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Intramuscular fat (IMF) is an important quantitative trait of meat, which affects the associated 
sensory properties and nutritional value of pork. To gain a better understanding of the genetic 
determinants of IMF, we used a composite strategy, including single-locus and multi-locus 
association analyses to perform genome-wide association studies (GWAS) for IMF in 1,490 
Duroc boars. We estimated the genomic heritability of IMF to be 0.23 ± 0.04. A total of 30 
single nucleotide polymorphisms (SNPs) were found to be significantly associated with IMF. 
The single-locus mixed linear model (MLM) and multiple-locus methods multi-locus random-
SNP-effect mixed linear model (mrMLM), fast multi-locus random-SNP-effect efficient 
mixed model association (FASTmrEMMA), and integrative sure independence screening 
expectation maximization Bayesian least absolute shrinkage and selection operator model 
(ISIS EM-BLASSO) analyses identified 5, 9, 8, and 21 significant SNPs, respectively. 
Interestingly, a novel quantitative trait locus (QTL) on SSC 7 was found to affect IMF. In addition, 
10 candidate genes (BDKRB2, GTF2IRD1, UTRN, TMEM138, DPYD, CASQ2, ZNF518B, 
S1PR1, GPC6, and GLI1) were found to be associated with IMF based on their potential 
functional roles in IMF. GO analysis showed that most of the genes were involved in muscle 
and organ development. A significantly enriched KEGG pathway, the sphingolipid signaling 
pathway, was reported to be associated with fat deposition and obesity. Identification of novel 
variants and functional genes will advance our understanding of the genetic mechanisms of 
IMF and provide specific opportunities for marker-assisted or genomic selection in pigs. In 
general, such a composite single-locus and multi-locus strategy for GWAS may be useful for 
understanding the genetic architecture of economic traits in livestock.

Keywords: single-locus genome-wide association studies, multi-locus genome-wide association studies, candidate 
gene, intramuscular fat, Duroc pigs

INTRODUCTION

In the past few decades, increasing lean meat content and reducing backfat thickness have been the 
main targets of pig breeding programs (Dong et al., 2014). However, due to insufficient attention to 
the quality of pork and negative correlation with selected traits, such as backfat thickness (Sellier et al., 
2010), it has been challenging to satisfy consumer demand for meat quality (Hernandez-Sanchez 
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et al., 2013). As a result, improvement of meat quality has become 
a priority (Fan et al., 2010; Franco et al., 2014). Intramuscular fat 
(IMF) is an important trait directly related to flavor and consumer 
acceptance (Sato et al., 2017; Won et al., 2018). Many studies 
have suggested that IMF influences pork tenderness, hydraulics, 
shearing force, and juicy flavor (Hocquette et al., 2010; Cho et al., 
2015; Gong et al., 2018). In addition, muscles with sufficient IMF 
content are particularly suitable for conversion to dry products 
(Bosi and Russo, 2004).

Traditional methods for measuring IMF require chemical 
analysis [chemical methods to predict IMF (CIMF)] (Ramayo-
Caldas et al., 2012; Pena et al., 2016; Sato et al., 2017) or spectral 
analysis (Prieto et al., 2009) after slaughter. The complexity of 
phenotyping makes it difficult to scale and greatly increases the 
difficulty and cost of genetic improvement. With the continuous 
development of color image processing technology, the reliability 
of using ultrasound images to predict IMF [ultrasonic methods 
to predict IMF (UIMF)] has become increasingly high (Newcom 
et al., 2002; Schwab et al., 2009). Jung et al. (2015) found that the 
genetic and phenotypic correlations for CIMF and UIMF were 
0.75 and 0.76, respectively. Due to the low cost, convenience, 
high accuracy, and non-invasiveness of this technology (Cross 
and Belk, 1994; Yang et al., 2006; Jung et al., 2015), UIMF has 
been increasingly adopted in large-scale measurement of IMF.

The heritability of IMF in the literature has a relatively large 
range from 0.21 (Davoli et al., 2016) to 0.86 (Ciobanu et al., 2011), 
with an approximate average of 0.5 (Davoli et al., 2016), indicating 
a substantial genetic basis for this trait in pigs. However, the 
genetic mechanisms of IMF content are not clear. There are several 
biochemical and metabolic processes influencing fat deposition 
in muscle. These processes are determined by a set of interrelated 
genes and their interactions with environmental factors, including 
nutrition (Bolormaa et al., 2011; Moloney et al., 2013). At present, 
many studies have shown that IMF content of different breeds varies 
considerably (Garcia et al., 1986; Davoli et al., 2016). For instance, 
Chinese indigenous breeds are distinctively high in IMF content 
compared to main commercial breeds, among which the Duroc 
breed is the highest (Casellas et al., 2013; Meadus et al., 2018).

