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Abstract. Neural cell adhesion molecules (NCAMs) 
are cell surface glycoproteins that appear to mediate 
cell-cell adhesion. In vertebrates NCAMs exist in at 
least three different polypeptide forms of apparent mo- 
lecular masses 180, 140, and 120 kD. The 180- and 
140-kD forms span the plasma membrane whereas the 
120-kD form lacks a transmembrane region. In this 
study, we report the isolation of NCAM clones from 
an adult rat brain cDNA library. Sequence analysis in- 
dicated that the longest isolate, pR18, contains a 2,574 
nucleotide open reading frame flanked by 208 bases of 
5' and 409 bases of 3' untranslated sequence. The 
predicted polypeptide encoded by clone pR18 contains 
a single membrane-spanning region and a small cyto- 
plasmic domain (120 amino acids), suggesting that it 
codes for a full-length 140-kD NCAM form. In North- 
ern analyses, probes derived from 5' sequences of 
pR18, which presumably code for extracellular por- 
tions of the molecule hybridized to five discrete mRNA 
size classes (7.4, 6.7, 5.2, 4.3, and 2.9 kb) in adult rat 

brain but not to liver or muscle RNA. However, the 
5.2- and 2.9-kb mRNA size classes did not hybridize 
to either a large restriction fragment or three oligonu- 
cleotides derived from the putative transmembrane 
coding region and regions that lie 3' to it. The 3' 
probes did hybridize to the Z4-, 6.7-, and 4.3-kb mes- 
sage size classes. These combined results indicate that 
clone pR18 is derived from either the 7.4-, 6.7-, or 
4.3-kb adult rat brain RNA size class. Comparison 
with chicken and mouse NCAM cDNA sequences sug- 
gests that pR18 represents the amino acid coding re- 
gion of the 6.7- or 4.3-kb mRNA. The isolation of 
pR18, the first cDNA that contains the complete cod- 
ing sequence of an NCAM polypeptide, unambigu- 
ously demonstrates the predicted linear amino acid se- 
quence of this probable rat 140-kD polypeptide. This 
cDNA also contains a 30-base pair segment not found 
in NCAM cDNAs isolated from other species. The sig- 
nificance of this segment and other structural features 
of the 140-kD form of NCAM can now be studied. 

T 
HE process of selective adhesion mediated by cell sur- 
face components has been proposed as a key factor in 
many developmental processes including morphogen- 

esis and organogenesis. The neural cell adhesion molecules 
(NCAMs) t have been shown by immunologic criteria to be 
important in the selective adhesion of neurons to each other 
(Rutishauser et al., 1976), as well as to glial cells (Keilhauer 
et al., 1985) and muscle cells (Rutishauser et al., 1983). 
NCAMs are expressed in discrete tissue types at critical 
times in development, and may play important roles in the 
development of many neural systems including the retino- 
tectal system (Thanos et al., 1984; Fraser et al., 1984; Silver 
and Rutishauser, 1984), otic development (Richardson et al., 
1987), neuromuscular junction development (Covault et al., 
1986; however see Bixby and Reichardt, 1987), and neural 
crest migration (Thiery et al., 1982). 

1. Abbreviation used in this paper: NCAM, neural cell adhesion molecule. 

Several studies have shown that rodent NCAM polypep- 
tides are expressed in a very complex developmental pattern 
(Chuong and Edelman, 1984; Pollerberg et al., 1985). 
Affinity-purified NCAM from whole embryonic rodent and 
chicken brain migrates atypically on SDS-polyacrylamide 
gels appearing as a large diffuse smear ranging from 170 to 
250 kD (Him et al., 1983; Rothbard et al., 1982). Neuramin- 
idase treatment of embryonic NCAM reduces the smear to 
three separat~ size classes of NCAM, indicating that the ini- 
tial heterogeneity results from varying amounts of sialylation 
(Hoffman et al., 1982; Finne et al., 1983). During early 
neonatal development, embryonic NCAMs are gradually 
replaced by three distinct major size-classes of glycoproteins 
that migrate at 180, 140, and 120 kD. These mature forms 
contain significantly less sialic acid than their embryonic 
predecessors. All three forms of adult NCAM have large ex- 
tracellular domains that contain a shared amino terminal 17 
amino acid sequence (Rougon and Marshak, 1986) and anti- 
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genic determinants (Williams et al., 1985; Cole and Glaser, 
1986; Watanabe et al., 1986; Frelinger and Rutishauser, 
1986). These external regions are thought to contain an 
amino-terminal heparin-binding domain (Cole et al., 1986), 
a homophilic cell-binding domain (Hoffman et al., 1982), 
and three sites for possible asparagine-linked glycosylation 
(Crossin et al., 1984). The two large forms (180 and 140 kD) 
span the membrane and contain large and small cytoplasmic 
domains respectively (Gennarini et al., 1984). The 120-kD 
polypeptide form lacks a membrane-spanning region (Ny- 
broe et al., 1985), but seems to be covalently attached to a 
phosphatidyl inositol-like moiety in the plasma membrane 
(He et al., 1986). 

While distinct cell types differentially express one or more 
of the three major NCAM polypeptides, the functional 
significance of this specific expression is not understood. Re- 
cent work in our laboratory based on sequential immunopre- 
cipitation experiments suggests that even more heterogeneity 
may exist within the 180- and 140-kD size classes. A mono- 
clonal antibody designated 3G6 recognized some but not all 
of these forms of rat NCAM (Williams et al., 1985). Further- 
more, it was shown that different clonal cell lines selectively 
express these different forms of NCAM. This specific im- 
munologic heterogeneity could reflect changes in either the 
core polypeptide or posttranslational modifications. 

Recently, several groups have isolated partial cDNAs that 
code for portions of mouse (Goridis et al., 1985), chicken 
(Murray et al., 1984; Hemperly et al., 1986), and Xenopus 
(Kintner and Melton, 1987) NCAMs. Probes derived from 
these NCAM cDNAs hybridize to at least four major size 
classes of mRNA in all three species. In rodents, the major 
hybridizing RNA size classes are 7.4, 6.7, 5.2, 4.3, and 2.9 
kb (Gennarini et al., 1986; Covault et al., 1986). Analyses 
using these partial cDNAs suggest that the major NCAM 
polypeptides arise via the differential splicing of transcripts 
from a single gene (Gennarini et al., 1986; Murray et al., 
1986). Using overlapping partial cDNAs, tentative complete 
polypeptide sequences for the 180- and 120-kD NCAM 
forms in chickens (Cunningham et al., 1987) and the 120-kD 
form in mice (Barthels et al., 1987) have been proposed. 
However, because no single cDNA has been isolated so far 
that encodes the full-length amino acid sequence of any 
NCAM polypeptide, great care must be taken in relating 
overlapping cDNAs to one another. Here we report the isola- 
tion and characterization of six cDNA clones that code for 
rat NCAM polypeptide sequence. The longest of these, pR18, 
contains the complete coding sequence for a putative 140-kD 
transmembrane rat NCAM polypeptide. We then use probes 
derived from pR18 to study NCAM expression and the rela- 
tion of the different mRNA size classes to the polypeptide 
forms of NCAM. 

Materials and Methods  

Library Production and Isolation of cDNAs 
for Rat NCAM 
Adult rat brain eDNA libraries were prepared as previously described (Shull 
et al., 1985). Briefly, an oligo dT primer was annealed to adult rat brain 
Poly(A) + RNA for first strand synthesis using both Molony Murine Leuke- 
mia Virus and Avian Myeloblastosis Virus reverse transcriptase in separate 
reactions. Second strand synthesis was performed using RNase H and DNA 
polymerase I and the double-stranded eDNA was then size-fractionated on 

a nondenaturing agarose gel. cDNAs longer than 3.3 kb were C-tailed using 
terminal deoxynucleotidyl transferase and cloned into the plasmid pBR322, 
which was cut with PstI and G-tailed. This method of cloning allows the 
retention of the intact PstI site for efficient excision of the inserted DNA. 
The insertion of the eDNA into the PstI site disrupts the amp r gene in 
pBR322. Thus recombinant plasmids confer tetracycline but not ampicillin 
resistance to the host bacteria upon transfection. 

