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Evaluation of ultraviolet-C and spray-drying processes as
two independent inactivation steps on enterotoxigenic
Escherichia coli K88 and K99 strains inoculated in fresh
unconcentrated porcine plasma
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Significance and Impact of the Study: The safety of raw materials from animal origin such as spray-dried
porcine plasma (SDPP) may be a concern for the swine industry. Ultraviolet treatment at 254 nm (UV-C)
of liquid plasma has been proposed as an additional biosafety feature in the manufacturing process of
SDPP. We found that UV-C exposure in the liquid plasma at 3000 J l�1 reduces about 4 log10 ml�1 for
E. coli K88 and K99. Full inactivation of both E. coli strains was achieved in all spray-dried samples. The
incorporation of UV-C treatment to liquid plasma improves the robustness of the SDPP manufacturing
process.
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Abstract

The objectives of this study were to assess the effectiveness of an ultraviolet

(UV-C, 254 nm) irradiation system and the spray-drying method as two

independent safety steps on inactivation of Escherichia coli K88 and K99 spiked

in porcine plasma at 6�46 � 0�04 log10 ml�1 and 6�78 � 0�67 log10 ml�1

respectively for UV-C method, and at 7�31 � 0�39 log10 ml�1 and 7�66 � 0�11
log10 ml�1, respectively for the spray-drying method. The UV-C method was

performed at different UV light doses (from 750 to 9000 J l�1) using a pilot

plant UV-C device working under turbulent flow. Spray-drying treatment was

done at inlet temperature 220 � 1°C and two different outlet temperatures,

80 � 1°C or 70 � 1°C. Results indicated that UV-C treatment induced a 4

log10 viability reduction for both E. coli at 3000 J l�1. Full inactivation of both

E. coli strains was achieved in all spray-dried samples dehydrated at both outlet

temperatures. The special UV-C system design for turbid liquid porcine plasma

is a novel treatment that can provide an additional redundant biosafety feature

that can be incorporated into the manufacturing process for spray-dried

animal plasma.

Introduction

Spray-dried animal plasma (SDP) is a protein source

extensively used in pig feed due to its functional compo-

nents that contribute to improved post-weaning perfor-

mance and survival (Torrallardona 2010). However, the

safety of raw materials from animal origins is a concern

for the swine industry. Ultraviolet (UV) treatment of liq-

uid plasma has been proposed to introduce an additional

redundant inactivation step in the manufacturing process

of SDP to further enhance biosafety of the final spray-

dried product (Polo et al. 2015; Bl�azquez et al. 2017).
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Ultraviolet exposure at a wavelength of 254 nm

(UV-C) is a nonthermal process that has a germicidal

effect by causing thymine-thymine and thymine-cytosine

dimers in DNA and thymine-uracil dimers in RNA,

which disrupts microbial reproduction (Jagger 1967).

During the spray-drying process, thermal inactivation,

high pressure and rapid dehydration are the phenomena

involved in microbial inactivation. Although the most

important site of damage caused by dehydration is the

cytoplasmic membrane (Crowe et al. 1987; Lievense &

van ’t Riet 1994; Perdana et al. 2013; Huang et al. 2017),

dehydration also produces damage to DNA/RNA and

protein (Lievense 1992). Thus, the sequential action of

both methods for the plasma production process is

promising to inactivate micro-organisms, since both dam-

age different targets involved in microbial inactivation.

Enterotoxigenic Escherichia coli is one of the main

causes of enteric disease and death in newborn and

weaned pigs (David 2002) and is the major cause of

neonatal diarrhoea in calves (Acres 1985). E. coli requires

the expression of adhesion fimbriae (adhesins), which are

encoded in plasmids, to be adhered to the intestinal

epithelium. E. coli expressing K88 adhesin is mainly found

in pigs (Gaastra and De Graaf 1982), while K99 is the

main adhesion antigen found in bovine species (Tzipori

1981), although K99 can also be found in ovine and por-

cine species (Gaastra and De Graaf 1982).

The aim of this study was to assess the effectiveness of

a UV-C treatment system on E. coli inactivation after

inoculation in fresh unconcentrated liquid porcine

plasma. In addition, a second objective was to test the

effectiveness of the spray-drying process on the inactiva-

tion of E. coli at two different outlet temperatures, at the

regular outlet temperature normally used by the industry

(80°C) and at lower outlet temperature (70°C).