To date, there are 26,076 quantitative trait loci (QTLs) associated 
with 647 different pig traits mapped by previous studies (http://
www.animalgenome.org/cgi-bin/QTLdb/SS/index). Among them, 
213 QTLs have been identified for IMF traits, and most of these 
QTLs were identified using linkage mapping. However, directly 
using these QTLs for genetic improvement in pigs remains difficult 
due to the poor resolution of mapping as these loci are located 
within large intervals of at least 20 centimorgans (cM) in length 
(Tabor et al., 2002). As the cost of high-throughput commercial 
genotyping continues to decrease, genome-wide association studies 
(GWAS) have become one of the essential technology choices for 
genetic dissection of complex traits. The most common method is 
single marker analysis, testing one single nucleotide polymorphism 
(SNP) at a time and accounting for relatedness among the sample 
using either principal components as fixed covariates or a random 
polygenic effect using mixed linear model (MLM). Single-marker 
GWAS model has been successfully used to detect genetic markers 
for complex quantitative traits, including IMF (Jiao et al., 2014b; 
Ros-Freixedes et al., 2016; Duarte et al., 2018; Wang et al., 2019; 

Zhang et al., 2019). Most of these studies used CIMF, and the 
sample sizes were in the hundreds. Moreover, single-marker GWAS 
ignores the presence of multiple QTLs and may lead to severe bias 
in the point estimates of QTL effects and elevated type I and type 
II errors. Recently, several multi-locus GWAS methods have been 
developed to explicitly model multiple QTLs by treating them as 
random effects, which may increase the power to detect QTLs.

In the present study, we applied the single-locus analysis and 
three multi-locus methods, including the multi-locus random-SNP-
effect mixed linear model (mrMLM) (Wang et al., 2016), the fast 
multi-locus random-SNP-effect efficient mixed model association 
(FASTmrEMMA) (Wen et al., 2017), and the integrative sure 
independence screening expectation maximization Bayesian least 
absolute shrinkage and selection operator model (ISIS EM-BLASSO) 
(Tamba et al., 2017), to decipher the genetic architecture of IMF 
in a large American Duroc population. The objective of this study 
was to use different methods to perform a comprehensive GWAS of 
IMF and delineate the genetic architecture.

MATERIALS AND METHODS

Ethics Statement
The experimental procedures used in this study met the 
guidelines of the Animal Care and Use Committee of the South 
China Agricultural University (SCAU) (Guangzhou, People’s 
Republic of China). The Animal Care and Use Committee of the 
SCAU approved all animal experiments described in this study.

Experimental Animals and Phenotyping
From 2013 to 2016, a total of 1,490 Duroc boars were collected from 
the Guangdong Wen’s Foodstuffs Group Co., Ltd. (Guangdong, 
China). All 1,490 boars were group housed in half-open cement-
floor pens (10 animals in each pen, with an average of 2 m2 per 
pig) and fed under uniform feeding conditions for measurements 
of IMF during the fattening period (approximately 11 weeks) from 
30 to 100 kg live weight. They were scanned with an Aloka 500V 
SSD ultrasound machine (Corometrics Medical Systems, USA) to 
measure IMF content in the longissimus dorsi muscle at the end 
of the test as previously described (Wang et al., 2017). The images 
were collected 6 to 7 cm off the midline across the tenth to eleventh 
ribs, and these images were used to predict IMF content with the 
BioSoft Toolbox for Swine software (http://www.biotronics-inc.
com/Lesson%20Series%20One%20-%20Marbling.pdf).

Genotyping
Genotyping was performed as described by Ding et al. (2018). 
Genomic DNA was extracted from ear tissue samples, and DNA 
quality was assessed by the ratios of light absorption (A260/280 and 
A260/230) and electrophoresis. All animals were genotyped with 
the Porcine SNP50 Beadchip from Illumina (San Diego, CA), 
which contains 50,703 SNP markers across the entire genome. 
Quality control was conducted using the PLINK tool (Purcell 
et al., 2007). Briefly, individuals with call rates > 0.95 and markers 
with call rates > 0.99, minor allele frequency > 0.01, and Hardy-
Weinberg P value > 10-6 were retained. Moreover, all markers 
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located on the sex chromosomes and unmapped regions were 
excluded from the analysis. A final set of 38,753 informative 
SNPs from 1,490 pigs were used for subsequent analyses.

Single-Locus GWAS
The MLM was performed by using GEMMA (Zhou and Stephens, 
2012; Zhou and Stephens, 2014). The statistical model is described 
as follows:

y = Wα + Xβ + u + ε;

u ~ MVNn (0,λτ−1K), ε ~ MVNn (0, τ−1In)

where y is the vector of phenotypic values for all pigs; W is the 
incidence matrix of fixed effects including live weight at the end 
of the test, and pig pen and year-season effects; α is the vector of 
corresponding coefficients including the intercept; X is the vector of 
SNP genotypes, and β is the corresponding effect of the marker; u is 
the vector of random effects, and ε is the vector of random residuals, 
both u and ε following the multivariate normal distribution; τ−1 is 
the variance of the residual errors; λ is the ratio between the two 
variance components; K is a standardized relatedness matrix 
estimated by the GEMMA software, which is the same as Yang et al. 
(2010); and In is an n × n identity matrix, and n is the number of 
animals. The relatedness matrix is slightly different from VanRaden 
(2008) in that the standardization was done at the SNP level.

