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A genomic mutation signature predicts the clinical outcomes of
immunotherapy and characterizes immunophenotypes in
gastrointestinal cancer
Xi Jiao 1,5, Xin Wei 2,5, Shuang Li1, Chang Liu1, Huan Chen3, Jifang Gong1, Jian Li1, Xiaotian Zhang1, Xicheng Wang1, Zhi Peng1,
Changsong Qi1, Zhenghang Wang1, Yujiao Wang1, Yanni Wang1, Na Zhuo1, Henghui Zhang4, Zhihao Lu1✉ and Lin Shen 1✉

The association between genetic variations and immunotherapy benefit has been widely recognized, while such evidence in
gastrointestinal cancer remains limited. We analyzed the genomic profile of 227 immunotherapeutic gastrointestinal cancer
patients treated with immunotherapy, from the Memorial Sloan Kettering (MSK) Cancer Center cohort. A gastrointestinal immune
prognostic signature (GIPS) was constructed using LASSO Cox regression. Based on this signature, patients were classified into two
subgroups with distinctive prognoses (p < 0.001). The prognostic value of the GIPS was consistently validated in the Janjigian and
Pender cohort (N= 54) and Peking University Cancer Hospital cohort (N= 92). Multivariate analysis revealed that the GIPS was an
independent prognostic biomarker. Notably, the GIPS-high tumor was indicative of a T-cell-inflamed phenotype and immune
activation. The findings demonstrated that GIPS was a powerful predictor of immunotherapeutic survival in gastrointestinal cancer
and may serve as a potential biomarker guiding immunotherapy treatment decisions.
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INTRODUCTION
Immune checkpoint inhibitors (ICIs) have revolutionized the
therapeutic landscape of various cancers, including gastrointest-
inal cancer. However, only 10–20% of patients respond to ICIs1,2,
highlighting the urgent need to identify potential biomarkers to
screen patients who could benefit from ICIs.
To date, extensive efforts have been made to identify

predictive biomarkers of immunotherapy. However, only high
microsatellite instability (MSI-H) has been validated in clinical
scenarios and programmed death ligand-1 (PD-L1) expression is
an important but imperfect predictive biomarker in gastrointest-
inal cancer with controversial results across different trials3–9.
Transcriptomic biomarkers such as the T-cell-inflamed gene
expression profile (GEP) were shown to be associated with the
response to ICIs, but failed to predict survival in gastric or
esophageal cancer10,11. This may be explained by the application
of archival tissue but not fresh tissue, indicating that the limited
availability of high-quality mRNA may hinder the clinical utility of
transcriptomic biomarkers.
Tumor mutation burden (TMB) is another potential biomarker and

a recent study certified the robust association of TMB and response
to ICIs12. However, TMB remains a controversial biomarker in
gastrointestinal cancer1,13. Emerging data indicate that not all
genetic mutations are equivalent in terms of their immunologic
impact. Some mutations, such as ARID1A, TP53, PBRM1, KEAP1,
STK11, NOTCH1/2/3, and JAK1/2, may exert positive or negative
influences on the outcomes of ICI treatment14–19. Nevertheless, all of
these mutations are weighted the same in TMB scoring systems,
highlighting the limitations of TMB as a predictive biomarker for ICI.
Recently, it has been reported that TMB-based survival prediction can
be improved by optimizing the TMB algorithm20 or by establishing
gene mutation-based signatures21,22. We therefore investigated the

genomic determinants of ICIs benefits in gastrointestinal cancer and
developed a gene mutation-based risk model containing the most
decisive prognosis-related genes to better predict the clinical
outcomes of immunotherapy in patients with gastrointestinal cancer.

