosphor-
ylation sites on these proteins. In addition, ERK induces
transcription of negative feedback genes including Sprouty
family (SPRYs) and dual-specificity phosphatases (DUSPs).
While DUSPs bind to and inactivate ERK by dephosphory-
lating residues required for catalytic activity of ERK, SPRY
functions more upstream of MAPK signaling by disrupting
SOS1 interaction with GRB2. The second reason MEK
inhibitor monotherapy is ineffective is inhibition of MEK
induces rewiring of kinase signaling networks, which results
in reactivation of ERK and induction of other pathways
including phosphoinositide 3-kinase (PI3K)-AKT; these
changes occur within 24 hours in cell culture experiments.

Mechanistically, MEK inhibition leads to feedback
activation of ERBB3 signaling via activated ERK phos-
phorylation of an inhibitory threonine 669 residue in the
conserved juxtamembrane (JM) domains of EGFR and
HER2.6 Moreover, MAPK inhibition downregulates
transcription factor c-MYC, which relieves transcrip-
tional repression of multiple receptor tyrosine kinases
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(RTKs) and has been shown to activate PI3K and MAPK
signaling.7 To overcome feedback activation of MAPK
signaling, several combinatorial approaches have been
proposed to treat KRAS mutant cancers.8 However, since
multiple mechanisms are involved in the feedback activa-
tion of MAPK signaling, it remains unclear how we can
decide which regimen would be chosen to treat each
cancer.

In a recent report, we have identified a mechanism that
should aid in developing biomarker-directed combinations
using MEK inhibitors in KRAS mutant lung cancers.9 In
KRAS mutant lung cancer cell lines, as expected, rebound
activation of ERK and upregulation of AKT signaling were
observed following treatment with MEK inhibitors trameti-
nib and selumetinib. Immunoprecipitation of p85, the reg-
ulatory subunit of PI3K, revealed that activation of AKT
was mediated by ERBB3 activation. Concomitant inhibi-
tion of MEK with ERBB3 by a pan-ERBB inhibitor afatinib
negated ERK reactivation and upregulation of AKT, lead-
ing to cell death in vitro and tumor regressions in vivo. The
effectiveness of afatinib with trametinib against KRAS
mutant cancer cell lines was consistent with a previous
report.10

However, feedback activation of ERK and AKT signal-
ing was also observed in ERBB3 non-expressed cells. Using
bioinformatic analyses,we have identified a positively cor-
related relationship between expression of ERBB3 and epi-
thelial markers such as E-cadherin in KRAS mutant lung
cancer cell lines. Induction of epithelial to mesenchymal
transition (EMT) by chronic TGF-b1 treatment in an
ERBB3 positive epithelial-like KRAS mutant lung cancer
cell line identified that E-cadherin low/vimentin positive
mesenchymal-like KRAS mutant cancer cells lose ERBB3
expression, instead dominantly express FGFR1 protein.
Importantly, while feedback activation is mediated by
ERBB3 in epithelial-like KRAS mutant cancer cell lines,
the FGFR1-FRS2 pathway plays a critical role in the feed-
back reactivation of MAPK and upregulation of AKT sig-
naling in mesenchymal-like KRAS mutant cancer cell
lines. This feedback is attributed to downregulation of
SPRY4 protein expression following treatment with MEK
inhibitor, which relieves suppression of basal FGFR-FRS2
function, leading to reactivation of MAPK signaling and
upregulation of AKT signaling in the presence of FGFR1.
In mesenchymal-like KRAS mutant lung cancer cell lines,
knockdown of FGFR1 or addition of FGFR inhibitor
negated feedback activation of ERK and upregulation of
AKT signaling following trametinib treatment. Therapeu-
tically, the combination of trametinib with FGFR inhibitor
induced robust apoptosis in vitro and tumor regressions
in vivo and a patient derived xenograft model with a rep-
resentative mesenchymal phenotype identified by the
expression of E-cadherin and vimentin.

These findings indicate that MEK inhibition induces
distinct feedback activation of RTKs based on EMT
status in KRAS mutant lung cancer: ERBB3 in epithelial-
like and FGFR1 in mesenchymal-like cells, respectively
(Fig. 1). Combination of MEK inhibitor with corre-
sponding RTK inhibitors overcame adaptive resistance
to MEK inhibitor. Incorporating a companion diagnostic
of EMT with standard genotyping of lung cancer may
help to generate more effective treatment options for
patients. That is, in KRAS mutant lung cancer, defining
EMT status could enable patients to access biomarker-
directed, MEK inhibitor based combinations. The com-
panion diagnostic could include immunohistochemistry
for representative EMT markers, E-cadherin and ERBB3
as epithelial markers, and vimintin and FGFR1 as mes-
enchymal markers (Fig. 2). Because the exact criteria for
identifying EMT has not been established yet,11 some
other biomarkers of EMT such as ZEB1, Snail, or N-cad-
herin may be incorporated to optimize patient selection.
In addition, given that patient tumors likely consist of
both epithelial and mesenchymal cells, optimization of
scoring system how tumor is categorized epithelial or
mesenchymal is needed. Furthermore, this intratumor
heterogeneity likely limits the efficacy of the treatment
strategy. Combination against epithelial or mesenchymal

Figure 1. MEK inhibition induces distinct feedback activation
of RTKs based on EMT status in KRAS mutant lung cancer. In
epithelial-like tumor cells, MEK inhibition upregulates expres-
sion and phosphorylation of ERBB3 that re-activates MAPK
and upregulates PI3K-AKT signaling. In contrast, in mesenchy-
mal-like tumor cells, MEK inhibition suppresses sprouty pro-
teins (SPRYs), leading to activate FRS2 phosphorylation by
relieving negative feedback to FGFR1-FRS2. Combination of
MEK inhibitor with ERBB3 inhibitor (ERBB3-i) or FGFR1 inhibi-
tor (FGFR1-i) treatment exerts synergistic effect by suppress-
ing the corresponding RTKs.
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tumor may result in transient tumor regressions, to be
led by the growth of cells with the other phenotype that
cause resistance. The sequential treatment of ERBB3/
MEK inhibition and FGFR1/MEK inhibition might be a
strategy to delay the emergence of drug-resistant clones.

