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Abstract

Over the centuries, the geographical distribution of brown bear (Ursus arctos) across the

Iberian Peninsula has been decreasing, with the species currently confined to North Iberia.

The Cantabrian brown bear population is one of the smallest in Europe and is structured into

two subpopulations, positioned along an east-west axis. Given the current critically endan-

gered status of this population, it is essential to have a clear picture of its within-population

genetic patterns and processes. We use a set of three molecular markers (mitochondrial

DNA, autosomal microsatellites and sex markers) to clarify the genetic origins and assess

the migration patterns and gene flow of the Cantabrian brown bear population. Our results

reveal the presence of two different mitochondrial (matrilineal) haplotypes in the Cantabrian

population, both belonging to European brown bear clade 1a. The two haplotypes are geo-

graphically structured between Eastern (haplotype CanE) and Western Cantabrian (haplo-

type CanW) subpopulations, which is consistent with the genetic structure previously

identified using nuclear markers. Additionally, we show that CanE is closer to the historical

Pyrenean (Pyr) haplotype than to CanW. Despite strong structuring at the levels of mtDNA

and nuclear loci, there is evidence of bidirectional gene flow and admixture among subpopu-

lations. Gene flow is asymmetrical and significantly more intense from the Eastern to the

Western Cantabrian subpopulation. In fact, we only detected first generation male migrants

from the Eastern to the Western Cantabrian subpopulation. These results suggest more

intense migration from the smaller and more vulnerable Eastern Cantabrian subpopulation

towards the larger and more stable Western Cantabrian subpopulation. These new insights

are relevant for assessments of on-going conservation measures, namely the role of dis-

persal corridors and enhanced connectivity. We discuss the importance of complementary

conservation measures, such as human-wildlife conflict mitigation and habitat improvement,

for the conservation of a viable Cantabrian brown bear population.
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Citation: Gregório I, Barros T, Pando D, Morante J,

Fonseca C, Ferreira E (2020) Paths for colonization

or exodus? New insights from the brown bear

(Ursus arctos) population of the Cantabrian

Mountains. PLoS ONE 15(1): e0227302. https://

doi.org/10.1371/journal.pone.0227302

Editor: Mateusz Baca, University of Warsaw,

POLAND

Received: May 20, 2019

Accepted: December 16, 2019

Published: January 31, 2020
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Introduction

Large carnivores are one of the most challenging groups of species to conserve due to their

large territories, broad dispersal ranges, low densities and reproduction rates, direct persecu-

tion by humans and due to other factors concerning human-wildlife conflict [1,2]. Together,

these factors increase their vulnerability to extinction. Moreover, small isolated populations of

carnivores often present low genetic diversity, which can translate into lower adaptability and

survival when faced with environmental change [3,4,5].

The global population of the brown bear Ursus arctos is widely distributed and stable [6].

However, the southern range of this species primarily consists of small and fragmented popu-

lations that are locally endangered, as is the case for the Cantabrian brown bear population,

which represents one of the smallest populations in Europe. This population is fragmented

across a mountain range into two subpopulations (Western and Eastern) separated by 50 km

[7,8]. Human persecution and poaching represent serious threats to the Cantabrian brown

bear population, especially for the Eastern subpopulation [9]. Furthermore, connectivity

between both subpopulations is limited, resulting in isolation and, consequently, reduced con-

nectivity and gene flow [10,11,12]. Considering the current conservation status of the Canta-

brian brown bear population, it is important to understand contemporary genetic patterns in

both subpopulations in order to inform conservation and management strategies and ensure

their long-term survival.