RESULTS
Clinicopathological features of the patients
In this study, we developed a prediction model based on the
Memorial Sloan Kettering (MSK) cohort of 227 gastrointestinal
cancer patients who had received ICIs (MSK-GI cohort; esophago-
gastric cancer, N= 118; colorectal cancer, N= 109)13 and with a
median follow-up of 19 months. The prognostic model was
validated using data from the Janjigian and Pender cohort23,24 and
Peking University Cancer Hospital (PUCH) cohorts of 54 and 92
gastrointestinal cancer patients, respectively. Molecular profiling
of the tumor samples from the patients was performed by MSK-
IMPACT or whole-exome sequencing (WES). Fourteen (25.9%)
patients in the Janjigian and Pender cohort and 35 (38%) patients
in the PUCH cohort showed durable clinical benefit (DCB),
respectively. Supplementary Table 1 provides a summary of the
characteristics of the patients in the three cohorts. The flowchart
of this study design is shown in Supplementary Fig. 1.

Construction of the gastrointestinal immune prognostic
signature
The prognostic significance of each gene was first analyzed by the
univariate Cox proportional hazards regression model (Supplemen-
tary Table 2). To further build a predictive model, genes with p < 0.1
and mutation frequency > 8% were selected as seed genes for least
absolute shrinkage and selection operator (LASSO) Cox regression
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with 10-fold cross-validation, which identified 6 genes out of the 12
genes (Fig. 1a, b). A risk model termed gastrointestinal immune
prognostic signature (GIPS) was calculated using a formula derived
from the mutation status (1 or 0) of the six genes weighted by their
regression coefficient. GIPS= (0.558 × RNF43)+ (0.456 × CREBBP)−
(0.28 × CDKN2A)− (0.154 × TP53)+ (0.147 × SPEN)+ (0.082 ×NOTCH3).
In this formula, gene mutation was equivalent to 1 and wild-type
status was equivalent to 0. An optimal cutoff value of −0.15 was used
to separate the patients into the GIPS-high and GIPS-low groups using
X-tile25. As expected, the GIPS-high group was associated with better
prognosis in the MSK-GI cohort (median overall survival [mOS],
31 months vs. 10 months; p< 0.001; hazard ratio (HR), 0.40; 95%
confidence interval (95% CI), 0.27–0.59; Fig. 1c, d) and its
esophagogastric cancer and colorectal cancer subgroup (Supplemen-
tary Fig. 2). Moreover, GIPS served as an independent prognostic
factor in the MSK-GI cohort (Table 1).

Associations of GIPS with clinical benefit, OS, and PFS in the
validation cohorts
To validate the prognostic value of the GIPS model, two
independent immunotherapy cohorts of gastrointestinal cancer
patients with adequate information on genomic alterations and
survival were analyzed. The patients in both cohorts were classified
into GIPS-high and GIPS-low groups using the cutoff point obtained

from the training cohort. For the Janjigian and Pender cohort of 54
patients with gastrointestinal cancer treated with ICIs, patients with
GIPS-high (N= 22) had a better overall survival (OS) and
progression-free survival (PFS) compared with the GIPS-low patient
group (N= 32) (mOS, 13.6 months vs. 5.1 months; p= 0.038; HR,
0.52; 95% CI, 0.28–0.95; mPFS, 4.7 months vs. 1.9 months; p= 0.003;
HR, 0.42; 95% CI, 0.23–0.75; Fig. 2a–c). A remarkably higher DCB rate
was also displayed in the GIPS-high group (45.5% vs. 12.5%; p=
0.007; Fig. 2d). Similarly, in the PUCH cohort, 47 patients were
assigned to the GIPS-high group and their OS and PFS were
superior to the patients in the GIPS-low group (mOS, 15.1 months
vs. 6.2 months; p= 0.0063; HR, 0.44; 95% CI, 0.24–0.81; mPFS,
5.3 months vs. 1.9 months; p < 0.001; HR, 0.44; 95% CI, 0.26–0.74;
Fig. 2a, e, f). GIPS-high patients also demonstrated a higher DCB
rate than GIPS-low patients (46.8% vs. 28.9%, p= 0.077; Fig. 2g).