Insert-containing plasmids were transfected into E. coli RR1 cells (BRL), 
and plated on agar containing 10 tag/ml tetracycline. Colonies were grown 
up, transferred to nitrocellulose filters, and replicated onto two Zeta-bind 
filters (AMF Cuno, Meriden, CT) for the initial screening. The nitrocellu- 
lose master filters were stored frozen at -70~ Plasmid DNA was fixed to 
the filters by alkaline Triton lysis followed by proteinase K treatment and 
baking at 80~ for 2 h. Filters were prehybridized in 6• SSC (Ix SSC is 
0.15 M NaCl, 0.015 M sodium citrate), 10x Denhardt's, 0.1% SDS contain- 
ing 100 I~g/ml salmon sperm DNA at 65~ for at least 6 h. Hybridization 
was carded out at 65~ for 24 h in 6x  SSC, lOx Denhardt's, 1% SDS, con- 
taining 100 Ixg/ml salmon sperm DNA and 106 dpm/ml of 32p-mouse 
NCAM eDNA designated pM1.3 (Goridis et al., 1985) prepared by the ran- 
dom primer method of Feinberg and Vogelstein (1983). After hybridization, 
filters were washed 4 -5x  in 2x  SSC for5 min at room temperature, 2x  
in 2x  SSC with 1% SDS for 30 min at 65~ then at least 2• in 0.1x SSC 
for 30 rain at room temperature and exposed to Kodak XAR film in the pres- 
ence of intensifying screens for 6-24 h. 

Colonies that gave positive signals in the initial screening were colony- 
purified, and mini-prep DNA was transfected into E. coil HB101 host cells. 
Plasmid DNA was isolated by the alkaline lysis method (Maniatis et al., 
1982) and characterized by restriction and hybridization analysis. 

c D NA Structural Analysis and Sequencing 
Plasmid pR18 was digested with various restriction enzymes, and digested 
fragments were purified by agarose or polyacrylamide gel electrophoresis. 
Desired fragments were cloned into appropriately cut bacteriophage ml3- 
mpl8 or ml3mpl9 vectors. Alternatively, large fragments from pR18 were 
cloned into m13, and overlapping clones were generated by T4 polymerase 
catalysed exonuclease digestion of the single-stranded insert DNA (Dale et 
al., 1985). DNA nucleotide sequencing involved "quasi-end-labeling" with 
32P-ATP (Brunner et al., 1986) and the Sanger dideoxy chain termination 
method (Sanger et al., 1977) using reverse transcriptase (Janssen Life 
Sciences Products, Piscataway, NJ). The full length of clone pR18 insert was 
sequenced at least once in both directions. Sequence was compiled using 
the Microgenie program (Beckman Instruments, Inc., Palo Alto, CA) for 
restriction sites and open reading frame analyses. Hydropathy plots were 
computer generated by the DNA Inspector II+ program (Textco, West Leb- 
anon, NH) using the algorithm of Hopp and Woods (1981). To determine 
pR18 homology to previously identified nueleotide and amino acid se- 
quences the complete Genbank and NBRF databank files (March 1987 up- 
dates) were searched using the Beckman Microgenie program. The 5' un- 
translated and complete coding sequences (DNA) were divided into 300 
base segments and the predicted amino acid sequence into 75 amino acid 
segments for this search. This search revealed several short homologies to 
immunoglobulin c and v region elements around conserved cysteines of Ig 
loops and a variety of other short homologies. However no extended homol- 
ogies to any available sequences were identified. 

RNA Gel Blot Analysis 
Total cellular RNA was extracted from adult rat brain by the guanidine 
isothiocyanate-cesium chloride method (adapted from Maniatis et al., 
1982). Poly(A) + RNAs were selected by one or two passes over an oligo 
dT cellulose column. RNA samples were electrophoresed in 1% agarose 
gels containing 2.2 M formaldehyde (Lehrach et al., 1977), rinsed briefly 
in distilled water, and capillary blotted overnight with 10x SSC to nylon 
membranes (Gene Screen+; New England Nuclear, Boston, MA). Filters 
were rinsed briefly in 2x  SSC, allowed to dry at room temperature, and 
baked for 2 h to reverse the formaldehyde reaction. 

Some filters were probed with random primer 3ZP-labeled double- 
stranded clone pR18 restriction fragments (specific activity range of 1-4 x 
109 dpm/txg). Prehybridization reactions were carried out in 1 M NaCI, 
1% SDS, and 10% dextran sulfate at 60~ for at least 30 min. 4--5 x 105 
dpm/ml of the labeled probe was then added to the prehybridization solution 
along with denatured salmon sperm DNA to a concentration of 200 I~g/ml. 
Filters were routinely hybridized for 24 h at 60~ washed twice in 2 x SSC 
for 5 min at room temperature, twice in 2• SSC, 1% SDS for 30 min at 
60~ twice in O.lx SSC for at least 30 rnin at room temperature, and e x -  
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posed to Kodak XAR film with intensifying screens for 24-48 h. In one ex- 
periment, filters that were probed with the 466-bp PstI fragment were sub- 
jeered to more stringent washing conditions (e.g., 0.1• SSC with t% SDS 
at 60 ~ or 68~ While some decrease in the intensity of all the hybridiza- 
tion signals was observed at the higher stringencies, all five size classes of 
NCAM mRNA were still detectable in the same proportions (results not 
shown). This experiment suggests that the mRNA size classes detectable by 
Northern analysis are derived from the same gene. 

Other filters were probed with gel-purified oligodeoxynucleotide probes 
(30mers) prepared by 5' end labeling using y32p-ATP and T4 polynu- 
cleotide kinase. The reaction conditions were as follows: 70 mM Tris 
pH Z5, 10 mM MgCI2, 5 mM dithiothreitol, 50 pCi T32P-ATP at 3,000 
Ci/mmol (1.67 x 10 -~ pmol), 8.5 x 10 -~ pmol of the 30met, 10u T4 poly- 
nueleotide kinase, 37"C for 30 min. Labeled oligomer was separated from 
unincorporated nucleotide by NEN-SORB 20 chromatography (New En- 
gland Nuclear). Typical incorporations ranged from 30 to 50% of the input 
radioactivity (50% incorporation represents 100 % efficiency of the reaction 
because a 2:1 molar ratio of radionueleotide/oligomer was used in the reac- 
tion). Hybridization and washing conditions were identical to the ones 
above except that they were carried out at 55~ instead of 60~ This lower 
temperature of hybridization resulted in a 3-4-fold stronger signal than hy- 
bridization at 60~ with no apparent loss in the specificity of the reaction 
(results not shown). In some cases, it was necessary to extend the film ex- 
posure time to 144 h to attain an adequate signal. Because probes of different 
specific activities were used, signal intensities between and within the blots 
presented in Figs. 4-6 cannot be directly compared. 

Our results indicate that the actual size classes of the NCAM Poly(A) + 
mRNA seen on Northern blots were 7.2, 6.6, 5.2, 4.6, and 2.9 kb. These 
size determinations were based on the hybridization band migration in rela- 
tion to the 28s and 18s ribosomal bands that were poststained with methy- 
lene blue. However, to avoid confusion in the literature, we have used the 
previously determined sizes of 7.4, 6.7, 5.2, 4.3, and 2.9 kb, respectively, 
in this paper (Gennarini et al., 1986; Covault et al., 1986). 