To assess the genetic structure and diversity of the Cantabrian brown bear, we had four

principle goals in this study. First, we wanted to establish the origins and phylogeographic

affinities of the Cantabrian brown bear. Two main mitochondrial DNA lineages (Western,

divided in clades 1a and 1b; and Eastern, which includes clade 3a) of brown bear are known to

occur in Europe [13,14,15], but the phylogeographic affinities between the two Cantabrian

subpopulations and their relationships to other Iberian and European populations are

unknown. Secondly, we aimed to link Cantabrian brown bear genetic structure detected using

nuclear markers with patterns detected using matrilineal (mitochondrial DNA, mtDNA)

markers. Genetic structuring would help us understand population dynamics and constitute a

basis for answering other questions related to migration, gene flow and sex-biased dispersal

[16,17]. Thirdly, we endeavoured to evaluate the genetic health of the Cantabrian brown bear

population by estimating effective population sizes (Ne), levels of endogamy, and by detecting

genetic bottlenecks, all parameters that can influence the genetic diversity and thus genetic

health of a population. Finally, given that connectivity and gene flow contribute to preventing

inbreeding and can promote genetic diversity within a population [16,18], we assessed the

degree of connectivity between the two Cantabrian brown bear subpopulations. We believe

that the outcomes of this study provide a broader picture of the genetic condition, health and

population dynamics of the brown bear population in the Cantabrian Mountains.

Materials and methods

Study area

This study was conducted in the Cantabrian Mountains, located along the Atlantic coast of

north-western Spain, spanning the provinces of Asturias, Cantabria, León, Lugo and Palencia

(Fig 1). The Cantabrian Mountains display considerable geomorphological heterogeneity and

have a complex topography, with altitudes ranging from sea level to 2647 m [19,20]. The

northern (Atlantic) slopes of the mountain range are characterized by steep and narrow val-

leys, with abundant precipitation and humidity, whereas the southern slopes have wider valleys

and precipitation occurs mainly during winter. Given its characteristics, the mountain range
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marks the transition between the Euro-Siberian and Mediterranean phylogeographic regions

[21]. Forest coverage represents about 25% of the total area and is mainly characterized by

beech (Fagus sylvatica), oaks (Quercus pyrenaica, Quercus petraea, Quercus ilex), birch (Betula
alba), holly (Ilex aquifolium), chestnut (Castanea sativa) and hazel (Corylus avellana). The

landscape is mostly characterized by shrubland (Juniperus communis, Vaccinium uliginosum,

Vaccinium myrtillus, Arctostaphylos uva-ursi) at altitudes higher than 1700 m [19,22].

Although the human population density in the area is low, human activities have converted

large patches of natural cover into pastures and agricultural lands. This habitat conversion has

resulted in highly fragmented forested areas [19] and less suitable habitat for brown bears,

increasing their vulnerability.

Sample collection and DNA extraction

A total of 142 samples were collected by experienced field technicians from Fondo para la Pro-
tección de los Animales Salvajes (FAPAS) between 2010 and 2017, under the framework agree-

ment signed between the Regional Administration and FAPAS for the application of the

Fig 1. Map of the study area, with sampling locations for all genotyped individuals. Individuals are identified according to their assignment to genetic

clusters or their admixed origin (based on STRUCTURE results and the thresholds inferred in HYBRIDLABS): CanWest (white); CanEast (black); admixed

(grey). All individuals sampled from the Eastern Cantabrian population present the CanE haplotype and all individuals sampled from the Western Cantabrian

population present the CanW haplotype, apart from seven individuals denoted “E”. Maps modified from: Natural Earth (naturalearthdata.com) physical map

(top right); satellite images from Copernicus Sentinel Data (2017) for Sentinel-2A/B, obtained from the Copernicus open access hub (bottom); data from

OpenStreetMap contributors, through Wikimedia Commons QGIS unlabelled layer (top left).

https://doi.org/10.1371/journal.pone.0227302.g001
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Brown Bear Recovery Plan. Most samples were collected between 2016 and 2017 (83%), and

consisted of hair samples collected from fences, barbed wire or tree bark along known brown

bear paths. Hair-traps, monitored by camera-traps, were also used to individually sample

brown bears. Four muscle samples were kindly provided by Principado de Asturias, which had

been collected from bear carcasses found in the field. Tissue samples were stored in 70% etha-

nol and hair samples were dried and preserved in individual paper envelopes at room tempera-

ture and in a dry environment until further analysis. DNA extraction was conducted using

QIAGEN1 DNeasy Blood and Tissue Kit, following the manufacturer’s instructions.