Comparison of GIPS and other potential biomarkers
To explore whether GIPS was a predictive factor for DCB, receiver
operating characteristic (ROC) analysis was used to evaluate its
predictive value. The ROC analyses of both cohorts demonstrated
that GIPS was a predictive biomarker of immunotherapy clinical
benefit (Janjigian and Pender cohort: area under the ROC curve
[AUC], 0.71; 95% CI, 0.56–0.85; PUCH cohort: AUC, 0.59; 95% CI,
0.49–0.70; Supplementary Fig. 3) and its predictive power was

���

Fig. 1 Construction of GIPS. a Tenfold cross-validation for selection of tuning parameters in the LASSO regression. Two dotted vertical lines
are drawn at the optimal values according to the minimum criterion (right) and the 1− SE criterion (left). b LASSO coefficient profiles of the 12
candidate genes. The dotted vertical line indicates the optimal value (L1 Norm= 1), which was identified by tenfold cross-validation.
c Heatmap of the clinical and molecular features associated with the GIPS-high and GIPS-low subgroups in the MSK-GI cohort. d Kaplan–Meier
curves of OS for patients with high and low GIPS scores in the MSK-GI cohort.
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comparable to that of other biomarkers (Supplementary Fig. 3).
However, we did not observe significant differences in DCB
according to the TMB level (43.8% vs. 18.4%, p= 0.11) or MSI status
(60% vs. 22.9%, p= 0.23) in the Janjigian and Pender cohort or PD-
L1 expression in the PUCH cohort (35.7% vs. 36.4%, p= 0.96;
Supplementary Fig. 4), suggesting that the use of these biomarkers
may not be effective.
We next performed univariate and multivariate analyses of

these potential biomarkers. The results showed that GIPS
remained a powerful and independent prognostic factor for OS
and PFS in all three cohorts (all p-values < 0.05) (Table 1). However,
PD-L1 and MSI-H revealed mixed prognostic value results (Table 1
and Supplementary Fig. 5), indicating a lack of generalizability of
these biomarkers, as shown in previous studies7,8,13,26,27. Besides,
TMB was found to be a robust predictive biomarker across the
cohorts (Supplementary Figs. 2 and 5). However, GIPS showed a
great power for predicting patient survival, as revealed by the low
HR and statistical significance of the survival analysis in each
cohort. Overall, GIPS may serve as a powerful predictor of the
immunotherapeutic outcomes in gastrointestinal cancer.

The joint utility of GIPS and TMB for patient stratification and
clinical outcome prediction
The relationship between the GIPS and other molecular factors
was investigated. Higher proportions of PD-L1 positivity were

identified in the GIPS-high subgroup compared with the GIPS-low
subgroup in the Janjigian and Pender cohort; however, this
correlation was not significant in the PUCH cohort (Supplementary
Fig. 6a). Notably, MSI-H/mismatch repair deficient (dMMR) tumors
were more frequently GIPS-high in our enrolled datasets
(Supplementary Fig. 6b). Interestingly, we also observed a
moderate correlation between TMB and GIPS in the MSK-GI (r=
0.41, p < 0.001) and in the Janjigian and Pender cohorts (r= 0.33,
p= 0.017), and this correlation was lacking in the PUCH cohort
(r= 0.19, p= 0.065, Supplementary Fig. 6c).
We further investigated the joint utility of GIPS and TMB for

patient stratification and prediction of the clinical outcome. The
GIPS-high/TMB-high (both high) subgroup had a remarkably
higher DCB rate compared with the subgroup where both were
low in the two validation cohorts (Fig. 3a, b). Besides, the median
PFS times of the GIPS-high/TMB-high (both high) subgroup were
significantly longer compared with the other two subgroups in the
Janjigian and Pender cohort and in the PUCH cohort (Fig. 3c, d).
The GIPS-high/TMB-high (both high) subgroup also had signifi-
cantly prolonged OS compared with the other two subgroups in
the MSK-GI and PUCH cohorts (Fig. 3e, g). This stratification effect
was robustly consistent in the Janjigian and Pender cohort
(Fig. 3f). These findings indicated that a combined biomarker
based on GIPS and TMB exhibited better predictive value for
favorable ICI benefit.