Results 

Isolation of Rat NCAM cDNAs 
Four positive clones were isolated in the initial screening of 
40,000 colonies of a size-selected (3.3-5.5 kb) adult rat brain 
eDNA library that was probed with the mouse NCAM probe 
pM1.3 (Goridis et al., 1985). Clone pR18 contains the com- 
plete coding sequence for a rat NCAM (see below), pR12o 
is homologous to but shorter than pR18 (Fig. 1). Two other 
colonies positive for hybridization with probe pM1.3 were 
subsequently determined not to be completely homologous 
to clone pR18 and will not be discussed further here. To iden- 
tify additional isolates, pR18 was restriction mapped and a 
BamHI-EcoRI fragment (Fig. 1), was chosen for further 
screening. Four additional clones, pRB5, pRBT, pRB10, and 
pPd2n, were isolated in the screening of two other platings 
of a size-selected library (50,000 clones containing cDNAs 
3.3-5.5-kb long, and 20,000 clones initially selected to be 
longer than 5.5 kb) based on hybridization to either pMI.3 
or to the pR18 BamHI-EcoRI fragment or both. Restriction 
analysis and blot hybridization experiments indicated that 
pR18 contained the longest insert; the four additional isolates 
were found to be 3' or 5' truncated fragments of pR18 (Fig. 
1). Clone pRB5 contained an anomalous region in its 3' re- 
striction pattern, which was shown by sequence analysis to 
be an apparent artifactual duplication of sequence (data not 
shown). Together the five shorter cDNA clones corroborate 
>90% of the entire restriction map of pR18 and 49% of the 
actual sequence (Fig. 1). 

Sequence Analysis of Clone pR18 
Fragments of clone pR18 DNA were sffocloned into M13 bac- 
teriophage for sequence analysis (see Fig. 1 for strategy). 
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of isolated NCAM-related 
cDNAs, pR18 and pRl2o were isolated in the initial library screen- 
ing using the mouse eDNA pM1.3 as a probe. The other clones, 
pR12n, pRB5, pRB7, and pRBI0, were isolated in subsequent li- 
brary screenings using both pM1.3 and the BamHI-EcoRI restric- 
tion fragment of oR18. Restriction sites are marked as follows: P, 
PstI; A, AvalI; T, BstEII; G, BgllI; B, BamHI; X, XbaI; R, EcoRI. 
The sequencing strategies of pR18, pRB5, and pR12n are indicated 
by arrows below their respective restriction maps. Sequencing from 
the vector into the 3' end of the insert in pR18 was stopped by a 
poly-T tract (tt0, which corresponds to the Poly(A) + region in the 
sequence (Fig. 2). Long arrows with multiple heads indicate the se- 
quencing of overlapping subelones which were derived by exonu- 
clease I~ deletion (Materials and Methods). 

The sequence presented in Fig. 2 agrees perfectly with the 
previously determined restriction analysis shown in Fig. 1 
with the exception of the two adjacent PstI sites at nucleotide 
positions 255 and 266 (these and subsequent numbers refer 
to the 5' most nucleotide of a particular DNA sequence ele- 
ment). The small intervening fragment was not detected by 
agarose gel electrophoresis. 

Clone pR18 contains a single open reading frame extend- 
ing from the ATG at nucleotide position 209 in Fig. 2 to the 
TGA stop codon at position 2,783 followed by 406 bases of 
presumed 3' untranslated region (see also Fig. 3 a). The two 
alternative reading frames contain numerous in-frame stop 
codons throughout the sequence. This sequence is highly ho- 
mologous to those determined for other NCAM forms in 
other species (discussed below). The 3' end of clone pR18 is 
characterized by 21 consecutive adenines; however, it lacks 
the consensus Poly(A) + addition site AATAAA, suggesting 
that some NCAM messages may extend significantly further 
3' than the end of clone pR18. It has been suggested that very 
long 3' untranslated regions may be present in other rodent 
NCAM clones (Goridis et ai., 1985), and a single NCAM- 
related eDNA from chicken has been reported which con- 
tains 2,878 bases of 3' untranslated sequence (Cunningham 
et al., 1987). Thus pR18 may have been generated by the 
fortuitous hybridization of the oligo dT primer to an 
adenine-rich region which lies 5' to the actual Poly(A) § ad- 
dition site. 

pR18 sequence contains 208 bases that lie 5' to the pro- 
posed translation initiation ATG (Fig. 2). Two other isolates 
which extend 5' of the coding region (pRB5 and pRB12n) 
terminate within 60 bases of the 5' end of pR18. This could 
indicate that this region is close to the actual mRNA cap site, 
or that there is a strong stop for reverse transcriptase in this 
region. Comparison with the data from mouse NCAM ar- 
gues strongly for the former possibility: Barthels et al. 
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CTGAGGCTGGGGCTGTCACTCATTCT~CGC~TAGCGGTGAACGCAGCTCGGCAGTGGCTGGCAAGAAACAATTCT~TAATCATATCCAGC~TGGCAATT~C~ 118 

-19 -I0 
MetLeuArgThrLy sAspLeu I leTrpTh r 

TCCATTGCTCCGC~GCCGTCCACAGTCGCTTGCAAGGGAAGGCACTGAATT/ACCGCGGCCAGAACATCCCTCCCAGCCGGCAGTTTACAATGCTGCGAACT~G~T~CT 238 

-I +I I0 20 I 30 
LeuPhePheLeuG1yTh rAlaVa iSe rLeuGlnVa iAsp 1 leValProSerGlnGlyGlu I leSerVa iGlyG1uSerLysPhePheLeuf6yAGlnVaiAlaGlyAspAlaLysAspLys 
TTGTTrTTCCTGGGAACTGC~GTTTC CCTGCAGGTAGATATTGTTC~GAAATCAGCGTTGGAGAG TCCAAATT~C ~ ~ G ~ C ~ T ~ G  358 

Pstl Pstl 
40 50 60 70 

AspI leSerTrpPhe SerProAsnGlyGluLysLeuSe r9 roAsnGlnG inArgI leSerValValTzpAsnAspAspAspSerSerThrLeuThrI leTyrAs~n I1~p 
GACATCTc~TGGTTCTC~CAACGGGGAGAAACTGAGCCCAAAcCAGCAGCGGATCTCAGTGGTGTGGAACGATGATGACTCCT~Ac~c~~~T 478 

I 80 90 I00 Ii0 
AIaG ly i leTyrLysf.yAValVa 1ThrAlaG luAspGlyThrGlnSe rGluAlaTh rValAsnValLys I lePheGlnLysLeuMetPheLysAsnAlaProThrProG1nGluPheLys 
GCCGGCATTT.ACAAGTGC GTGGTCAC CGCTGA~GACGGCAC CCAGTCCGAGG CCACTGTCAATGTGAAGATC TTCCAGAAGCTCATG~T~ GC~CCCC~A~E~ 598 

II 121 130 140 150 
GluGlyGluAspAlaVal 1 leValV.M~spValValSer Se rLeuProProThr 1 le 1 IeTr~ySHIsLysGIyAr ~sp ValI leLe~ysLysAspVa iAr g~ hel leValLeuSer 
GAAGGGGAAGATGCTGTGA-TT~TCTGTGATGTGGTCAGCTCTCTGCcC~CAACCATCATCTGGAAACACAAAGG~~~~T~~T~ATC~ 718 

160 II 171 180 190 
AsnAsnTyrLeuGlnl leArgGlyI leLysLysThrAspGluGlyThrTyrAr~G luGlyArgl leLeuAlaArgGl yGIu I leAsnPheLy~l leGlnVa I I leVa~nVal 
AACAACTACCTGCAGATCCGAC4GCAT GAGGGCACTTACCGCT TGAA GCAGGATCCTGGCCCGGGGGGAGATCA~J:TTCAAGGACATTCAGGTCATTGTGAATGTA 838 

Pstl oligo #I > 
200 *** 210 Ill 220 230 

proP roThrValGlnAlaArgGlnSer I leValAsnAlaThrAlaAsnLeuGlyGlnSerValThrieuValExAAspAlaAspG lyPheP roGluProTh rMet Se ~ThrLysA~ 
~cACCCACTGTcCAGC~CAGACAGAGCAT~GTGAATGCcACTGCCAAC~cCAGTCTGTCACCCTGGTGTGTGATGCcGATGGCTTcCCAGAGCCCACCATGAGCTG~AT 958 

240 250 260 III 271 
GlyG1uProl leGluAsnGluGluGluAspAspGluLysHisI lePheSerAspAspSerSe rG!uLeuThr 1 leArgAsnValAspLysAsnAspGiuAlaG1uTyrVa~I leAla 
GGGGAACC~ATAGAGAATGAGGAGGAAGATGACGAGAAGCACATCTI~AGTGA~G~.~AGTTCGG~J~CTGA~AT~AGGAAT~~~C~GT~G~ 1078 