Mitochondrial DNA amplification and sequencing

A 269 base pair (bp) fragment of the mtDNA control region was amplified using the primers

developed by Taberlet and Bouvet [14]. PCR amplification was performed using INVITRO-

GEN1 Taq DNA Polymerase and following the manufacturer’s conditions, with an annealing

temperature of 50 ºC. PCR products were purified and sequenced using an ABIPRISM1

3730-XL DNA Analyser from Applied Biosystems™. Sequences were aligned using MEGA 7.0

[23] with the CLUSTALW algorithm [24], and alignments were manually edited afterwards.

Microsatellite amplification and genotyping

A total of 15 autosomal and two sex markers were amplified in four multiplex sets, comprising

five (MU50, MU23, MU59, G10L, SRY), six (G10P, G10J, G1A, MU61, MU51, AMLX/Y) and

three (G10X, G1D, MU05; G10C, MU09, MU10) loci [3,25,26,27,28]. DNA amplifications

were performed using the QIAGEN1Multiplex amplification kit and following the manufac-

turer’s conditions, with an annealing temperature of 57 ºC. PCR products were analysed using

an ABIPRISM1 3730-XL DNA Analyser. In order to reduce the likelihood of mistyping

errors, each sample was independently amplified and genotyped a minimum of three times for

each locus. Microsatellite genotyping was performed using GENEMARKER™ v2.4.1 [29].

Allele calling was performed manually, with careful inspection of electrophoretograms. Indi-

vidual profiles (S1 Table) were inferred only when at least 12 microsatellite markers were suc-

cessfully amplified (in most cases, we successfully genotyped at 14 or more markers).

Data analyses

Phylogeographic affinities. To infer phylogeographic affinities of the Cantabrian brown

bear, we retrieved 81 mtDNA control region haplotypes of Eurasian bears from GenBank (see

details and references in S2 Table) and included them in an analysis with the haplotypes we

obtained in this study. Three sequences from Asia and North America were used as outgroups

for Bayesian inference. Numbers of individuals per haplotype were obtained from the original

publications. We divided the haplotypes according to geographic origin, i.e. Iberian Peninsula,

Apennine Peninsula, Balkan Peninsula, Carpathians, Scandinavia, Middle East, or NW Russia,

Baltic & Finland.

Evolutionary pathways among the different haplotypes were assessed through a haplotype

network generated in POPART 1.7 [30] using a median-joining algorithm [31]. The median-

joining network was constructed with equal weights for all mutations and setting the parame-

ter ε to zero to restrict the choice of feasible links in the final network. Phylogenetic relation-

ships among haplotypes were inferred using a Bayesian approach. The Hasegawa-Kishino–

Yano (HKY) model of nucleotide substitution represented the best-fitting model and was

selected using MrMODELTEST 2.3 [32]. Inferred parameters were used as priors in MrBAYES

3.2 [33]. Two independent runs of four Markov chain Monte Carlo (MCMC) permutations

were performed for 1,500,000 generations, sampling every 100 generations. Consensus trees
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(50%) were drawn using FIGTREE 1.4.0 [34] after discarding the first 25% of iterations as

burn-in.