Genome-wide significance was determined using the Bonferroni 
method by dividing the desired type I error level by the number 
of SNPs tested (Yang et al., 2005). The genome-wide significant 
thresholds were P < 0.05/N, where N is the number of SNPs. To cope 
with the false negative results of the Bonferroni correction being too 
conservative, we also set a more lenient threshold by multiplying the 
Bonferroni threshold by a constant of 20 (Yang et al., 2005).

The phenotypic variation of the genome’s heritability and 
significant SNP interpretation contributions was estimated by 
GCTA software (Yang et al., 2010; Yang et al., 2011).

Multi-Locus GWAS Analysis
Three multi-locus GWAS approaches were employed using 
the R package “mrMLM” (Wang et al., 2016). All multi-locus 
approaches are divided into two stages. In the first step, SNP 
effects were treated as random; a small number of SNPs were 
selected based on the prior premise that most SNPs should have 
no effect on the quantitative traits. In the second step, all selected 
SNPs in the first step were placed into one multi-locus model. All 
three multi-locus methods require a centered response variable, 
that is, the phenotypic values need to be adjusted for fixed effects 
including principal components of the genotype matrix, live 
weight at the end of the test, and pig pen and year-season effects. 
Among the three multi-locus GWAS approaches, all parameters 
were set at default values except for the critical P value in the first 
step. In the first step, the critical P values were set at 0.001, 0.005, 
and 0.001 for mrMLM, FASTmrEMMA, and ISIS EM-BLASSO, 
respectively (Misra et al., 2017; Quan et al., 2018; Sant’Ana et al., 
2018). It is worth mentioning that the critical LOD scores of all 
models are set to 3.0 in the second step.

Haplotype Block Analysis
The haplotype block analysis is implemented by two softwares, 
PLINK (Purcell et al., 2007) and Haploview (Barrett et al., 2005) 
Linkage disequilibrium blocks were defined using Haploview 
based on SNPs with MAF values > 0.05, Mendelian errors < 2, and 
P values in the HWE test < 10-3 according to the criteria of Gabriel 
et al. (2002).

Annotation of Candidate Genes and 
Pathway Enrichment Analysis
Search for potential candidate genes is based on the physical 
location of the significant trait-associated SNP locus in the recent 
Sus scrofa 11.1 genome [http://ensembl.org/Sus_scrofa/Info/
Index]. Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) enrichment analysis on the identified 
candidate genes was further carried out using KOBAS 3.0 as 
described by Xie et al. (2011).

RESULTS

Phenotype and SNP Data Statistics
The statistical distribution and heritability of IMF are shown 
in Table 1. The coefficient of variation (CV) of IMF is 11.42%, 
indicating that substantial phenotypic variation existed. The 
estimate of the genomic heritability of IMF was moderate (0.23 ± 
0.04) (Table 1), indicating a genetic basis for IMF in Duroc 
pigs. The SNP distribution of the Porcine SNP50 Beadchip after 
quality control is provided in S1 Table. The average physical 
distance between two adjacent SNPs on the same chromosome 
was approximately 67.41 kb and ranged from 58.48 kb (SSC10) 
to 97.56 kb (SSC1).

SNPs Detected by Single-Locus GWAS
The single-locus GWAS result for IMF including their positions 
in the genome, their nearest known genes and distances, their P 
values, and genomic inflation factors (λ) are shown in Table 2, 
Figure 1A, and Figure S1. No significant SNPs were detected 
through a stringent genome-wide Bonferroni threshold (P < 
1.29E−06). At a more lenient threshold (P < 2.58E−05) for 
suggestive associations, five SNPs were identified, and the 
proportion of phenotypic variance explained (PVE) by each SNP 
ranged from 1.45% to 2.08%. Two of them (rs328813476 and 
rs326602477) are located within the gene BDKRB2 (bradykinin 
receptor B2), and another SNP (rs80946633) is 11.1 kb away 
from this gene. These three SNPs were mapped to one haplotype 
block spanning 36 kb affecting IMF on SSC7 (Figure 2B), among 

TABLE 1 | Phenotype and heritability statistics for IMF in Duroc pigs.