Results and discussion

UV-C test

Plasma inoculated with E.coli K88 strain had an initial

count of 6�46 � 0�04 log10 ml�1. After UV-C treatment

at 3000 J l�1, bacterial counts showed a significant reduc-

tion of 4�34 log, describing a curve adjusted to the log

linear plus tail model (Fig. 1) with a regression coefficient

of R2 = 0�95 (Table 1). At doses of 6000 and 9000 J l�1,

residual E. coli populations of 1�18 � 0�30 and

1�12 � 0�30 log10 ml�1 were counted, respectively. The

UV-C doses required to have 4 log10 reduction (log10R)

was predicted to be 3105 J l�1.

Plasma inoculated with the strain E. coli K99 had an

initial count of 6�78 � 0�67 log10 ml�1. After UV-C treat-

ment, bacterial counts decreased significantly, showing a

curve adjusted with the Weibull plus tail model, with a

regression coefficient of R2 = 0�923 (Table 1). There was

a 3�97 log10 ml�1 reduction of the initial count between 0

and 3000 J l�1 (Fig. 1). Residual populations of

2�30 � 0�08 and 2�11 � 0�15 log10 ml�1 were counted

after irradiation at doses of 6000 and 9000 J l�1, respec-

tively. The 4 log10R was predicted to be achieved at

3427 J l�1.

Spray-drying test

Full inactivation of strains E. coli K88 and K99 was

achieved in all spray-dried samples dehydrated at an inlet

temperature of 220 � 1°C and both outlet temperatures

of 80 � 1°C or 70 � 1°C (Table 2).

Numerous studies have demonstrated the effectiveness

of the spray-drying process used during the manufactur-

ing of SDP, providing evidence that SDP is a biologically
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Figure 1 Inactivation kinetics of the strains Escherichia coli K88 (a) and E. coli K99 (b) after UV-C irradiation. Escherichia coli K88 presented a Log lin-

ear plus tail inactivation kinetics while E. coli K99 showed a Weibull plus tail inactivation kinetics. ‘Measured’ indicate the real data obtained during

the experiment. ‘Identified’ is the best model fit for prediction kinetics obtained by the GInaFiT program Measured ; Identified [Colour figure

can be viewed at wileyonlinelibrary.com]

© 2018 The Authors. Letters in Applied Microbiology 67, 442--448 published by John Wiley & Sons Ltd on behalf of The Society for Applied Microbiology. 443

E. Bl�azquez et al. E. coli UV-C inactivation in plasma



safe product relative to multiple pathogens of concern for

the swine industry (Polo et al. 2005; Pujols et al. 2007,

2008, 2014; Gerber et al. 2014). However, it is prudent to

evaluate additional biosafety features that may further

enhance the robustness of the SDP production process.

Exposure to UV-C is extensively used for the disinfection

of liquid media and surfaces due to its germicidal activity

(Guerrero-Beltran 2004; Lin et al. 2012). Previous

research has demonstrated that UV-C treatment of liquid

plasma was effective to inactivate Porcine parvovirus (Polo

et al. 2015) and Salmonella spp. (Bl�azquez et al. 2017)

inoculated in liquid plasma. During the spray-drying pro-

cess, temperature and dehydration are the mechanisms

that contribute to microbial mortality (Perdana et al.

2013; Huang et al. 2017), whereas, UV-C treatment

causes damage to nucleic acids (Jagger 1967) and protein-

DNA cross links (Smith 1962).

In this study, UV-C inactivation kinetics of two strains

of E. coli from porcine (K88) and bovine (K99) origins

were very similar, although such kinetics fit better to dif-

ferent models, as indicated by the lower RMSE in each

case. For both strains of E. coli, a rapid decrease in bacte-

rial count was observed between 0 and 3000 J l�1 of

UV-C, with the appearance of a residual population

(Nres) afterwards. These results agree with other UV-C

inactivation studies performed with E. coli (Hijnen 2006).