280 290 *** 300 310 IV 
GluAsnLysAlaGlyGluG1nAspAlaSe r I leHisLeuLysValPheAlaLysProLys I leThrTyrValGluAsnGlnThrAlaMetG1uLeuGluGluGlnValThr LeuTh rf~ 
GAGAACAAGGCTGGCGAGCAGGATGCCT~CATCCA~TCAAGGTCTTCGCAAAGC~AAAATcA~TATGTAGAGAATCAGAcAG~ATGGAAC T A ~ G ~ ~ C ~  ~ACATGT 1198 

320 ***330 340 350 
GluAlaSerGlyAspPro I leProSer IleThrTrpArqThrSerThrArgAsnI leSer Se rGIuGIuLysAlaSe rTrpThrArgP roGluLysGlnGluTh rLeuAspGI yHisMst 
GAAGCCTCCGGAG~CCCATTCCTTCCATCACCTGGAGAACGTCCA~CCGAAACATCAGCAGTGAAGAAAAGGCATCGTGGAC~C~~~A~ 1318 

ollgo #2 .......... > 
360 370 IV 380 390 

Va iValArgSerHisAlaArgValSer SerLeuThrLeuLysSer I leG1nTyrTh rAspAIaGIyGluTyr I Ie~yAThrAI aSerAsnThr I IeGIyGInAspSe rG inSerMetTyr 
GTGGTAc~TGCTCGTGTGTCCTCC~ccTGAAGAGCATCCAGTACACAGATGCTGGAGAATAcATc~CTGCCAGCAACACCA~~c~cAT~Ac 1438 

400 410 *** V 420 430 
LeuGluVa IGlnTy rAl aP roLysLeuGl nGlyProVa IAI aValTyrTh rT rpGluG lyAsnGlnVa iAsn I leTh rZ~y~GI uValPheAlaTy rP roSerAlaThr I leSerTrpPhe 
~TTGAAGTTCAATATGCTCCCA~F-~TCCAGGGC~TGTAGCTGTGTAC~CTTGGGAAGGGAAC~AGGT~A~~~~E~AC~C~ 1558 

440*** 450 460 468 *** V 
ArgAspG1yGlnLeuLeuP roSerSerAsnTyrSerAsn I leLys IleTyrAsnThrProSerAlaSe rTyrLeuGluValThrProAs~erGl~pPheGly~nTyr~ 
CGAGATGC4~CA~AAGCTCCAACTACAG~TA~AAGATCTACAACAC~CCATCTGCGAGCTATCTGGAGGTAACCCCTGATTCCGAAAA~C~AC~ 1678 

480 490 500 510 
ThrAlaValAsnArqI leGlyGlnGluSerLeuGluPhe I leLeuValGlnAlaAspThrProSer SerProSer I IeAsDArgValGIuP roTyrSerSerT~rAlaGlnValG1nPhe 
AcAGCGGTGAAccGTATTC~ACAGGAGT~-ETT~GAATTCATCCTGGTTCAAGCAGATACACCATCTTCccCATCcATCGAccGGGTGGAAcCATACTCCAG~cA~TA~ 1798 

520 530 540 550 
As pG l uP roG 1 uA iaTh r G1 yG l yVa 1 P r o I le Le u Ly sT y r L y sA1 aG i u T rpL y s S e r LeuG i y G l uGl UA i a T rpH i s S e r L y sT r!0T y r As pAla L ys G i uAl aAsnMe tG l u G i y 
GATGAGCCA~AGGTGGAGTTCCCATCCTCAAATACAAGGCTGAGTG GAAGTCGC TG GGTGAAGAAGCA~A~C~T~TA~T~C~G~~G ~ 1918 

560 570 580 590 
I leValThrl leMetGlyLeuLysProGluThrArgTyrAlaVa iArgLeuAlaAlaLeuAsnG IyLysGIyLeuGIyGIu I leSe rAlaAlaThrG IuPhoLysThrG lnPr~ 
ATTGTCACCATCATGGGC CTGAAGCCTGAGACAAG GTACGCGGTAC GACTGGC GGCC CTCAA~ G GCAAGGGGCTGGG CGAGATCAGTG CAGC CACTGAGTTCAAG~ACAGC~ CC GG 2038 

600 610 620 630 
GIuP roSe rAlaP roLysLeuGluGlyGlnMetGlyGlt~spGl yAsnSer IleLysValAsnLeu I IeLysGInAspAspGIyGI ySe rPr~ I leArgHisTyrLeuValLysTyrArq 
GAAC CCAGC GCAC CCAAGCTGGAAGGGCAGATGGG~EAG GACGGGAAC TCCATCAAG GTGAACC TGATCAAG CAGGATGAC GG CG ~ TCC CC ~AGACA~AT~T~GTACA~ 2158 

640 650 660 670 
A~aLeuA~aSerG~uTrpLysP~G~uI~eAr~LeuPr~SerG~ySerAspHisVa~MetLeuLysSe~LeuAspT~pAsnA~aG~uTy~G~uVa~TyrVa~Va~A~aG~uAsnG~nG~n 
G~GCTCG~TCCGAGTGGAAACCAGAGATCAGGCTC~GTC~GG~AGTGAccAcGTCATGCTCAAGTCccTAGAcTGGAACGC~GAGTA/~TATATGT~TA~A~c~ 2278 

680 690 *** 700 710 
G•yLysSerLysA•aA•aHisPheG•y•heArgThrSerA•aG•nPr•ThrA1aI•ePr•A•aAsnG•ySerPr•ThrA•aG1yLeuSerThrG•yA•a ~ leValGlvl l eLeuIleVal 
GGAAAATCCAAGGCAGC TCACTTCGGTTTCAGGAC TTCAGC CCAGC CCACGGC CATC CCAGCCAATGGCAGC CC CAC TGCAGGCC TGAGCACAGGCGC CATTGTGGG CATCC~A~G ~ 2398 

Pstl ollgo #3 -----> 

720 730 740 750 
T lePheVa iLeu LeuLeuVa iVa iMetAspI leTh rCysTy rPheLeuAsnLysCysG lyLeuLeuMe tcys I leAlaVa IAs nLeuCysG lyLy sAlaG lyP roGlyAla Lys G1 yL ys 
AT~fTCGTCCTACTCCTGGTGGTCATGGACATCAC~TACTTCCTGAACAAGTGTGG~TGCTCATGTGCAT~G~TGTTAAC~TGTGCGGCAAAGCGGGGCcC~CcAAGGG~ 2518 

> 
760 770 780 790 

Aslz~4etG luGluG lyLysAlaAlaPhe Se rLysAspGluS e rLysGILIP ro I leValG luVaIArgTh rG iuG luGluArgThrProAsnHisAspG i yGIyLysHIsThrGIuP roAsn 
GACATG GAGGAGG GCAAG GCTGCTTTCTC C4%AAGATGAGTC TAAAGAACC CATTGTAGAGGTC C GAACGGAG GAG GAAC GGACTCCAAAC CATGAC GGAGGGAAGCACACAGAGCC CAAC 2638 
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800 810 820 830 

G•uThrThrPr•LeuThrG•uPr•G•uLysG•yPre•a•G•uThrLysserG•uPr•G•nG•userG•uA•aLysPr•A•aPr•ThrG•uVa•LysThrVa•Pr•AsnG•uA•aThrG•n 
GAGACCACACCACTGACAGAGCCCGAGAAGGGTCCTGTAGAAACAAAGTCCGAGCCCCAGGAGTCAGAAGCAAAGC•AGCGCCAACTGAAGTCAAGACGGTCCCCAATGAAGCCACACAA 2758 

oligo #4 > oligo #5 ..... > 

839 

ThrLysGluAsnGluSerLysAlaEnd 

ACGAAAGAGAATGAGAGCAAAGCATGATGGGTACCAGCAAAAAGCAAAGATCAAAATAACAAATTGACACAGCGGCTTCACCAGAGCATCCCCAAATAACCCCCCCCCCCTCTCTCTCTC 2878 
> 