Genetic patterns and structure units. MICROCHECKER 2.2.3 [35] was used to test the

final marker dataset for potential errors and matches between different samples were identified

using GENALEX 6.5 [36]. Since evidence for null alleles or allele dropout can be biased by

population structure and admixture, we tested the Eastern and Western Cantabrian popula-

tions separately. Probability of identity (PID(SIBS)) was estimated in GENALEX 6.5 for a mini-

mum of 12 loci, using a conservative method that assumes a population of siblings [37]. When

matches between two different samples were detected, we deemed one of the samples to be a

recapture and removed it from the dataset. All 15 loci were tested for deviations from Hardy-

Weinberg equilibrium (HWE) and linkage equilibrium (LE) in ARLEQUIN 3.5.1.2 [38]. Bon-

ferroni corrections were applied for all multiple comparisons. We searched for evidence of

genetic structure using STRUCTURE 2.3.4 [39], applying an admixture model with correlated

allele frequencies and no prior information about the original population of each individual.

We ran 10 replicate runs of the analysis, for 2,000,000 MCMC iterations, with a burn-in of

100,000 steps and with K number of populations ranging from 1 to 6. We used STRUCTURE

HARVESTER [40] to summarize the results and estimated the best K using the Evanno

method [41].

To formally assess partitioning of genetic variation among the identified subpopulations,

we performed a standard analysis of molecular variance (AMOVA). The significance of the

inferred genetic structure was assessed through pairwise FST [42]. These analyses were per-

formed with 10,000 permutations in ARLEQUIN.

Genetic and demographic parameters. We estimated the number of alleles (NA), rarefied

allelic richness (Ar), observed (HO) and expected (HE) heterozygosities, and the inbreeding

coefficient (FIS) using ARLEQUIN. Evidence of bottlenecks for each inferred cluster was tested

using MRATIO [43] and BOTTLENECK 1.2.02 [44]. In MRATIO, we used a set of conserva-

tive parameter values for simulations, with Δg = 3.5 (Δg: mean size of larger mutations) and

ps = 0.9 (ps: mean % of mutations that add or delete only one repeat) [43]. The parameter Θ
was allowed to vary over several orders of magnitude (0.01, 0.1, 1 and 5) to account for a wide

range of mutation rates and pre-bottleneck effective population sizes. In BOTTLENECK, sim-

ulations were performed using a two-phased model (T.P.M), with 70% S.M.M., 20% variance

and 1,000 replicates. Wilcoxon sign-rank tests were applied to determine the significance of

heterozygosity excess or deficiency for each model.

We assessed the effective population size (Ne) using the linkage disequilibrium method

[45], whereas the effective number of breeders (Neb) was determined using the molecular co-

ancestry method [46]. Both methods were implemented in NeESTIMATOR v2 [47]. The 95%

confidence intervals for both methods were obtained through a Jackknife method and esti-

mates for the linkage disequilibrium method excluded all alleles with a frequency<0.05 to cor-

rect for known biases from rare alleles.

Connectivity and gene flow between subpopulations. We calculated the likelihood of

assignment of individual genotypes to both subpopulations with GENALEX. To assess the

most conservative Q posterior probability of assignment to parental subpopulations and the

potential of the studied loci to detect admixed individuals, we tested the power of the Bayes-

ian-based STRUCTURE method by performing simulations in HYBRIDLAB 1.0 [48]. Multilo-

cus genotypes were simulated by sampling alleles from the inferred populations shown in

STRUCTURE, assuming random mating, linkage equilibrium and neutrality. Since we deter-

mined the most likely K for the Cantabrian bear population to be K = 2 based on the Evanno

method, we selected 15 individuals from each of the two inferred subpopulations using a Tq

threshold value of Tq>0.90 [39]. We then simulated a total of 100 genotypes for each of the
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admixed classes: F1, F2, and backcrosses BxOa and BxOb. Assignment tests for simulated

genotypes were performed under the same conditions as for the real dataset in STRUCTURE.

First generation migrants were identified by combining the results from STRUCTURE and

HYBRIDLABS with those obtained using BAYESASS 3.0.4 [49] and GENECLASS 2.0 [50]. In

BAYESASS, the MCMC algorithm was run for 10,000,000 iterations (three replicates), with a

burn-in period of 1,000,000 and a sampling frequency of 1000. In GENECLASS, migrant

detection was performed using the algorithm developed by Paetkau and collaborators [51].