Table 1. Univariate and multivariate Cox analysis for PFS and OS in three cohorts.

Variables Univariate analysis Multivariate analysis

HR 95% CI p-Value HR 95% CI p-Value

OS

MSK-GI cohorta

GIPS (high vs. low) 0.37 0.23–0.58 <0.001 0.33 0.21–0.54 <0.001

TMB (high vs. low) 0.54 0.34–0.86 0.009 0.57 0.35–0.92 0.023

Janjigian and Pender cohortb

GIPS (high vs. low) 0.51 0.27–0.98 0.042 0.07 0.01–0.39 0.002

MSI status (MSI-H vs. MSS) 0.38 0.09–1.60 0.188 0.16 0.03–0.82 0.028

TMB (high vs. low) 0.60 0.29–1.20 0.167 0.45 0.18–1.20 0.099

PD-L1 (positive vs. negative) 0.24 0.08–0.77 0.016 0.09 0.02–0.51 0.006

PUCH cohortc

GIPS (high vs. low) 0.43 0.23–0.80 0.008 0.47 0.25–0.88 0.019

MSI status (MSI-H vs. MSS) 0.47 0.19–1.10 0.097 0.36 0.15–0.88 0.025

TMB (high vs. low) 0.45 0.22–0.93 0.032 0.34 0.16–0.71 0.004

PD-L1 (positive vs. negative) 1.00 0.47–2.20 0.986 1.23 0.55–2.75 0.617

PFS

Janjigian and Pender cohortb

GIPS (high vs. low) 0.39 0.20–0.74 0.004 0.12 0.03–0.44 0.001

MSI status (MSI-H vs. MSS) 0.39 0.12–1.30 0.123 0.21 0.05–0.85 0.029

TMB (high vs. low) 0.45 0.22–0.91 0.026 0.37 0.15–0.93 0.035

PD-L1 (positive vs. negative) 0.17 0.05–0.64 0.008 0.10 0.02–0.46 0.004

PUCH cohortc

GIPS (high vs. low) 0.42 0.25–0.71 0.001 0.42 0.24–0.72 0.002

MSI status (MSI-H vs. MSS) 0.44 0.22–0.90 0.025 0.33 0.16–0.70 0.004

TMB (high vs. low) 0.47 0.26–0.85 0.013 0.36 0.19–0.67 0.001

PD-L1 (positive vs. negative) 1.30 0.69–2.40 0.415 1.52 0.80–2.90 0.206

aThe multivariate analysis in the MSK-GI cohort was adjusted for age, sex, cancer type, drug class, and metastasis.
bThe multivariate analysis in the Janjigian and Pender cohort was adjusted for age, sex, and liver metastasis.
cThe multivariate analysis in the PUCH cohort was adjusted for age, sex, and drug class.
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GIPS-high tumors facilitate favorable immune-cell infiltration
and interferon-associated gene signatures
Based on the above results, we hypothesized that GIPS may be an
indicator of tumor immune microenvironment features in
gastrointestinal cancer patients. The Cancer Genome Atlas (TCGA)
gastrointestinal cancer cohort was stratified into GIPS-high and
GIPS-low groups based on the GIPS stratification system. Using
the single-sample gene set enrichment analysis (ssGSEA) meth-
odology, the degree of infiltrated immune cells was estimated.
Compared with GIPS-low tumors, GIPS-high tumors were more
infiltrated by immune effector cells, such as effector T cells,

dendritic cells, and B cells, but had a low number of neutrophils
(Fig. 4a).
Notably, GIPS-high tumors also exhibited a significant enrichment