TC TCAC ACACACACACACACACACACACACACACACACACAC ACACTCAC TC C TC TAGTGTCTTI~f GC CTI"f TAAAAAAAC AACAAAAAACAGATAAACATGG GATTGC C TTTr TGTAGG 2998 

TTTCTAGAAAGGGCTCCTTrGTTGCACACTCAC~fGTTAAGAAAAAAAAAGAGACAAAAAGGTTAAACCCA~AG~CAAA~TAGGACACTC~G~f~CCTGAAACCATTTAAAAATCAAACA 3118 

AAAGGGCCCCAAATTAAGAATCTAGGAAGCTCAGACTGAAGAGAAAAACAAG~ 3191 

Figure 2. Complete nucleotide sequence and predicted amino acid sequence of the rat NCAM cDNA clone pR18. Nucleotide positions 
are presented on the right. Nucleotide 1 is the first 5' base after a 24 base poly-G stretch which was generated in the original cloning. 
A similar poly-C region was found 3' of the 21 .gs at the 3' end of the insert. Corresponding predicted amino acids are shown above the 
nucleotide triplet codons. The presumed leader sequence is shown try negative amino acid position numbers from the initiation methionine 
to the serine at position -1. The stop codon TGA at nucleotide position 2,783 is marked by an End directly above it. The presumed trans- 
membrane amino acid sequence is underlined. Pairs of cysteines that may be involved in intrachain loop formation by disulfide bonding 
are underlined and marked with roman numerals. Possible N-linked glycosylation sites are signified by stars above the asparagine residues. 
PstI restriction sites appear below the nucleotide sequence. The two candidates for a potential heparin-binding domain are boxed. The 
positions of specific oligonucleotide complementarity are denoted by numbered interrupted arrows below the nucleotide sequence. 

(1987) showed that the major cap site in the mouse corre- 
sponds to nucleotide position No. 49 in pR18 sequence (Fig. 
2). Other minor primer extension stops were detectable, 
which lie 6 and 13 bases downstream and 30 bases upstream 
of the major cap site. Together these results suggest that the 
5' end of pR18 may be very close to the major cap site in 
rat NCAM RNA. 

Several structural elements of authentic NCAM polypep- 
tides are found in the predicted amino acid sequence of the 
pR18 open reading frame. 17 predicted amino acids starting 
with the leucine at amino acid position No. 1 perfectly match 
the rodent NCAM amino terminus determined by direct se- 
quencing of the protein (Rougon and Marshak, 1986). The 
ATG, which codes for a methionine 19 amino acids up- 
stream (nucleotide position No. 209), is the most likely can- 
didate for a translation start site, indicating a possible short 
leader sequence. The open reading frame of pR 18 contains 
several stop codons that are found upstream from the ATG 
at position No. 209, suggesting that this sequence represents 
5' untranslated region. 

The 17 amino terminal amino acids have been shown to be 
present on all three recognized NCAM forms. Therefore ad- 
ditional analysis is necessary to determine which polypep- 
tide form is encoded by pR18. pR18 sequence codes for a 
unique stretch of 18 hydrophobic amino acids (underlined in 
Fig. 2), which represents a strong candidate for a membrane- 
spanning sequence based on hydropathy analysis (Fig. 3 b). 
Aside from the hydrophobic portion of the proposed leader se- 
quence, this is the only portion of the sequence with substan- 
tial hydrophobic character. If  one assumes that this sequence 
represents the single transmembrane region, the putative cy- 
toplasmic domain encoded by clone pR18 would be quite 
small, "~13 kD. Previous studies have shown that the 120-kD 
form of the polypeptide does not contain a transmembrane 
region or cytoplasmic domain. Therefore clone pR18 does 
not appear to encode a 120-kD NCAM form. Other studies 
have shown that a major difference between the 180- and 140- 
kD forms of rodent NCAM lies in the size of their respective 
cytoplasmic domains (Nybroe et al., 1985). The small cyto- 
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Figure 3. Alignment of the unique open reading frame ofpR18 with 
the polypeptide predicted from the sequence. (a) Schematic rep- 
resentation of the cDNA sequence contained in pR18. The unique 
open reading frame is represented by the heavy black bar beginning 
with the translation initiation codon ATG and ending with the stop 
codon TGA. The thinner black lines on both ends of the open read- 
ing frame represent 5' and 3' untranslated sequences. The positions 
of double-stranded probes used in screening and Northern blots are 
shown below the sequence and specific oligonucleotides used in 
Northern blotting are shown as numbered blank spaces within the 
linear cDNA. PstI (P), BamHI (B), and EcoRI (R) restriction sites 
are indicated below the cDNA sequence. (b) Schematic representa- 
tion and hydropathy analysis of the polypeptide encoded by pR18 
sequence, including the 19 amino acids which make up the pre- 
sumed leader sequence (L). b is colinear with a. An averaging win- 
dow of 12 amino acids was used in the hydropathy analysis. The sin- 
gle large hydrophobic region at amino acid positions 710-740 (T) 
is the best candidate for a transmembrane domain. Other features 
of the deduced protein include seven possible sites for asparagine- 
linked glycosylation (stars) and five pairs of cysteines which may 
form immunoglobulin-like loop structures by disulfide bonding 
(dotted lines). 

Small et al. Complete Coding 140-kD Rat NCAM cDNA 2339 



plasmic domain in its predicted polypeptide suggests that 
clone pR18 sequence does not encode a 180-kD NCAM 
form. Together these structural features suggest that pR18 
probably encodes a 140-kD form of NCAM. 

The majority of the polypeptide predicted by clone pR18 
sequence lies amino terminal to the transmembrane domain, 
and is characterized by seven possible sites for asparagine- 
linked glycosylation (Fig. 2, Fig. 3 b). This suggests that the 
amino terminus may lie on the extraceUular side of the 
plasma membrane, as is the conventional orientation of most 
membrane proteins. The polypeptide sequence of the ex- 
tracellular domain can be represented as a set of five repeat- 
ing homologous loops, which may be linked by disulfide 
bonding (Fig. 3 b). These loop structures are somewhat ho- 
mologous to similar structures in the immunoglobulin super- 
family of genes (HunkapiUer and Hood, 1986). Four closely 
spaced cysteines are also found in the proposed cytoplasmic 
domain (amino acids 724-741). No data on their disulfide 
bonding (NCAMs have been shown to lack any free cys- 
teines) are yet available and hence no disulfide loops are indi- 
cated for them. Two candidates for a possible heparin-bind- 
ing domain, short linear stretches of positively charged 
amino acids (Lindahl and Hffk ,  1978), are also present near 
the amino terminus of clone pR18 (amino acids 133-137 and 
142-146 in Fig. 2). Whether one or both of these are impor- 
tant for the heparin-binding activity of NCAM has not yet 
been determined. 

Expression of pR18 Related RNA in Neonatal 
and Adult Rat Brain 

Immunochemical analyses have shown that NCAM poly- 
peptides are present predominantly on neuronal cells in adult 
rodents. Therefore cDNA clones that code for authentic 
NCAM polypeptides should hybridize specifically to mRNAs 
in brain, but not in other tissues that normally do not express 
NCAM. To test this, Northern blots of total RNA from adult 
brain, liver, and skeletal muscle were probed with a 933-bp 
pR18 derived BamHI-EcoRI fragment (Fig. 3 a). This probe 
hybridizes to at least four discrete sizes of RNA in adult rat 
brain (7.4, 6.7, 5.2, 2.9, and a faint band at 4.3 kb), but no 
hybridization is detectable to adult liver or skeletal muscle 
RNA (Fig. 4 a). A similar blot that was probed with the 
mouse cDNA pM1.3 shows identical results (Fig. 4 b). These 
results confirm the pattern of adult rodent brain RNA hybrid- 
ization to pM1.3 seen by Gennarini et al. (1986). It is some- 
what surprising that no hybridization is detectable to RNA 
from adult skeletal muscle. This is presumably due to a very 
low abundance of NCAM message in mature muscle and is 
consistent with previous reports that NCAM polypeptides 
are easily detected on embryonic muscle, but substantially 
decrease in abundance after the period of neuromuscular 
synaptogenesis (Covault et al., 1986). 