Trait N Mean (SD) Min Max C.V. h2(SD)

IMF 1490 2.54 ± 0.29 1.6 4.5 11.42 0.23 ± 0.04

Mean (standard deviation), minimum (Min), maximum (Max), coefficient of variation 
(C.V.), and heritability (standard deviation) of IMF values.
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which the most significant SNP (rs80946633) explained 1.66% 
of the IMF phenotypic variance. For the lead SNP rs80946633, 
pigs with the GG genotypes had higher IMF phenotypic values 
than those with genotypes AG and AA (Figure 2C and Table 3). 
Of the remaining two SNPs, one (rs329147631) is 9.4 kb away 
from the GTF2IRD1 (GTF2I repeat domain containing 1) gene, 
and the other SNP (rs341977270) is located approximately 
0.4 Mb away from the C11orf74 (chromosome 11 open reading 
frame 74) gene. In addition, QQ plots indicated that population 
stratification has been appropriately accounted for (Pearson and 
Manolio, 2008; Utsunomiya et al., 2013) (Figure S1).

SNPs Detected by Multi-Locus GWAS
A total of 28 significant SNPs (LOD score > 3) were detected 
(Table 4, Figure 1B–D) by multi-locus methods. The mrMLM, 
FASTmrEMMA, and ISIS EM-BLASSO methods detected 9, 8, 
and 21 SNPs, respectively. Among all 28 significant SNPs, 7 SNPs 
were identified by at least two multi-locus GWAS methods, of 
which 3 SNPs (rs329147631, rs81397446, and rs341455185) were 
detected by all three multi-locus GWAS methods. Three SNPs 
(rs329147631, rs80946633, and rs328813476) were detected 
in both the single-locus and multi-locus models. Interestingly, 
the SNP rs329147631 located on SSC 3 was detected by all four 
methods. The other two SNPs (rs80946633 and rs328813476) are 
located in the haplotype block on SSC 7 that contains one gene, 
BDKRB2 (Figure 2B).This was likely because the multi-locus 
GWAS methods properly accounted for linkage disequilibrium 
in this haplotype block, thus reducing the number of SNPs 
associated with the trait in this haplotype block (Figure 2A).

Candidate Genes and Functional Analysis
A total of 27 candidate genes that were located within or nearby 
the significant SNPs (P < 3.11E-05 or LOD score > 3) by all 
four methods were detected (Tables 2 and 4). Many candidate 
genes appear to have physiological roles that are relevant to 
IMF, including bradykinin receptor B2 (BDKRB2), GTF2I 
repeat domain containing 1 (GTF2IRD1), utrophin (UTRN), 
transmembrane protein 138 (TMEM138), dihydropyrimidine 
dehydrogenase (DPYD), calsequestrin 2 (CASQ2), zinc finger 
protein 518B (ZNF518B), sphingosine-1-phosphate receptor 
1 (S1PR1), glypican 6 (GPC6), and GLI Family Zinc Finger 
1 (GLI1). Interestingly, the subsequent gene enrichment 
analysis of 27 candidate genes for IMF found that several 

KEGG pathways and GO terms are significantly enriched for 
the candidate genes, including pathways related to the muscle 
contraction, muscle system process, developmental process, 
and sphingolipid signaling pathway, among others (Table 5).

DISCUSSION

IMF content is an important meat quality trait that has 
received much attention. Among different breeds of pigs, many 
genome-wide association analyses have identified SNPs that are 
significantly associated with IMF (Schwab et al., 2009; Dong 
et al., 2014; Davoli et al., 2016; Ros-Freixedes et al., 2016; Wang 
et al., 2017; Won et al., 2018; Wang et al., 2019; Zhang et al., 2019). 
In the current study, as one of the largest GWAS for IMF, we 
identified 30 SNPs that were significantly associated with IMF by 
combining single-locus and multi-locus GWAS. The thresholds 
in previous GWAS varied widely, most were very lenient. Few 
SNPs would have been significant had more stringent threshold 
were used, regardless of whether the measurement method is 
CIMF (Hernandez-Sanchez et al., 2013; Davoli et al., 2016; Ros-
Freixedes et al., 2016; Won et al., 2018; Wang et al., 2019) or 
UIMF (Jiao et al., 2014b; Wang et al., 2017). We did not replicate 
previous QTLs but identify a new QTL with relatively few SNPs 
associated with IMF by single marker analysis. Many factors can 
determine the specific SNPs and total number of SNPs associated 
with a trait. For instance, IMF is a complex quantitative trait 
with many genes each of small effects. In different studies, 
depending on the specific genetic backgrounds and sample 
size, different QTLs may be mapped. Moreover, phenotyping of 
animals is a challenge for this trait, and different studies may not 
be measuring exactly the same location of the muscle for IMF. 
This could contribute to the differences between studies. While 
we are not able to pinpoint specific reasons for the disagreement 
between studies, our study represents one of the largest GWAS 
to date for IMF. Interestingly, among the 30 significant SNPs, the 
PVE of eight of them is greater than 2% in at least one GWAS 
method, and the PVE of rs80946633 and rs329147631 was even 
greater than 5%. Although these molecular markers are not QTN 
for IMF, higher PVE implies that these markers can be used in 
molecular marker-assisted selection and genome selection in 
pigs to increase IMF content in pigs.