in immune-related signatures (Fig. 4b and Supplementary Fig. 7).
Among the enhanced signatures, the 6-gene interferon (IFN)
signature, 18-gene IFN signature, and GEP were previously reported
to predict the response to ICI therapy28,29. GIPS-high tumors
displayed significantly more nonsynonymous mutations compared
with the GIPS-low tumors (Fig. 4c). GSEA analysis was performed to
identify pathways enriched in specific GIPS statuses and the results
showed that the pathways of IFN response, antigen processing,
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Fig. 2 GIPS is a prognostic biomarker and predicts immunotherapeutic benefit in two validation cohorts. a Heatmap of the clinical and
molecular features associated with the GIPS-high and GIPS-low groups. b–d Kaplan–Meier curves of OS (b) and PFS (c), and the rate of durable
clinical benefit (d) for patients with high and low GIPS scores in the Janjigian and Pender cohort. e–g Kaplan–Meier curves of OS (e) and PFS
(f), and the rate of durable clinical benefit (g) for patients with high and low GIPS scores in the PUCH cohort. For Janjigian and Pender cohort,
53 patients had OS information. For PUCH cohort, 91 patients had PFS information.
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presentation mechanism, and inflammatory response were signifi-
cantly upregulated in GIPS-high tumors (Fig. 4d). These findings
indicate that GIPS can predict T-cell inflammation in gastrointestinal
cancer and partially explain the correlation between GIPS and
immunotherapy benefits.

DISCUSSION
In this study, we developed and validated a genomic classifier,
GIPS, consisting of six genes that can better predict the efficacy of
ICI therapy in gastrointestinal cancer patients. Our results showed
that this signature could stratify patients into benefited and non-
benefited subgroups, and served as a strong prognostic factor for
gastrointestinal cancer patients treated by ICIs. Besides, GIPS
increases cost-effectiveness by offering a smaller panel of genes
that can be easily translated into an easy-to-use clinical assay.
Furthermore, patients with different GIPS scores had distinct
tumor immune microenvironment characteristics. The activation

of the antitumor immune response was identified as a potential
mechanism underlying the predictive value of GIPS-high in the
gastrointestinal cancer population (Fig. 5).
Currently, extensive efforts have been made to identify

predictive markers of the response to ICI therapies. However,
MSI-H occurs in 0–5% of all metastatic gastrointestinal cancers6,30,
limiting the use of ICI-based therapy in this population. PD-L1
expression failed to predict response or survival in colorectal
cancer9, and the survival benefits of ICIs in esophageal and gastric
cancer were observed irrespective of PD-L1 expression4,5,31. TMB
also encounters several issues, including the lack of consensus
regarding the cutoff point and the distinct platform of conducting
exon sequencing32. These factors may account for the mixed
results of the prognostic value of TMB reported in different
studies1,8,13, as displayed in our study. Emerging evidence indicates
that some specific genetic mutations exert strong effects on
the generation of neoantigens and in shaping the tumor immune
microenvironment, ultimately contributing to distinct immune
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Fig. 3 The joint utility of GIPS and TMB in predicting the clinical outcomes of patients with gastrointestinal cancer receiving ICI
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e–g Kaplan–Meier survival analysis of OS among patients within each of the three indicated subgroups in the MSK-GI (e), Janjigian and Pender
(f), and PUCH (g) cohorts. For Janjigian and Pender cohort, 53 patients had OS information. For PUCH cohort, 91 patients had PFS information.

X Jiao et al.

5

Published in partnership with The Hormel Institute, University of Minnesota npj Precision Oncology (2021)    36 



responses33. As previously reported, mutations in DNA damage
response (DDR) genes and insertion–deletion genetic variants are
more likely to generate neoantigens34. Moreover, some specific
genetic aberrations, such as mutations of TP53, PTEN, NOTCH1/2/3,
PBRM1, STK11, and deficits in IFN-γ pathway have been demon-
strated to have an impact on immune-cell infiltration and function,
and clinical outcomes of ICI therapy14–16,35–38. However, current
TMB calculations weigh each genetic mutation the same, which is
not precise. Recent studies have suggested that the predictive
power of TMB might be enhanced by inferring mutational
signatures directly from the TMB data20–22. In this study, we
interrogated the genomic mutations correlated with the prognosis
of ICIs in gastrointestinal cancer patients and integrated multiple
decisive prognostic genetic parameters into one risk model. As a
result, our GIPS model outperformed the existing biomarkers,
indicating that GIPS was a good biomarker with more
prognostic power.