The four major mRNA sizes seen in adult rat brain tissue 
differ significantly from the pattern of hybridization in neo- 
natal brain. Our results using a 466-bp PstI fragment derived 
from 5' sequences of pRl8 as a probe indicate that newborn 
rats express only three major forms of NCAM message (7.4, 
6.7, and 4.3 kb; see Fig. 5, b and c). The 4.3-kb message ap- 
pears to decrease significantly during postnatal develop- 
ment, but may persist in low levels even in the adult. The 5.2- 
and 2.9-kb message sizes are not detectable in neonatal 

Figure 4. Tissue specificity of pRl8 related mRNA expression. 10 
~tg of total RNA from adult rat whole brain (B), liver (L), or skele- 
tal muscle (M) was electrophoresed on a 1% agarose formaldehyde 
containing gel, blotted to nylon membranes, and probed with a 
BamHI-EcoRI fragment derived from pR18 (a) or the mouse probe 
pM1.3 (b). For hybridizing positions of these probes, see Fig. 3 a. 
Blots were exposed to film for 24 h at -70~ with intensifying 
screens. The sizes of the hybridizing RNA size classes are pre- 
sented on the left. 

brain, but seem to be induced during postnatal development, 
and represent the prominent RNA species in the adult. This 
developmental pattern of expression closely parallels the one 
seen in developing rodent brain RNA when probed with the 
mouse probe pM1.3 (Gennarini et al., 1986; Covault et al., 
1986). 

In summary, three major forms of NCAM polypeptide 
seem to be related to at least five mRNA size classes. Little 
is known at the present time about the relationship between 
NCAM message size classes as determined by Northern 
analysis and the three different size forms of the NCAM 
polypeptide. Since each isolated cDNA represents a copy of 
a single messenger RNA, fragments derived from the cDNA 
might hybridize to some but not all of the RNA size classes 
detected by Northern analysis. In this way, one should be 
able to relate clone pR18 (and by inference a 140-kD poly- 
peptide species) to a subset of the message size classes. To 
test this hypothesis, we used restriction fragments from 
clone pR18 to probe Northern blots of total and Poly(A) + 
RNA from rat brain. A 466-bp PstI fragment (Fig. 3 a) from 
the 5' sequences of clone pRl8 hybridizes to all size classes 
of NCAM-related RNA regardless of age (Fig. 5, b and c). 
However, an 835-bp PstI fragment containing the transmem- 
brane domain coding region and sequences 3' to it hybridized 
only to the 7.4-, 6.7-, and 4.3-kb RNA bands in both early 
postnatal and adult brain (Fig. 5 a), indicating that the 5.2- 
and 2.9-kb messages do not contain sequences that cor- 
respond to the transmembrane domain in pR18 or its 3' cyto- 
plasmic regions. The easiest interpretation of these results 
suggests that pR18 represents the coding region from a 7.4-, 
6.7-, or 4.3-kb size mRNA. 

There are several limitations inherent in the preceding ex- 
periment. First, there may be hybridizing sequences in the 
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5.2- and 2.9-kb messages, which are too short to show a 
strong hybridization signal with the long probe. Also, a sim- 
ple hybridization reaction using a long restriction fragment 
as a probe does not rigorously test the length or continuity 
of the hybridizing sequence in the immobilized RNA. Fur- 
thermore, since such probes are double stranded, they can- 
not test whether the hybridizing species are derived from the 
same coding strand. To more rigorously test the presence or 
absence of transmembrane and other 3' sequences in adult 
brain RNA, oligonucleotide probes were synthesized that are 
complementary to these sequences (Fig. 2, see also Fig. 3 
a). The 7.4-, 6.7-, and 4.3-kb Poly(A) § message size classes 
from both early postnatal (Fig. 6 a) and adult (Fig. 6 b) rat 
brain all hybridized to all five pR18 derived oligonucleotide 
probes. The 5.2- and 2.9-kb size classes, which normally ap- 
pear only in later development (Fig. 5), show a more in- 
teresting pattern of hybridization. These size classes show 
strong hybridization signals with two oligonucleotide probes 
(Fig. 6 b, lanes 1 and 2), which are complementary to 5' pR18 
sequences, which code for the putative extracellular portions 
of the polypeptide (Fig. 3 a). However, oligonucleotides 3, 
4, and 5 do not hybridize with either the 5.2- or the 2.9-kb 
mRNAs (Fig. 6 b, lanes 3-5). This is especially significant 
because oligomer 3 is complementary to the transmembrane 
coding region of clone pR18 and oligomers 4 and 5 are com- 
plementary to sequences that code for the presumed cyto- 
plasmic domain. These results conclusively indicate that 
pR18 contains the coding region from the 7.4-, 6.7-, 4.3-kb 
mRNA, but not the 5.2- or 2.9-kb mRNA. Furthermore, 
since oligonucleotides are synthetic single-stranded probes, 
these results show conclusively that all mRNAs that are de- 
tected by pR18 double-stranded probes are derived from the 
same coding strand in the cDNA clone. 

Figure 5. Developmental profile of pR18 related RNA expression in 
whole rat brain. In a and b, 10 ~tg of total cellular RNA from the 
brains of posmatal day 1 (1), day 9 (9), or adult rats (A) were elec- 
trophoresed on 1% formaldehyde containing gels and transferred to 
nylon membranes. In c, 1.5 I~g of Poly(A) + RNA from postnatal 
day 6 (6) or 4 I.tg of Poly(A) + RNA from adult brain (A) were also 
electrophoresed and blotted. The blot in a was hybridized with an 
835-bp 3' PstI fragment from pRl8 (Fig. 3 a). The blots in b and 
c were probed with a 466-bp PstI fragment from 5' sequences in 
the cDNA. All blots were exposed to autoradiographic film for 24 h 
at -70~ in the presence of intensifying screens. 

Figure 6. Replicates of 1.5 ~tg each of postnatal day 6 rat brain 
Poly(A) + RNA (a) or 4 I~g of adult rat brain Poly(A) + RNA (b) 
were electrophoresed on 1% formaldehyde containing gels and blot- 
ted to nylon membranes. The blots were then cut up and hybridized 
individually with 5' end-labeled oligonucleotides, which are com- 
plementary to NCAM coding sequence. The numbers of the oligo- 
nucleotides (1-5) used as probes in the respective Northern analyses 
are presented above the lanes to which they were hybridized. Filters 
were then exposed to autoradiographic film at -70~ in the pres- 
ence of intensifying screens for 24 (oligos 1 and 5), 48 (oligos 
3 and 4), or 144 h (oligo 2). The positions of hybridization to 
pRl8 for the individual oligonucleotides are marked in the sequence 
in Fig. 2 and schematically in Fig. 3 a. 