The reduction of the inactivation rate at high UV fluen-

cies (tailing) could be caused by micro-organism aggrega-

tion, appearance of a resistant subpopulation, hydraulic

design (Hijnen 2006), matrix effect or particle size effect

(Winward 2008). Porcine plasma is a dense, coloured, liq-

uid matrix with 8–10% solids, and contains a complex

blend of different proteins with some of the proteins hav-

ing binding properties (Burnouf 2007). Therefore, the

matrix and particle size effects of porcine plasma may

have had a special impact on the tailing effects of UV-C

treatment in the present study.

The residual population of E. coli after UV-C treatment

should apparently be eliminated in the subsequent spray-

drying process based on the total inactivation results by the

spray-drying methods at the two outlet temperatures tested

(Table 2). The outlet spray-drying temperature is 80°C for

commercial manufacturing of SDP (P�erez-Bosque et al.

2016) and results of the present study suggest that both

E. coli strains are very susceptible to spray-drying even at a

lower outlet temperature (70°C). These results provide

confidence that current commercial spray-drying condi-

tions are highly effective for inactivation of E. coli.

Processing steps should be able to remove or inactivate

a wide range of pathogens, according to the World Health

Organization (WHO, 2004) guidelines on viral inactiva-

tion and removal procedures intended to assure the viral

safety of human blood plasma products. These guidelines

recommend that two or more robust, effective and reli-

able processes will be able to remove or inactivate 4 logs

or more of viruses. Although the inactivation of viruses

has to be considered separately, these guidelines used for

virus safety in human plasma transfusion products can be

applied to pathogens in general that affect animal blood

then UV-C light treatment at 3000 J l�1 and spray-drying

can be considered two robust safety procedures in the

production of SDP since both methods individually inac-

tivated at least 4 log10 E. coli.

In addition, the manufacturing process of SDP has

other safety features, such as blood collection from

Table 1 Statistical parameters of the two models for inactivation applied to results obtained with strains Escherichia coli K88 and K99

E. coli K88 E. coli K99

Log linear plus tail Weibull plus tail Log linear plus tail Weibull plus tail

MSE* 0�2594 0�2686 0�3874 0�3835
RMSE† 0�5093 0�5182 0�6224 0�6193
R-square 0�9504 0�9511 0�9167 0�9235
R-square adjusted 0�9457 0�9438 0�9048 0�9058
4D reduction‡ reached at (J l�1) 3105�9 3105�9 3427�2 3427�2

*MSE: Mean sum of squared error.

†RMSE: Root mean sum of squared error. The lowest RMSE value determines the inactivation model with the best fit. The lowest RMSE value is

showed in bold in the table.

‡4D reduction: UV-C dose irradiation in J l�1 at which a 4 Log reduction was achieved.

Table 2 Effect of the outlet temperature on the inactivation of each

Escherichia coli strain tested

E. coli K88 strain

(CFU log10 g�1

solids) � SD

E. coli K99 strain

(CFU log10 g�1

solids) � SD

80°C outlet air temperature

Inoculated plasma 7�31 � 0�39 7�66 � 0�11
Spray-dried plasma (SDP) <1 <1

70°C Outlet air temperature

Inoculated plasma 6�93 � 0�5 7�44 � 0�42
SDP <1 <1
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healthy animals declared fit at slaughter for human con-

sumption, pooling of inherent neutralizing antibodies

(NA) against potential pathogens, and post-packaging

storage in a dry environment at room temperature for at

least 14 days (P�erez-Bosque et al. 2016). Plasma pooling

is also a recognized safety step in the production of cer-

tain human plasma products (Solheim et al. 2000, 2006,

2008), since there is successful neutralization of antigens

in the presence of NA. Some micro-organisms in dehy-

drated form and stored under appropriate constant con-

ditions can remain viable in a unique vitrified state for

very long times, even years (Perdana et al. 2013). Spray-

dried plasma has a water activity of <0�6 and is packaged

and stored in mild temperatures. The storage conditions

for SDP held at room temperature (c. 20°C) for 14 days

has been demonstrated effective to inactivate Porcine epi-

demic diarrhea virus, Porcine reproductive and respiratory

syndrome virus and other coronaviruses when these

viruses were experimentally inoculated on spray-dried

plasma (Pujols and Segal�es 2014; Sampedro et al. 2015).