The AUC for the correlation of GIPS with DCB was moderate. We
therefore explored the joint predictive utility of GIPS and TMB, and
found that patients with GIPS-high and TMB-high showed the best
DCB and the longest survival time in both the validation cohorts.
These results suggest that GIPS could identify patients who may
not benefit from ICIs, despite having a high TMB, supporting its
potential use as a combinatorial biomarker together with TMB for
patient stratification.
The immune-modulating function and prognostic value of the

six genes in the GIPS classifier for immunotherapy have been
elucidated in previous studies16,19,33,39,40. However, these genes
have not been well characterized in gastrointestinal cancer. TP53 is
frequently mutated in gastrointestinal cancer. Apart from the
classic mechanisms of carcinogenesis mediated by TP53 mutation,
the induction of an impaired immune response was observed in
TP53-mutated gastric cancer, hepatocellular carcinoma, and
melanoma41–43. Notably, an opposite phenomenon has been
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observed in lung cancer44,45, highlighting that the regulation of
tumor immunity by TP53 is cancer type-dependent. Besides TP53,
CDKN2A is another senescence-inducing cell cycle regulator
required for cancer immune control40. The loss of CDKN2A
function contributes to ICI therapy resistance in experimental
and clinical studies40,46,47. NOTCH3 mutation has been recently
reported to be related to the activation of the DDR system, which
confers sensitivity to immunotherapy in lung cancer16. Moreover,
RNF43 and CREBBP mutations have been frequently observed in
MSI-H gastric cancer or colorectal cancer48–50, indicating a
favorable immune context in these tumors. As a result, GIPS
holds a significant promise in predicting immunotherapy efficacy,
as almost all of the genes play critical roles in modulating the
immune microenvironment. Further investigation validated that
the GIPS-high group can be considered an immune-inflamed
phenotype, with immune pathway activation, effector immune-
cell infiltration, and higher TMB. These results demonstrate that
the GIPS stratification system may provide important insights into
the immunologic profile of gastrointestinal cancer.
Our study has some limitations, which are mainly related to its

retrospective nature and the inclusion of a heterogeneous group
of several gastrointestinal cancer types. Second, the small number
of patients with each cancer type in the validation cohorts
restricted our ability to analyze individual tumor histology. Third,
patients in the PUCH cohort were treated using different anti-
programmed cell death-1 (PD-1)/PD-L1 antibodies from various
pharmaceutical companies, which might result in drug bias. A
prospective study with a larger sample size of gastrointestinal
cancer patients treated by one specific ICI is warranted to assess
the predictive value of GIPS in the future.
In summary, our six-gene GIPS model is a promising prognostic

and predictive biomarker of the therapeutic benefit of ICIs in
gastrointestinal cancer. Furthermore, this signature offers a cost-
effective approach to facilitate the identification of potential
responders to immunotherapy that can hopefully be further
validated in a prospective study.

METHODS
Study design and population
This multicohort study consisted of a three-step approach (biomarker
discovery, biomarker validation, and mechanism exploration). The study
design is shown in Supplementary Fig. 1. We obtained genomic and