In the present study, we estimated the genomic heritability of the 
IMF to be 0.23, obtained by whole genome dense markers. This is 

TABLE 2 | Description of significant SNPs identified by MLM as associated with IMF.

Marker SSC1 Location (bp)2 P value3 r2 (%)4 Nearest gene Distance5

rs341977270 2 24,096,039 1.46E-05 1.45 C11orf74 +379,675
rs329147631 3 11,528,693 1.00E-05 2.08 GTF2IRD1 +9,430
rs80946633 7 117,427,087 6.26E-06 1.66 BDKRB2 +11,134
rs326602477 7 117,443,751 1.45E-05 1.56 BDKRB2 within
rs328813476 7 117,450,278 9.15E-06 1.76 BDKRB2 within

1Sus scrofa chromosome.
2SNP positions in Ensembl.
3SNPs with P value come from SL-GWAS.
4r2 (%), phenotypic variation of traits explained by each marker.
5+/−: The SNP located in the upstream/downstream of the nearest gene.

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org


GWAS for IMF in PigsDing et al.

5 June 2019 | Volume 10 | Article 619Frontiers in Genetics | www.frontiersin.org

FIGURE 1 | Manhattan plots of the MLM (A), mrMLM (B), FASTmrEMMA (C), and ISIS EM-BLASSO (D) analyses for the IMF Trait in Duroc pigs. (A) The Manhattan 
plots indicate -log10 (P values) for genome-wide SNPs (y-axis) plotted against their respective positions on each chromosome (x-axis), and the horizontal line 
indicates the thresholds for significant (1.29E-06) and suggestive (2.58E-05) SNPs. (B–D) The Manhattan plots indicate LOD scores for genome-wide SNPs (y-axis) 
plotted against their respective positions on each chromosome (x-axis), and the horizontal lines indicate the thresholds for significance (LOD score = 3).
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similar to the result of Jiao et al. (2014a) (the genomic heritability is 
0.27), in which the IMF is also measured by the UIMF method. In 
addition, many studies have found that the genomic heritability was 
generally lower than the heritability from single-trait animal models 
(Kim et al., 2012; Jiao et al., 2014a; de los Campos et al., 2015). This 
may be the result of “missing heritability” and is also a controversial 
issue in human genetics (Manolio et al., 2009; Eichler et al., 2010).

FIGURE 2 | The significantly associated region for IMF on SSC7. (A) Regional plot of a 1 Mb region around the most significant SNP (rs80946633). The circular 
points represent the association significance measured by -log10 (P-values) that are plotted against genomic positions on the x-axis. Different colors indicate 
different linkage disequilibrium (LD) values between the top single nucleotide polymorphism (SNP) and other SNPs. (B) Haplotype blocks for significant SNPs 
indicate a haplotype block composed of significant SNPs located on SSC7 for the IMF trait. A haplotype block of 36 kb harbors the top SNP indicated in red and is 
highlighted by a black triangle. (C) The genotype effect plot of SNP rs80946633 (**P < 0.01, ns P > 0.05), which indicates SNPs with GG genotypes had higher IMF 
phenotypic values than those with genotypes AG and AA.

TABLE 3 | IMF (%) of different genotypes for SNP rs80946633.

Genotypes N Mean (SEM)1

AA 92 2.460 ± 0.024a

AG 562 2.497 ± 0.010a

GG 771 2.542 ± 0.009b

1Different letters indicate significant difference at P < 0.01.
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The IMF QTL on SSC7 discovered in this study has not been 
reported before for association with IMF. However, the QTL 
overlaps with previously identified QTLs associated with other 
meat quality traits. For example, Cho et al. (2015) found that 
this region was associated with loin fat percentage and muscle 
moisture percentage in a large F2 intercross between Landrace 
and Korean native pigs. Edwards et al. (2008) also found that 
this region was associated with 45 min–24 h pH decline in an F2 
Duroc × Pietrain resource population.

Potential Candidate Genes Reveal the 
Possible Molecular Basis of IMF
In the current study, we found SNPs significantly associated 
with IMF in a haplotype block spanning 36 kb on SSC 7, which 
contains only one known gene, BDKRB2 (bradykinin receptor 
B2). BDKRB2 is a protein coding gene that is normally highly 
expressed in muscles, such as smooth muscle (Marcadenti, 2015). 
Bradykinin is an inflammatory mediator with vasodilation 
activity and exerts its effects via two receptor subtypes (the 

TABLE 4 | Description of significant SNPs identified by multi-locus methods as associated with IMF.