However, it is unknown if these storage conditions affect

E. coli or other bacteria survival in spray-dried plasma. In

the present study, the SDP storage temperature effect

(20°C for 14 days) on E. coli survival was not tested

because both E. coli strains did not survive the spray-dry-

ing process. All the above-mentioned safety features

involved in the manufacturing process of SDP use differ-

ent inactivation mechanisms, and collectively ensure the

biosafety of SDP.

In conclusion, this study provides evidence that afford-

able levels of UV-C treatment (3000 J l�1) of liquid por-

cine plasma can significantly decrease E. coli bacterial

counts (4 log10 ml�1 at 3000 J l�1). Furthermore, the

study indicated that both UV-C treatment and spray-dry-

ing as independent safety procedures are very effective for

inactivating E. coli K88 and K99. This novel UV-C tech-

nology can be adapted to further enhance the robustness

of the manufacturing process for assuring the biosafety of

spray-dried plasma.

Materials and methods

Bacterial strains and test products

Two strains of E. coli were used in the present study: an

isolate from swine expressing the K88 adhesin, and a sec-

ond isolate from bovine expressing the K99 adhesin (both

isolates were kindly provided by Dr. Antonio Ju�arez.

University of Barcelona, Spain). A 0�3 ml volume of

E. coli isolates was cultured in 100 ml of LB media

(Sigma-Aldrich) at 37°C and 150 rev min�1 for 18 h. The

cells were subsequently concentrated by centrifuging

(1000g for 20 min at 4°C) using sterilized 40 ml tubes

containing 20 ml of culture media. The remaining culture

media was removed by resuspending the cell precipitate

in 20 ml of sterile 0�01 g mol�1 phosphate buffer saline

(PBS). After resuspension, it was centrifuged again as

described above and the resulting cell precipitate that was

resuspended again in 500 ml of PBS reaching a final titre

of 8�98 log10 CFU per ml for K88 and 8�91 log10 CFU per

ml for K99 .

Fresh liquid porcine plasma from the production plant

of APC Europe S.A., (Granollers, Spain) was used for

these trials. This plasma was obtained by centrifugation of

blood from pigs processed at a local officially inspected

abattoir.

Settings of pilot scale UV-C system

The UV-C reactor system (SP1) was designed and manu-

factured by Sure Pure Operation AG (Zug, Switzerland)

that has already been described by Bl�azquez et al. (2017).

The configuration of the pilot scale UV-C reactor con-

sisted of a closed system with one low pressure mercury

UV lamp (30 UV-C Watts, 254 nm) surrounded by a

quartz crystal. The plasma flowed through a steel tube

containing a vortex (internal grooved spiral tube that

generated a turbulent flow) between the spiral tube and

the quartz sleeve. The tangential inlet of the reactor cre-

ated high velocity and turbulence in the inlet chamber

improving liquid contact with the UV-C light. The liquid

was pumped from the inlet chamber into the reactor at a

constant flow rate of 4000 l h�1 to achieve a Reynolds

value greater than 2800 which is indicative of a turbulent

flow (Simmons et al. 2012). Plasma was pumped from

the tank to the UV-C lamp and recirculated many times

through this circuit to achieve the required UV-C dose vs

time. The time spent by the liquid to pass through the

system once was 7�2 s, delivering 22�95 J l�1 or

23�40 mJ cm�2 per cycle.

UV-C test

A total of 60 kg of plasma were used for the present

study, 30 kg for each of the tested E. coli strains. For each

isolate, the 30-kg batch was divided into three 10-kg sub-

batches to conduct tests in triplicate. Because liquid fresh

plasma from the abattoir may contain different micro-

organisms, the initial 60 kg of plasma product was treated

by UV-C at 10 000 J l�1 for 1 h to inactivate any poten-

tial bacteria prior to artificial inoculation with E. coli.