We estimated the degree and direction of asymmetric gene flow among subpopulations

using the relative migration network method developed by Sundqvist et al. [52], which is

implemented in the function divMigrate of the diveRsity R package [53]. A significant relative

migration network was estimated based on a bootstrap procedure with 50,000 replicates. Esti-

mates of migration rates obtained using this method (which relies on differences in allele fre-

quencies) were compared with the recent migration rates obtained using BAYESASS (which

are inferred from genotypes).

Results

Our final dataset included 80 unique genotypes, corresponding to 50 and 30 bears captured

from the Western and Eastern Cantabrian subpopulations, respectively. The probability of

identity, assuming a population of siblings, for the whole Cantabrian population was 7.0x10-4

or 1.1x10-4 considering 12 or all 15 loci, respectively. We found evidence of null alleles in two

markers (MU05 and G10X) in the Eastern Cantabrian subpopulation (S3 Table). Homozygote

excess was only found for one allele in each of these two markers, i.e., allele 129 in MU05 and

allele 128 in G10X. After careful manual inspection of the electrophoretograms from replicate

runs for MU05 and G10X, we confidently excluded the possibility of allele dropout, null alleles

or stuttering for the Eastern Cantabrian subpopulation. Given that there is ongoing gene flow

between the two subpopulations, recent migration patterns may have affected the proportions

of homozygotes and heterozygotes in both subpopulations. Notably, the Eastern Cantabrian

subpopulation is smaller, so it is more prone to exhibit such variation. There was no evidence

of null alleles, stuttering or dropout for the Western Cantabrian subpopulation when first gen-

eration migrants were excluded from the analysis.

Phylogeographic affinities

In this study, we generated 112 new sequences for the mtDNA control region (including the

80 individual genotypes, recaptures and samples with insufficient microsatellite data for recon-

structing genotypes), assigned to two different haplotypes, i.e. CanW and CanE (Fig 2B, Gen-

bank accession numbers: MN477248 and MN477249). Haplotype CanW was only found in

bears sampled from the Western Cantabrian subpopulation (n = 43). Haplotype CanE was

recovered from all bears sampled in the Eastern Cantabrian subpopulation (n = 30), as well as

in seven males (8OC, 14OC, 49OC, 71OC, 77OC, 92OC and 93OC, S4 Table) sampled from

the Western Cantabrian subpopulation. The median-joining network (Fig 2C) revealed that

haplotype CanW corresponds to haplotype “Can” previously reported by Taberlet and Bouvet

[14]. Haplotype CanE is recorded for the first time in this study and is more closely related (a

distance of one mutational step) to haplotype “Pyr” from the Pyrenees than it is to haplotype

CanW (a distance of three mutational steps). The two Iberian haplotypes also appear to be

more closely related to those from Scandinavia (Clade 1a) than to haplotypes from other pen-

insulas of southern Europe (Clade 1b), as reported in previous studies [14,54], though that

relationship is not strongly supported by Bayesian inference. However, the relationship

between CanE and Pyr haplotypes is strongly supported by Bayesian inference (posterior
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Fig 2. Phylogenetic and phylogeographic affinities of the Cantabrian brown bear with other European brown bear

populations. (a) Median-joining network of 83 brown bear mtDNA haplotypes from across Europe and the Middle East.

Haplotypes are colour-coded according to geographic origin, in agreement with the nomenclature given by Taberlet and Bouvet

[14]. Iberian haplotypes have been named “CanW” and “CanE” according to their respective regions of origin in Cantabria.

Mutational steps between haplotypes are represented by dashes. (b) Median-joining network of the two mtDNA haplotypes
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probability = 100%, Fig 2A; complete phylogeny in S1 Fig), suggesting that the Cantabrian

population is not monophyletic.