Marker1 SSC2 Location (bp)3 LOD score r2 (%)4 Nearest gene Distance5 Method6

rs326526959 1 21,060,443 3.25 0.81 UTRN −16,801 III
rs80909355 1 44,450,710 3.40 1.05 ROS1 within III
rs81361093 2 10,135,131 3.79 0.12 TMEM138 within III
rs81295735 2 22,147,009 4.07 1.64 LRRC4C −513,328 III
NA 2 76,416,246 3.05 0.62 AMH within III
rs330719436 3 537,968 3.26 0.32 GET4 within III
rs329147631 3 11,528,693 4.10, 7.30, 6.46 3.61, 1.81, 5.67 GTF2IRD1 +9,430 I, II, III
rs319425989 4 90,915,904 5.19 1.94 APCS −13,984 III
rs80910035 4 99,522,059 6.73, 5.19 3.94, 1.13 RNF115 within I, II
rs80785809 4 104,947,409 4.62 0.80 CASQ2 within III
rs80782376 4 116,905,321 4.18 1.3 S1PR1 +158,750 III
rs339006733 4 119,633,516 3.31 2.14 DPYD +297,877 I
rs81382770 5 4,713,576 4.77, 4.99 0.83, 1.80 KIAA1644 within II, III
rs332805793 6 157,718,589 4.14 2.08 MROH7 −3,329 III
rs344352083 6 161,336,274 3.91 0.99 FAF1 within III
rs81397446 7 19,581,991 4.23, 5.60, 7.45 1.24, 1.09, 1.88 GMNN +3,955 I, II, III
rs320233990 7 94,642,773 3.01, 4.08 0.49, 1.83 PCNX1 −24,848 II, III
rs80946633 7 117,427,087 7.95 5.05 BDKRB2 +11,134 III
rs328813476 7 117,450,278 4.31 0.90 BDKRB2 within II
rs319364637 7 117,463,409 5.30 3.71 BDKRB2 within I
rs344928960 8 6,548,221 3.79, 5.14 1.11, 0.99 ZNF518B +10,854 I, II
rs81319995 8 6,777,847 9.06 2.94 CLNK −7,753 III
rs341455185 11 62,934,212 3.64, 4.57, 3.15 1.18, 0.75, 0.62 GPC6 +67,404 I, II, III
rs328211886 13 101,268,801 4.23 1.03 OTOL1 −74,382 III
rs321762476 13 195,215,153 4.65 2.09 TIAM1 within I
rs80934705 14 131,949,286 5.52 2.82 PLEKHA1 +11,641 I
rs334840434 15 18,467,598 3.37 1.40 MGAT5 −548,039 III
rs81291577 15 30,615,152 3.65 0.85 GLI2 −36,070 III

1The name of the marker is obtained from NCBI, and NA indicates that the marker was not found in NCBI.
2Sus scrofa chromosome.
3SNP positions in Ensembl.
4r2 (%), phenotypic variation of traits explained by each marker.
5+/−: The SNP located in the upstream/downstream of the nearest gene.
6Method numbers correspond to (I) mrMLM, (II) FASTmrEMMA, and (III) ISIS EM-BLASSO.

TABLE 5 | Significant KEGG PATHWAY and GO terms associated with IMF traits. (P < 0.05).

Term Database ID Gene names Corrected P-Value

Sphingolipid signaling pathway KEGG PATHWAY ssc04071 BDKRB2, S1PR1 9.89E-03
Muscle system process Gene Ontology GO:0003012 BDKRB2, CASQ2, UTRN, TIAM1, GTF2IRD1 4.69E-05
Growth Gene Ontology GO:0040007 GLI2, TIAM1, PLEKHA1, S1PR1, ROS1, AMH 0.000366
Organ morphogenesis Gene Ontology GO:0009887 GLI2, TIAM1, PLEKHA1, S1PR1, GPC6, GMNN 0.000395
Developmental process Gene Ontology GO:0032502 APCS, UTRN, CASQ2, S1PR1, TMEM138, GTF2IRD1, PLEKHA1, 

ROS1, GLI2, GMNN, TIAM1, AMH, GPC6, LRRC4C
0.000553

Regulation of developmental process Gene Ontology GO:0050793 APCS, GPC6, GLI2, S1PR1, LRRC4C, TIAM1, AMH 0.006229
Muscle contraction Gene Ontology GO:0006936 BDKRB2, CASQ2, UTRN 0.004588
Developmental growth Gene Ontology GO:0048589 GLI2, PLEKHA1, S1PR1, TIAM1 0.002635
Animal organ development Gene Ontology GO:0048513 APCS, GPC6, TIAM1, GMNN, GLI2, UTRN, PLEKHA1, S1PR1, AMH 0.002876
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B1 and B2 receptors) (Saunders et al., 2006). In adipose tissue, 
bradykinin may stimulate proinflammatory interleukins, such 
as IL-6 and IL-8, through its action on receptors expressed by 
adipocytes (Catalioto et al., 2013). However, the overexpression 
of the bradykinin receptor 2 gene in adipocytes can cause 
excessive secretion of proinflammatory cytokines and lead to 
endocrine disorders (Eder et al., 2009). Endocrine disorders 
can cause excessive expansion of adipose tissue, eventually 
increasing the risk of obesity (Hajer et al., 2008). In addition, 
in obese ob/ob mice, B2 receptor activity is also detected in the 
white adipose tissue, which, along with the hypothalamus, is the 
main site of neuroendocrine regulation of energy metabolism 
(Abe et al., 2007). This implies a close relationship between the 
kallikrein-kinin system and obesity. Therefore, the BDKRB2 
gene may be a strong candidate gene for IMF due to its influence 
on fat metabolism.