Discussion 

Relationship of  pR18 to N C A M  Polypeptide and 
mRNA Size Classes 

In this paper, we have presented the sequence of a cDNA iso- 
late pR18 which contains the coding region for a full-length 
NCAM polypeptide as well as 209 bases of 5' and 406 bases 
of 3' untranslated region. Several lines of evidence suggest 
that pRl8 codes for an authentic NCAM polypeptide. (a) The 
amino terminal 17 amino acids determined by direct NCAM 
protein sequencing match perfectly with pRl8 predicted 
polypeptide sequence (amino acids 1-17 in Fig. 2), which 
lies 20 amino acids downstream from the best candidate for 
a translation initiation site methionine (No. 19). (b) Probes 
derived from pR18 hybridize to specific sizes of mRNA in 
adult rat brain but are not detectable in liver or skeletal mus- 
cle. This tissue-specific pattern of expression was predicted 
by immunochemical analyses, which showed that NCAM ex- 
ists predominantly in the neural tissue of adult rodents. (c) 
Comparative sequence analysis indicates that clone pR18 
DNA sequence is 94% homologous to the mouse cDNA 
clone pM1.3 (data not shown), which was identified by 
anti-NCAM binding to the expressed protein and is highly 
homologous to chicken NCAM cDNAs (discussed below). 
(d) Structural features of the predicted polypeptide from 
pR18, including a single transmembrane domain, seven pos- 
sible sites of asparagine-linked glycosylation, and two candi- 
dates for heparin-binding domains are consistent with previ- 
ous studies of the NCAM polypeptides. 
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Figure 7. (a) Structural comparison of NCAM polypeptides pre- 
dicted by available partial and complete cDNAs. The structures 
of the 120- and the 180-kD NCAM forms are proposed from over- 
lapping mouse and chicken eDNA clones, respectively. The 140-kD 
form encoded by rat eDNA clone pR18 represents the first complete 
polypeptide structure encoded by a single eDNA isolate. Potential 
disulfide bonds consistent with the "immunoglobulin loop" model 
of NCAM structure are indicated by dotted lines. Sites of potential 
asparagine-linked glycosylation are marked by stars. The 10 amino 
acid insert, which is unique to the pR18 rat sequence and the 261 
amino acid insertion unique to the largest NCAM form in chickens, 
as well as two single amino acid insertions, are also indicated. (b) 
Amino acid homology of rat and chicken NCAMs. b is colinear 
with a. The predicted coding sequence of pR18 was compared with 
the predicted sequence of chicken NCAM deduced by joining par- 
tial cDNAs (Cunningham et al., 1987). The percent identity over 
consecutive 10 amino acid segments is graphed vs. the amino acid 
number. Any amino acid difference, either conservative or nonconser- 
vative, was considered a mismatch. Amino acid No. 1 is the translation 
initiator methionine. The first and last segments contain only nine 
amino acids. The single amino acid insertions (glu 243 in pR18 and 
his 624 in chicken NCAM) were considered mismatches but the 10 
amino acid insertion unique to pR18 and the 261 amino acid inser- 
tion found only in the 180-kD form of chicken NCAM were not in- 
cluded in this plot. 

The single membrane-spanning region and small cytoplas- 
mic domain (12.9 kD based on 120 amino acids) of the pR18 
predicted polypeptide are most consistent with the hypothe- 
sis that it represents a 140-kD form of NCAM. This hypothe- 
sis is supported by analyses of sequences of partial NCAM 
cDNAs for the 120- and 180-kD forms isolated from other 
species. Evidence derived from other cDNAs concerning the 
120-kD polypeptide will be discussed first. Barthels et al. 
(1987) have used overlapping eDNA clones to predict the 
coding sequence of a complete 120-kD form of mouse 
NCAM. The composite mouse cDNA sequence is very ho- 
mologous to the rat sequence in the 5' region, but signifi- 
cantly diverges near the predicted transmembrane coding re- 
gion in pR18 0~ig. 7 a) and does not appear to contain an 
actual transmembrane region. The point of sequence diver- 
gence between pR18 and the mouse eDNA DW3 coincides 
with the position of the proposed alternative splice site b in 

the latter. Another partial eDNA (M51) has been reported 
which is proposed to encode the carboxy-terminal portion of 
the chicken 120-kD NCAM molecule (Hemperly et al., 
1986). At its 5' end this clone is homologous to both pR18 
and the mouse clone DW3. It also diverges from pRl8 at the 
same point in the sequence as does DW3 and lacks a trans- 
membrane domain. Thus, within the limits imposed by com- 
parisons across species, it seems clear that pR18 does not en- 
code a rat 120-kD NCAM polypeptide. 

In an effort to relate the different polypeptide forms to the 
mRNA size classes, we have shown that probes derived from 
the 5'half of pR18 hybridize to all five size-classes of mRNA: 
7.4, 6.7, 5.2, 4.3, and 2.9 kb. However, probes derived from 
the predicted transmembrane coding region of pR18 and se- 
quences 3' to it do not hybridize to the 5.2- and 2.9-kb mes- 
sages. Our results indicate that these two mRNA size classes 
cannot encode the 140-kD NCAM form encoded by pR18, 
and are thus consistent with the hypothesis that these mRNA 
size classes encode a 120-kD NCAM form. A similar con- 
clusion was reached using an independent approach by Gen- 
narini et al. (1986). By comparing the levels of all NCAM 
mRNA size-classes to the abundance of each polypeptide 
form during neonatal mouse development, they established 
a strong correlation between the level of the 5.2-kb size mes- 
sage and the relative abundance of the 120-kD form of 
NCAM. Based on these data alone, pR18 must be derived 
from the 7.4-, 6.7-, or 4.3-kb mRNA in adult rat brain. 

Similar considerations can be used to analyze the possibil- 
ity that pR18 encodes a 180-kD NCAM polypeptide form. It 
has been previously shown that a major difference between 
the two transmembrane NCAM forms in both chickens (Sor- 
kin et al., 1984) and rodents (Nybroe et al., 1985) is a 30-40- 
kD cytoplasmic insert, which is present in the 180-kD but 
not the 140-kD NCAM form. Very few data are currently 
available on cDNAs that encode the larger NCAM polypep- 
tides (180 and 140 kD). The sequence of one partial cDNA 
(c208), which was isolated from embryonic chicken brain 
and has been proposed to encode a 180-kD transmembrane 
NCAM form, has been reported (Hemperly et al., 1986). 
The predicted polypeptide encoded by c208 contains a large 
cytoplasmic domain (363 amino acids). Genomic analysis of 
this region in chickens suggests that 261 amino acids from 
this cytoplasmic domain are encoded by a single exon and 
are present in the 180- but not the 140-kD polypeptide form 
(Owens et al., 1987). The existence of an analogous splicing 
pattern in rodents, while not yet proven, is predicted by the 
data from chicken. The cytoplasmic domain predicted by 
pR18 sequence analysis contains only 120 amino acids. This 
evidence suggests strongly that pR18 does not code for a 180- 
kD NCAM form. 

By analyzing the organization of the chicken NCAM gene, 
Edelman's group has shown that the 261 amino acid domain 
specific to the largest NCAM polypeptide referred to above 
is encoded by a single 783 base exon. On Northern blots a 
probe derived from this insert hybridizes only to the largest 
RNA size class (7.2 kb) in embryonic chicken brain (Murray 
et al., 1986). Our data suggest that pR18 does not contain se- 
quences that are specific to the largest rat NCAM RNA size 
class because all oligonucleotides and larger eDNA frag- 
ment probes (including those derived from the presumed 
pR18 cytoplasmic domain) hybridize to at least three RNA 
species: 7.4, 6.7, and 4.3 kb. Analogy with the data from 
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avians suggests that the 7.4-kb rodent mRNA may encode the 
180-kD NCAM polypeptide. Thus it seems likely that pR18 
contains the coding region from a 6.7- or 4.3-kb rat NCAM 
RNA. 

Characteristics of the NCAM Protein Predicted 
by Clone pR18 
The predicted protein encoded by pRl8 contains 858 amino 
acids with a molecular mass of 94.6 kD. Cleavage of the puta- 
tive leader sequence leaves a mature polypeptide of 839 
amino acids predicting a 93-kD polypeptide. This is consider- 
ably smaller than the observed size of the deglycosylated 
140-kD form based on its migration rate on SDS-polyacryl- 
amide gels (Frelinger and Rutishauser, 1986). Mammalian 
cell transfection experiments are currently underway to de- 
termine the apparent molecular weight of the protein en- 
coded by pR18 sequence. This is the most rigorous test of the 
discrepancy between the observed and the deduced molecu- 
lar weights. However, others have noted similar discrepan- 
cies for other membrane glycoproteins (Clark et al., 1985). 
Furthermore, the deduced molecular mass of the 120-kD 
mouse NCAM polypeptide was predicted to be 79 kD based 
on sequence analysis (Barthels et al., 1987). The apparent 
discrepancy in size may be due to other posttranslational 
modifications such as phosphorylation, sulfation, or myris- 
tylation (Gennarini et al., 1984; Sorkin et al., 1984; Lyles 
et al., 1984) or a combination thereof. However, one cannot 
rule out the possibility that other forms of NCAM polypep- 
tides may exist. 