Genetic structure, connectivity and gene flow

Five of the 15 microsatellite loci we assessed significantly departed from HWE conditions, and

48 out of 105 pairwise combinations presented deviations to LE conditions (Table 1), for the

whole Cantabrian population and after Bonferroni correction. Deviations from HWE and LE

conditions were substantially reduced when each subpopulation was analysed separately; only

two or three loci showed departures from HWE in both subpopulations, and the Western and

Eastern Cantabrian subpopulations exhibited 4 or 27 pairs of loci with significant deviations

from LE after Bonferroni correction, respectively (Table 1).

The genetic distance between the Western and Eastern Cantabrian subpopulations was

always significant (p<0.001), ranging from FST = 0.145 when first generation migrants were

included in the Western Cantabrian subpopulation to FST = 0.207 when migrants were

excluded from the analysis. These values indicate considerable genetic differentiation between

the two subpopulations [42], with structuring of the combined Cantabrian Mountains popula-

tion being significant (p<0.001) whether or not migrants were included in the analysis. When

we performed an AMOVA that included first generation migrants in the Western subpopula-

tion, 82.4% of the total genetic differentiation was attributed to differences within individuals,

14.5% was attributed to differences among populations, and 3.1% to differences among

sampled from the Cantabrian population. Dark green corresponds to individuals sampled from the Western Cantabrian

subpopulation and light green corresponds to individuals sampled from the Eastern Cantabrian subpopulation. (c) Details of

the Bayesian inference tree based on 83 brown bear haplotypes from across Europe and the Middle East. Clade names follow

Davison et al. [54].

https://doi.org/10.1371/journal.pone.0227302.g002

Table 1. Genetic diversity indices for the Cantabrian brown bear population and its subpopulations, based on 15 microsatellite markers. Numbers of loci or pairs of

loci with significant deviations from Hardy-Weinberg equilibrium and linkage equilibrium conditions after Bonferroni correction are shown. Significant values are in

italics.

Population or sub-population

Parameter Cantabrian Mountains n = 80 Western n = 43 Western with Migrants n = 50 Eastern n = 30
Structure Loci in HWD 5/15 3/15 3/15 2/15

LD (pairs of loci in LD) 48/105 4/105 15/105 27/105

Genetic Diversity A 53 49 50 43

Ap - 9 10 3

Ar 6.37 5.61 5.97 5.15

Gene Diversity 0.525 0.544 0.490 0.516

HE 0.539 0.487 0.513 0.508

HO 0.481 0.509 0.515 0.453

Endogamy FIS 0.073 -0.002 -0.017 0.141
Effective Population Sizes Ne (95% CI) - 24.7 (15.4–43.7) 10.1 (3.8–20.6) 1.8 (1.2–2.7)

Neb (95% CI) 3.5 (2.5–4.7) 4.1 (2.6–6.0) 5.3 (2.8–8.5) 2.1 (1.1–3.4)

Bottlenecks M ratio 0.614 0.620 0.627 0.610
Heterozygosity Excess� (p values) 0.011/0.001 0.252/0.095 0.119/0.022 0.003/0.003

Abbreviations: HWD, deviations to Hardy-Weinberg equilibrium conditions; LD, linkage disequilibrium; A, number of alleles; Ap, private alleles; Ar, allele richness

(rarefied); HE, expected heterozygosity; HO, observed heterozygosity; FIS, inbreeding coefficient; Ne, effective population size; Neb, effective number of breeders.

� significance of excess: p values for Sign/Wilcoxon tests under a two phase model (TPM).

https://doi.org/10.1371/journal.pone.0227302.t001
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individuals within subpopulations. When first generation migrants were removed from that

analysis, 79.9% of the total genetic differentiation was attributed to differences within individ-

uals, 18.6% was attributed to differences among populations, and 1.4% to differences among

individuals within subpopulations.