The rs329147631 SNP was detected by all four GWAS methods, 
and it is located near GTF2IRD1. This gene is most prominently 
expressed in human brown fat adipocytes and is expressed to a 
lesser extent in smooth muscle (Palmer et al., 2007). Mera (2014) 
found that GTF2IRD1 is a PRDM16-interacting transcription 
factor that is enriched in beige and brown fat cells. In addition, 
GTF2IRD1 is enriched in brown adipose tissue and is increased 
in beige and brown fat in response to beta-3-adrenergic stimulus 
(Mera, 2014). GTF2IRD1 may be an important regulator of beige 
fat differentiation.

The rs326526959 SNP is close to the protein coding gene 
UTRN (utrophin). This gene shares both structural and functional 
similarities with the dystrophin gene. Myogenesis, adipogenesis, 
and chondrogenesis are impaired in adipose-derived stem cells 
from utrophin/dystrophin double-knockout mice. It was indicated 
that the UTRN plays an important role in the differentiation of 
adipose-derived stem cells into adipocytes (Sohn et al., 2013). This 
suggests that UTRN plays key role in the formation and growth of 
adipose tissue.

The rs81361093 SNP is located inside the TMEM138 
(transmembrane protein 138) gene, which encodes a multi-pass 
transmembrane protein. Although there are currently no reports 
of TMEM138 involved in fat growth and development, the related 
genes TMEM120A and TMEM120B are highly expressed in fat, 
and TMEM120A and TMEM120B knockdown individually and 
together affect adipocyte differentiation and metabolism in mice 
(Batrakou et al., 2015). Another homologous gene, TMEM26, 
was identified as a cell surface marker of a natural beige adipocyte 
precursor. The differentiation of CD137+ TMEM26+ precursor 
cells to UCP1+ beige adipocytes is regulated by β-adrenergic 
receptor agonists (Harms and Seale, 2013). In addition, another 
homologous gene, TMEM60, was associated with increased 
marbling fat in a study of candidate genes for the marbling traits 
of cattle, and the candidate gene DPYD (dihydropyrimidine 
dehydrogenase) also affected the marbling of beef (Lim et al., 
2014). The significantly associated rs339006733SNP is closest 
to the DPYD gene. Therefore, TMEM138 and DPYD could be 
potential candidate genes for IMF.

The rs80785809 SNP was detected by two GWAS methods 
(MLM and ISIS EM-BLASSO) and is located inside the CASQ2 
(calsequestrin 2) gene. This gene encodes a calcium-binding 

protein that stores calcium for muscle function. Clark et al. (2011) 
identified a specific bovine gene related to IMF deposition that 
is expressed in skeletal muscle and found that the CASQ2 gene 
is highly expressed in muscles with high IMF content in beef 
cattle. In addition, Mills et al. (2011) found that loss of PRDM16 
promotes the differentiation of brown fat precursors into skeletal 
muscle, and the CASQ2 gene may be involved in its regulation.

ZNF518B (zinc finger protein 518B) belongs to the zinc finger 
protein family gene. Other zinc finger protein family genes, such 
as zinc finger protein 467 (ZFP467) and zinc finger protein 36 
(ZFP36), were reported to be involved in the differentiation and 
regulation of adipocytes. ZFP467 can regulate the differentiation of 
adipose-derived stem cells (You et al., 2015); ZFP36 was identified 
as a candidate gene for obesity-related metabolic complications 
(Bouchard et al., 2007). Considering that zinc finger protein 
family genes are reported to be involved in multiple processes of 
fat development, differentiation, and deposition, we infer that it 
may be an important candidate gene that affects IMF, although 
there are no current studies on the role of ZNF518B in fat.

Sphingosine-1-phosphate receptor 1 (S1PR1) has been 
reported to be related to obesity (Nagahashi et al., 2018). In 
addition, this gene plays an important regulatory role in the 
proliferation and differentiation of adipose precursor cells, 
and blocking its homologue S1PR2 induces proliferation and 
suppresses differentiation of (pre)adipocytes both in vivo and in 
vitro (Kitada et al., 2016).

The rs341455185 SNP was detected by three multi-locus GWAS 
methods, and its closest gene is GPC6 (glypican 6). The glypicans 
comprise a family of glycosylphosphatidylinositol-anchored heparan 
sulfate proteoglycans, and they have been implicated in the control of 
cell growth and cell division. GPC4 has been reported to interact with 
insulin receptors, enhance insulin receptor signaling, and enhance 
adipocyte differentiation (Ussar et al., 2012). In addition, GPC4 may 
be involved in regulating obesity and body fat distribution (Liu et al., 
2014). GPC3 is a potential target gene for microRNA Mir717, and the 
genes that Mir717 may target are related to mammalian obesity and 
other related phenotypes (Kunej et al., 2010).