Plasma was spiked with an inoculum of 90 ml of

E. coli K88 (ratio 1/330) and 220 ml in the case of E. coli

K99 (ratio 1/138). After inoculation, the liquid was recir-

culated through the UV-C device for 3 min before acti-

vating the UV lamp. At time 0, a non-processed sample
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was taken and the UV lamp was activated. During the

UV-C treatment, 150 ml samples were taken when doses

reached 750, 1500, 3000, 6000 and 9000 J l�1 (equivalent

to 4047″, 9051″, 18054″, 37034″, 56000″).
After each UV-C irradiation dose, 1 mL samples were

10-fold diluted in peptone water and 0�1 ml inoculated by

duplicates onto TBX agar plates (Sigma-Aldrich) and incu-

bated for 24 h at 37°C. Plates with more than 20 and <300
colonies were counted and results expressed as log10 ml�1.

Spray-drying test

A total of 7 kg of fresh plasma from a commercial manu-

facturing plant was previously UV-C treated at 10 000 J

l�1 prior to inoculation with the E. coli strains to elimi-

nate any other bacteria present in the initial raw material.

Half amount (3�5 kg) of this UV treated plasma was

spiked with the swine E. coli K88 isolate at a ratio of 1/47

reaching a final titer of 7�31 � 0�39 log10 ml�1 and the

other half with the bovine E. coli K99 isolate, at a ratio 1/

18 reaching a final titre of 7�66 � 0�11 log10 ml�1. From

each of the 3�5 kg inoculated plasma aliquots, two bottles

of 750 ml were obtained and spray-dried in a lab drier

(B€uchi Mini Spray Dryer B-290, B€uchi Labortechnik,

Switzerland) at two different conditions: inlet temperature

at 220 � 1°C and outlet temperature at 80 � 1°C or

70 � 1°C, after stabilization of the spray-drier with water

and non-inoculated control plasma. All studies were per-

formed in triplicate. Air flow through the column was set

at 20–27 m3 h�1 at 20°C. Estimated dwell time was <1 s.

Once SDP was obtained at the two designated outlet

temperatures, three tubes containing 0�5 g of dried plasma

for each condition were obtained and the dry samples were

resuspended in water at a ratio of 1 : 9. From this resus-

pension, 0�1 ml was seeded in TBX agar for 24 h at 37°C.
Colony counting was performed as indicated in the previ-

ous section. Results were expressed as a log10 g�1 of solids

according to the equation: log10 g�1 = log10(CFU per ml)/

[(% solid content of resuspended sample)/100].

Modelling of inactivation

The GInaFiT software was used to calculate and plot non-

linear E. coli survival curves. The log linear plus tail

(Geeraerd et al. 2000) and Weibull plus tail (Albert and

Mafart 2005) models were tested. The log linear plus tail

model (Geeraerd et al. 2005) follows the equation (1):

logN ¼ logðð10logN0 � 10logNresÞÞ � eðkmaxtÞ þ 10logNres ð1Þ
where kmax is the inactivation rate of the log linear part

of the curve; N0 is the initial bacterial concentration; t is

time and Nres is the number of resistant bacteria sub-

population.

The Weibull model plus tail (Albert and Mafart 2005)

uses the equation (2):

log10ðNÞ ¼ log10ðð10logN0� 10logNresÞÞ� 10 �t
dð Þp þ 10logNres

ð2Þ
where N0 is the initial bacterial concentration; t is time; d
parameter represents the time of the first decimal reduc-

tion concentration for the part of the population not

belonging to Nres; p parameter allows to determine con-

cavity or convexity of the curve; and Nres is the number

of resistant bacteria sub-population.

Statistical analysis

Data were expressed by means of Log10 values and stan-

dard deviations of three independent experimental

batches. Mean, standard deviations, ANOVA and F-test for

comparisons were calculated with Excel 2007 (Microsoft

Office). The LSD (Least Significant Difference) test was

calculated with Statgraphics Centurion XV ver. 15.2.14

(©StatPoint Technologies Inc, Warrenton, Virginia) to

determine significant differences between treatments. Dif-

ferences at P < 0�05 were considered significant.

Mean square error (MSE), goodness of fit in terms of

root mean square error (RMSE), correlation coefficient

(R2) and adjusted correlation coefficient (adj-R2) values

were calculated with the GInaFiT software (Geeraerd et al.

2005). The smallest RMSE determined the inactivation

model with the best fit (Geeraerd et al. 2005).
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