clinical data from four cohorts of gastrointestinal cancer patients treated
with ICIs from publicly available datasets of the MSK Cancer Center (http://
www.cbioportal.org/)13,23, British Columbia Cancer Agency24, and from our
real-world dataset of PUCH. The MSK cohort containing 236 patients with
gastrointestinal cancer was referred as the training cohort (MSK-GI) and
was used to screen for genetic parameters with potential prognostic value
to construct a prognostic model13. Nine tumor samples were excluded
because of the unavailability of their genetic variants. In the subsequent
clinical validation phase, we employed three immunotherapeutic cohorts
as follows: (1) the Janjigian cohort, containing 40 metastatic,
chemotherapy-refractory esophagogastric cancer patients treated with a
PD-1 inhibitor alone or in combination with cytotoxic T-lymphocyte-
associated protein-4 (CTLA-4) inhibitor23; (2) the Pender cohort, with 14
patients with metastatic or advanced gastrointestinal cancer, who were
treated with anti-PD-1/PD-L1 antibodies alone or in combination with anti-
CTLA-4 antibodies between April 2014 and August 201824; and (3) the
PUCH cohort, including 92 patients with gastrointestinal cancer and
treated with anti-PD-1/PD-L1 antibodies alone or in combination with anti-
CTLA-4 antibodies between August 2015 and May 2019. The details of the
patient selection criteria are presented in the Supplementary Methods. In
addition, the TCGA cohort of gastrointestinal cancer (esophageal cancer,
N= 184; gastric cancer, N= 439; colorectal cancer, N= 380) was used to
explore whether our model could capture the features of the tumor
immune microenvironment. The patient characteristics of the three
immunotherapeutic cohorts are shown in Supplementary Table 1.
This study was approved by the Institutional Review Board at the PUCH

(2020MS01) and was conducted under the Declaration of Helsinki. For the
three publicly available cohorts, institutional review board approvals at
MSK Cancer Center and the University of British Columbia BC Cancer
Research were also obtained13,23,24.

Outcome
Tumor responses were determined by a clinical radiographic assessment
based on the Response Evaluation Criteria in Solid Tumors 1.1. DCB was
defined as complete response, partial response, or stable disease (SD)
lasting ≥24 weeks; no durable benefit was defined as progressive disease
or SD lasting <24 weeks51. In the immunotherapeutic cohorts, OS or PFS
was used as the survival endpoints.

Next-generation sequencing
Tumor tissues from the MSK-GI cohort and the Janjigian and Pender cohort
were profiled with MSK-IMPACT sequencing (341-gene panel, 410-gene
panel, or 468-gene panel) or whole-genome sequencing. Tissue processing
and sequencing data analysis were performed as previously
described13,23,24. Germline variants were also identified through the
concurrent sequencing of patient-matched DNA from peripheral blood
samples. The mutation data of each sample were obtained from the
cBioPortal and previously published articles13,23,24.
In the PUCH cohort, WES was performed with Illumina NovaSeq on

tumor formalin-fixed paraffin-embedded (FFPE) samples and matched
white blood cell samples of the patients. Detailed information on the WES
process is presented in the Supplementary Methods. TMB was determined
by analyzing nonsynonymous somatic mutations per megabase. The cutoff
value for stratifying TMB-high and TMB-low of the immunotherapeutic
cohorts was defined as the top 30% of the TMB in each cohort.

MSI/mismatch repair status testing
In the PUCH cohort, the MMR status was assessed by immunohistochem-
ical (IHC) staining using monoclonal antibodies for anti-mutL homolog 1
(Clone ES05), anti-mutS homolog 2 (Clone 25D12), anti-mutS homolog 6
(Clone EP49), and anti-postmeiotic segregation increased 2 (Clone EP51).
Tumors lacking the expression of any one of the four proteins were
considered dMMR; otherwise, they were considered MMR proficient. The
MSI status was measured by PCR-based molecular testing, including five
microsatellite loci as follows: BAT-25, BAT-26, D2S123, D5S346, and
D17S250. MSI-H tumors were defined as instability at two or more of
these markers. In the Janjigian and Pender cohort, MSI status was assessed
using the MSIsensor algorithm, with MSI-H defined as an MSIsensor
score ≥ 1023.
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Fig. 5 Graphic abstract. The GIPS model plays a role in predicting
the tumor immune phenotype and clinical outcomes of ICI
treatment in gastrointestinal cancer.
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IHC staining for PD-L1
PD-L1 expression in the PUCH cohort was assessed by IHC staining of FFPE
sections using an anti-PD-L1 antibody (rabbit, clone SP142, 1 : 100; Spring
Bioscience, CA, USA). The PD-L1 expression of tumor samples was centrally
assessed by two pathologists. PD-L1 positivity was defined as the presence
of staining cell percentage ≥ 1% of tumor cells and immune cells.