During the fetal and neonatal stages, muscle cells and adipocytes 
(fat cells) are all derived from mesenchymal stem cells (MSCs). The 
majority of MSCs develop into myogenic cells, but a small portion 
of these cells differentiate into adipocytes, which are the basis for 
IMF accumulation that produce marbling in offspring (Du et al., 
2010). GLI2 is one of the three glioma-associated oncogenes 
(GLIs), including GLI1, GLI2, and GLI3. GLI2 is a transcriptional 
regulator in the Hedgehog signaling pathway (Mahindroo et al., 
2009). The Hedgehog signaling pathway has fundamental roles in 
the formation of tissue patterns during embryonic development, 
and sonic hedgehogs (SHH) is one of the hedgehog proteins in 
mammals. A growing body of evidence suggests a role for SHH 
signaling in adipogenesis. For instance, obesity downregulates 
SHH signaling, including the expression of GLI1, GLI2, and GLI3 
(Suh et al., 2006). However, activation of SHH signaling inhibits 
adipogenesis in 3T3-L1 and C3H10T1/2 cells (Zehentner et al., 
2000; Spinella-Jaegle et al., 2001; Cousin et al., 2007). Therefore, 
GLI2 could affect adipocyte differentiation and adipogenesis by 
regulating the Hedgehog signaling pathway and is a functionally 
plausible candidate gene for IMF content in pork.
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Functional annotation revealed a number of pathways and 
biological processes that are significantly overrepresented among 
the 27 positional candidate genes for IMF (Table 5). Most of 
the significantly GO terms are related to muscle development 
processes, such as muscle system process and muscle contraction. 
Considering that the deposition of fat in muscle is closely related to 
the overall growth and development of the muscle, it is conceivable 
that these genes may be involved in various stages of growth of 
the muscles and thus affect the deposition of fat. Interestingly, the 
sphingolipid signaling pathway is associated with fat accumulation 
and was the only KEGG pathway detected as significantly enriched 
in this study. Choi and Snider (2015) found that overnutrition 
associated with a high-fat diet (HFD) increases sphingomyelin and 
sphingosine-1 phosphate (S1P) levels in adipose tissue through 
the sphingolipid metabolic pathway, leading to dysregulation of 
lipid accumulation and exacerbating obesity-related conditions. 
The accumulation of ceramide is a metabolic hub for sphingolipid 
metabolism, while ceramide accumulation is sufficient to induce 
an obesity phenotype and fat storage (Walls et al., 2013).

Effectiveness of the Multi-Locus GWAS 
Approaches
The standard method used in GWAS is single-locus analysis, 
such as one that uses a mixed linear model (Yu et al., 2006). Despite 
its simplicity and speed, single-locus analysis makes a strong 
assumption that only one QTL has effect. This is largely valid for 
polygenic traits, where QTLs other than the one being tested can 
be properly accounted for by the polygenic term. In this study, 
we used both the single-locus analysis and multi-locus analysis 
to overcome some of the limitations in single-locus analysis. 
Multi-locus methods including mrMLM, FASTmrEMMA, and 
ISIS EM-BLASSO (Wang et al., 2016; Tamba et al., 2017; Wen 
et al., 2017) were applied. Standard multi-locus GWAS has two 
stages (Shi et al., 2011). In the first stage, a candidate subset 
of markers is selected through single-locus MLM. After this 
stage, putative markers are added to the model iteratively until 
a certain selection criterion is met (Wang et al., 2016). Such 
multi-locus model can reduce bias in the effect estimates and 
improve power to detect associations (Ma et al., 2018; Zhang 
et al., 2018). By combining both single-locus and multi-locus 
methods, we found 10 candidate genes that appeared to have 
IMF-related biochemical and physiological effects. Among the 
10 strong candidate genes, the single-locus method found two 
(BDKRB2 and GTF2IRD1), while the multi-locus method found all 
candidate genes. Interestingly, the two candidate genes (BDKRB2 
and GTF2IRD1) were detected by all multi-locus methods. This 
suggests that multi-locus methods are able to detect candidate 

genes that elude single-locus methods. In general, our study 
demonstrated that improved efficiency and accuracy could be 
achieved by a combination of the single-locus and multi-locus 
GWAS for identification of IMF-related QTLs in pigs.

CONCLUSIONS

In this study, we used a combined strategy (including single-locus 
and multi-locus methods) to perform GWAS based on genomic 
data sets to identify new associations. We successfully identified 
a new genomic region and 10 new genes related to IMF. The GO 
analysis showed that most of the genes are involved in the muscle 
system process. The identification of the QTLs and candidate genes 
that are associated with IMF in the present study may contribute to 
marker-assisted selection in pig breeding.
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