A mesenchymal cell phenotype had been traditionally
thought to be associated with tumor metastasis by
enhancing migratory capacity, invasiveness, and upregu-
lation of extracellular matrix components.12 Intriguingly,
recent findings indicate that EMT may be dispensible for
metastasis, however mesenchymal cells do acquire cancer
stem cell-like and chemoresistant properties.13,14 There-
fore, the combination of FGFR inhibitor withMEK inhib-
itor might be applicable to treat residual tumor following
conventional chemotherapy or chemo-refractory tumors.

Since reactivation of ERK signal has limited the effec-
tiveness of MEK inhibitors in KRASmutant cancers, devel-
opment of ERK inhibitors have been pursued.15-17 The
combination of the ERK inhibitor VTX-11e with the MEK
inhibitor PD0325901 prevented RAF-dependent reactiva-
tion of MAPK signaling and induced apoptosis in NRAS
mutant melanoma cells.15 However, RTK mediated activa-
tion of pathways other than MAPK signaling may limit the
efficacy of vertical, multi-step inhibition of the MAPK

pathway. We have shown that apoptosis induced by FGFR
inhibitor with trametinib was significantly correlated with
that of induced by PI3K inhibitor with trametinib in mes-
enchymal-like KRAS mutant lung cancer cell lines. In line
with this, PI3K-AKT-mTOR signaling was identified a key
driver of resistance to another ERK inhibitor SCH772984
by reverse-phase protein array (RPPA) based pathway acti-
vation mapping analysis between sensitive and resistant
cells to the drug.17 However, surprisingly, neither of upre-
gulation of AKT phosphorylation nor induction of apopto-
sis by combining PI3K inhibitor was observed in
SCH772984 resistant cell lines.17 Further studies are needed
whether suppression of rebound ERK activation is the only
cause of enhanced efficacy by combining MEK inhibitor
with FGFR1 or ERBB3 inhibition.

Whereas direct inhibition of mutant KRAS has been
challenging, small molecules that bind directly to mutant
KRAS and inhibit interaction with effector proteins have
been identified.18,19 However, because MAPK signal is a
critical effector pathway, suppression of mutant KRAS
could often leads to feedback RTK activation. For instance,
it has been demonstrated that knockdown of activated RAS
hyperactivate upstream pathways such as EGFR.20 Further-
more, while KRAS G12C specific inhibitors prevent its acti-
vation by binding to the GDP-bound oncoprotein,
potentiation of nucleotide exchange by RTK activation
reduces the sensitivity of the drug by lowering the levels of
GDP-bound KRAS available for drug binding. In line with
this, MEK or AKT inhibitors attenuated the antiprolifera-
tive effect by relieving negative feedback to RTK activa-
tion.18 Combination of KRAS and RTK inhibitors
enhanced the antitumor activity of KRAS G12C specific
inhibitors. These results suggest that our model may also
help to select inhibitor of receptors dominantly responsible
for activation of RAS nucleotide exchange. Notably, recent
report showed that rigosertib bound to the RAS-binding
domains (RBDs) of multiple RAS effectors and downregu-
lated signaling such as RAF, Ral-GDS, and PI3K.21 This
may suggest that the effect of rigosertib may not be attenu-
ated by feedback activation of RTKs because the drug dis-
rupts the association of RAS with multiple effector
proteins, however, it remains to be determined.

Lastly, it is intriguing to determine whether these find-
ings are also applicable to cancers of other organs because
KRAS mutation is common in other cancers especially
colorectal cancer and pancreatic cancer. In KRAS mutant
lung and pancreatic cancers, KRAS knockdown experiment
identified 2 classes of cells-KRAS-dependent cells (in which
KRAS knockdown induced apoptosis) and KRAS-indepen-
dent cells.22 Expression of epithelial markers was highly
associated with KRAS dependency, whereas EMT was cor-
related with KRAS independence, regardless of the pres-
ence of a KRAS mutation. In contrast, the relationship

Figure 2. Flow chart to select combinatorial therapies stratified
by expression of EMT markers. KRAS mutant lung cancer is deter-
mined whether tumor cells have epithelial or mesenchymal
phenotype according to the expression of representative EMT
markers, E-cadherin, vimentin, ERBB3, and FGFR1. When ERBB3
and E-cadherin are positive, the patients are treated with combi-
nation of MEK inhibitor and ERBB3 inhibitor. On the other hand,
when FGFR1 and vimentin are positive, combination of the MEK
inhibitor with FGFR1 inhibitors is chosen. Because not all tumors
can be defined either subtype, more markers or other treatment
strategies against mixed phenotype are needed to be identified.
IHC; immunohistochemistry.
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between KRAS dependency and expression of epithelial
markers was not evident among KRAS mutant colorectal
cancers.23 These evidences suggest that EMT status may
define the feedback activation of RTKs following MEK
inhibition in pancreatic cancer, while colorectal cancer
likely has lineage-specific feedback mechanisms.

In summary, our data demonstrated MEK inhibition
leads to distinct activation of RTKs in KRAS mutant lung
cancers depending on the epithelial or mesenchymal state of
the cancer. While inhibitors targeting ERBB3, FGFR1, or
MEK are available, feasibility of each combinatorial therapy
will be the key issue in future clinical trials.
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