Construction of the GIPS
Univariate Cox regression analyses assessed the association between each
gene mutation (mutation frequency > 8%) and survival, and genes with
p < 0.1 were selected as candidate genes. To further narrow the scope of
the candidate genes and to prevent overfitting, the LASSO Cox regression
algorithm with the glmnet package (v3.0-2) was adopted to build an
optimal model with the minimum number of genes52. The penalty
parameter was estimated by tenfold cross-validation with the minimum
partial likelihood deviance. We utilized X-tile software to generate the
appropriate cutoff values to stratify patients into GIPS-high and GIPS-low
groups25.

mRNA expression profiling analysis
The associations between GIPS and immune-related features were
analyzed based on the TCGA datasets, which had both DNA-sequencing
and RNA-sequencing (RNA-seq) data available on the website (https://gdc.
cancer.gov/about-data/publications/pancanatlas). The expression data for
mRNA in RNA-Seq by Expectation-Maximization (RSEM) values were
transformed to log10(RSEM+ 1). We used previously published immune-
related signatures to characterize the tumor immune microenvironment
(Supplementary Table 3). The signature scores of each patient were
calculated by averaging the included genes in the corresponding signature
gene sets. To quantify the proportions of immune cells in the tumor
microenvironment, we implemented the ssGSEA using the GSVA package,
which allows the prediction of the distributions of multiple immune cell
types in tumor tissues53,54. GSEA was performed on the differentially
expressed genes between the GIPS-high and GIPS-low groups, which were
screened using the edgeR package. A ranked list of genes from the edgeR
output was created using −log10(p-value) × sign(log(fold change)). The R
package clusterProfiler was applied to the ranked gene list to perform
GSEA based on the Molecular Signatures Database C2 and Hallmark gene
set55,56.

Statistical analysis
The data were analyzed using R statistical software version 3.6.1 and SPSS
software version 23.0. Categorical data were compared using the χ2-test or
Fisher’s exact test, as appropriate. Kaplan–Meier survival curves were
assessed using Log-rank test for the OS and PFS estimations. ROC analysis
was used to assess the predictive accuracy of GIPS and other predictors.
Group means were compared by Student’s t-test for normally distributed
data and nonparametric tests were used when the data were not normally
distributed. p < 0.05 was considered as statistically significant.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The data generated and analyzed during this study are described in the following
data record: https://doi.org/10.6084/m9.figshare.1430307557. The datasets of the
MSK-GI, Janjigian and Pender, PUCH, and TCGA cohort generated and analyzed
during the current study have been deposited at https://doi.org/10.6084/m9.
figshare.14174807.v258 and https://doi.org/10.6084/m9.figshare.1417482859 in the
files “MSK-GI_JP_PUCH_clinical_info_with_GIPS.xlsx” and “TCGA_clinical_info_-
with_GIPS_and_immune_signatures(2).xlsx,” respectively. The genomic and clin-
ical data of the MSK-GI cohort, Janjigian and Pender cohort, and PUCH cohort
are openly available and were downloaded from the following places: http://
www.cbioportal.org/study?id=tmb_mskcc_2018, https://www.cbioportal.org/study/
summary?id=egc_msk_2017, http://clincancerres.aacrjournals.org/content/27/1/202.
article-info, https://www.bcgsc.ca/downloads/immunoPOG/, and https://doi.org/
10.6084/m9.figshare.1416887960. The DNA-seq and RNA-seq data of the TCGA data
used in Fig. 4 and Supplementary Fig. 7 can be downloaded from https://gdc.cancer.

gov/about-data/publications/pancanatlas in files “EBPlusPlusAdjustPANCAN_Illumi-
naHiSeq_RNASeqV2.geneExp.tsv” and “mc3.v0.2.8.PUBLIC.maf.gz.”
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