The apparent conservation of predicted amino terminal 
polypeptide sequences between the three NCAM size classes 
suggests that they all may be capable of mediating adhesion. 
Cole and Glaser originally demonstrated that NCAM- 
mediated adhesion is at least partially inhibited by added 
heparin (Cole and Glaser, 1986; Cole et al., 1986b). The 
putative heparin-binding domain also has been localized 
to a 25-kD proteolysis fragment that contains the amino ter- 
minus of the NCAM molecule (Cole et al., 1986a). Two ma- 
jor candidate sequences for such a heparin-binding domain 
are present in pR18 sequence. Studies to determine the he- 
parin-binding capability of these sequences are currently in 
progress. 

The limited data available require that comparisons must 
be made among the three different NCAM polypeptide 
forms, but nevertheless it seems clear that several important 
structural features are conserved between rat, mouse, and 
chicken including the orientation of the putative transmem- 
brahe domains, six possible sites of asparagine-linked gly- 
cosylation, and the distribution of five pairs of cysteines 
in the extracellular domain which may contribute to the sec- 
ondary structure of the molecule (Fig. 7 a). It has been pro- 
posed that NCAM may be related to the immunoglobulin 
gene superfamily based on similar subunit structure involv- 
ing disulfide linkages (Hemperly et al., 1986; see also Clark 
et al., 1985; Hunkapiller and Hood, 1986). A similar struc- 
ture of five extracellular Ig-like loops, which are formed by 
disulfide bonding, has been proposed for myelin-associated 
glycoproteins (Salzer et al., 1987). Myelin-associated glyco- 
proteins are cell surface glycoproteins found in mammalian 
brain that are thought to mediate the axonal-glial interac- 
tions involved in myelination. 

Two other structural features of the polypeptide encoded 

by pR18 are of particular interest. First, the most hydrophilic 
portion of the molecule, found in Ig-like loop No. 3 (Fig. 3 
b), contains a very high concentration of acidic residues (9 
out of 13 consecutive amino acids are either aspartic or glu- 
tamic acid, positions 231-243 in Fig. 2). This sequence is 
partially homologous to metal binding sequences found in 
plant lectins (Becker et al., 1975; Foriers et al., 1981; Higgins 
et al., 1983) and calmodulin (Klee and Vanamam, 1982). 
While it has been often observed that NCAM-mediated bind- 
ing is not affected by Ca ++ concentration, it is tempting to 
speculate that this structure might be involved in the binding 
of calcium or another cation. Second, multiple potential sites 
for phosphorylation are found in the putative cytoplasmic do- 
main of the predicted protein. For example, four threonines 
are found in the segment from amino acids 788-798 in Fig. 
2 reminiscent of similar concentrations in transmembrane 
receptors that are phosphorylated cytoplasmically (Sibley et 
al., 1987). Whether any of these or other sites of potential 
phosphorylation are used is not yet known. 

The overall homology between the pR18 predicted rat 
NCAM polypeptide and an analogous deduced chicken 
NCAM polypeptide is very high (Fig. 7 b). Long stretches 
of the two predicted polypeptides are completely identical 
with an overall identity of 84%. The carboxy termini seem 
to be totally divergent and the overall homology rises to 87 % 
if this region is omitted from the analysis. Furthermore, as 
over half of the amino acid differences that do exist are con- 
servative changes, the functional homology is even greater. 
Two regions of divergence are most apparent in the plot, one 
(amino acids 80-86 in Fig. 2) just after the amino terminal 
Ig-like loop and the second (amino acids 237-256) in the 
third Ig-like loop. In the first region, predicted mouse and 
rat NCAM sequences are identical and show several noncon- 
servative amino acid changes from the predicted chicken se- 
quence. The second region includes a very acidic subregion, 
which is the most hydrophilic portion of the entire molecule 
followed by a less charged subregion. Sequence comparisons 
indicate that all three species maintain the hydrophilic char- 
acter of the acidic subregion although the exact sequence of 
glutamic and aspartic acids varies. The less-charged portion 
of the second region does contain some nonconservative sub- 
stitutions. In summary the predicted NCAM structure in all 
external and transmembrane regions of the molecule is very 
highly conserved between rodents and chickens. There is 
less apparent conservation in predicted cytoplasmic do- 
mains. This may be in part due to limitations in available data 
as the cytoplasmic domains clearly vary between the NCAM 
forms within each species, and isolates of all NCAM forms 
are not yet available within a single species. 

One very interesting difference between clone pR18 and all 
the other available NCAM sequences is reflected in an appar- 
ent insertion of 10 amino acids (336-345) in the rat sequence, 
which is absent in the corresponding chicken or mouse poly- 
peptides (Fig. 7 a). One interpretation is that this insertion 
reflects a size-class specific difference between rat NCAM 
polypeptides. However, oligonucleotide 2, which is com- 
plementary to this 30 base sequence, hybridizes to all five 
size classes of NCAM RNA in rat brain (Fig. 6 b, lane 2), 
indicating that this is probably not the case. Alternatively, 
since the hybridization signal with this probe is much weaker 
than a comparable hybridization with another oligonucleo- 
tide probe (compare lane 2 with lane 1 in Fig. 6), this inser- 
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2812 

Figure 8. Comparison of the Y 
ends of NCAM coding regions 
between pR18 and the chicken 
clone c208 (Hempedy et al., 
1986). The numbers of the rat se- 
quence nucleotides and amino 
acids appear on the right and left 
of the sequence respectively and 
correspond to the numbers in Fig. 
2. Nucleotides that are identical 
in both sequences are joined by 
vertical bars. The arrow marks 
the point of reading frame diver- 
gence between the two clones 

(see text). The solid black circle denotes the position of the 261 amino acids that are inserted in the proposed 180-kD NCAM form in 
chicken. Note the high conservation of the sequences between the predicted stop codon in the chicken eDNA and the predicted stop codon 
in the rat sequence. 

tion may be specific to a subset of NCAM molecules which 
represent a minor percentage of NCAMs within each size 
class. Experiments to test this intriguing possibility and 
functional implications of this insertion are currently in 
progress. 

Current data suggest that the translation stop codon is not 
conserved between the rat and chicken sequence (Fig. 8). 
The predicted polypeptide encoded by pR18 extends for 18 
amino acids past the putative stop codon in the chicken se- 
quence in c208. Also the last 10 amino acids of the c208 
polypeptide are not homologous to the corresponding rat 
protein. It is interesting however that the two clones are very 
highly homologous (75%) through this region at the DNA 
level. The structural variation may have arisen from a frame 
shift mutation in one or the other species; such a shift is 
marked by the arrow in Fig. 8. In the sequence that lies 3' 
to the proposed stop codon in the chicken clone c208, there 
are only three nucleotide differences between the sequences, 
all of which fall in the third or wobble positions of the pro- 
posed rat codons. This suggests that there may be selective 
pressure to preserve the amino acid coding capability of this 
region in both chickens and rats. Such conservation is quite 
unusual in a putative 3' untranslated region. This region of 
conserved homology is in stark contrast to the sequence that 
immediately follows the proposed termination codon in the 
rat sequence, where the degree of DNA homology decreases 
dramatically to 43 % over the next 200 bases of 3' non-coding 
region. Isolation of authentic cDNAs for the 140-kD NCAM 
from other species and direct analysis of carboxy terminal 
amino acids will help to resolve these differences. 

Finally it is important to reiterate that all proposed NCAM 
amino acid sequences previously available have been gener- 
ated from partial cDNAs or overlapping partial eDNA se- 
quences. Since NCAMs exist in several forms that are de- 
rived by differential splicing, great care must be taken in 
relating partial eDNA sequences to one another even though 
they overlap significantly, pR18 represents the first eDNA 
isolate that contains the complete coding sequence for an 
NCAM polypeptide, and thus forms a firm basis for future 
studies. 
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Note Added in Proof'. A eDNA that codes for the carboxy terminus of a 140- 
kD mouse NCAM has been recently isolated (Santoni et al., manuscript 
submitted for publication). Also, after acceptance of this manuscript, 
Dickson et al. (1987. Cell. 50:1119-1130) reported the sequence of a partial 
eDNA for a human 140-kD NCAM. Both the human and the mouse se- 
quences contain stop codons in exactly the same position as the rat pR18 
sequence reported here. 
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