Genotypes from the Cantabrian Mountains were consistently divided into two (K = 2) dis-

tinct genetic clusters with high posterior probabilities (data not shown). The results of the 10

replicate runs were highly consistent, including for Q proportions of the individual genotypes

assigned to each of the inferred genetic clusters. There was strong agreement among the

inferred genetic clusters and the geographic origin of sampled individuals (Western and East-

ern Cantabrian subpopulations). Therefore, the two genetic clusters were denominated Can-

West and CanEast, corresponding to sampling areas and known subpopulations. Individual

genotypes were mostly assigned to the genetic cluster corresponding to the subpopulation

from which the individuals were sampled.

Estimated threshold values (HYBRIDLABS) for assigning individuals to either one of the

two genetic clusters, corresponding to subpopulations, was Tq>0.90. Hence, we assigned all

individuals with Tq>0.90 to one of the two subpopulations (Fig 3). Seven individuals (8OC,

14OC, 49OC, 71OC, 77OC, 92OC and 93OC) sampled from the Western Cantabrian subpop-

ulation were assigned with significant posterior probability to the CanEast genetic cluster (Fig

3). Coincidentally, these individuals correspond to seven males with the CanE mitochondrial

haplotype that had been captured in the Western Cantabrian region. Based on their mtDNA

lineages and posterior probabilities of genotype assignment, these individuals were considered

as first generation migrants (denoted “M” in Fig 3). Twelve additional individuals (denoted

“A” in Fig 3) were not assigned with significant posterior probabilities to either of the two sub-

populations (Fig 3A). Therefore, all 12 of those individuals were considered to be of admixed

origin. However, in all 12 cases, the haplotype of the individuals matched the subpopulation

from which they were sampled.

Overall, the results from assignments performed using GENALEX (Fig 4) were in agree-

ment with the results from STRUCTURE, with all first generation migrants being assigned to

the CanEast genetic cluster despite having been sampled in the territory of the Western sub-

population. In order to exclude the possibility of assignment probabilities being influenced by

the unbalanced sampling sizes of the Western and Eastern Cantabrian subpopulations, we

repeated the assignment tests for three randomly rarefied sample sets (n = 30) of the Western

Cantabrian subpopulation and consistently obtained the same patterns of assignment. More-

over, the same set of seven first-generation migrants was consistently detected using BAYE-

SASS and GENECLASS (S5 Table). Additional individuals were also identified with high

probability as being first-generation migrants in BAYESASS (126OC) or in GENECLASS

without applying a simulation algorithm (126OC, 23OR, 40OR). However, when we did apply

a simulation algorithm in GENECLASS, only five individuals were identified as being first-

generation migrants (8OC, 77OC, 92OC, 126OC, 40OR). Accordingly, as a conservative

approach, we only considered individuals to be first-generation migrants when identified as

such at least once in each approach and possessed a mtDNA haplotype inconsistent with their

capture location.

Relative migration network patterns were the same, regardless of the differentiation statistic

(Nm, D or Gst) implemented in the R package. Relative migration flows (in Nm–number of

migrants) were detected in both directions between the Western and Eastern Cantabrian sub-

populations. However, a significant asymmetric relative migration flow was detected from the

Eastern to the Western subpopulation (Fig 3C). These results are consistent with the migration

rates estimated using BAYESASS (S5 Table).
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Genetic diversity and demographic parameters

Rarefied allelic richness was 6.37 for the whole Cantabrian population (Table 1), but it was

higher in the Western Cantabrian subpopulation with (5.97) or without migrants (5.61) than

in the Eastern Cantabrian subpopulation (5.15). Expected heterozygosity (HE) was higher in

the Western Cantabrian subpopulation including migrants (0.513) than in the Eastern Canta-

brian subpopulation (0.508). Observed heterozygosity (HO) was higher than expected (0.515)

in the Western Cantabrian subpopulation (including migrants), but lower than expected

(0.453) in the Eastern Cantabrian subpopulation. The entire Cantabrian population exhibits a

significant heterozygosity deficit (HE>HO), most likely related to the presence of genetic struc-

ture. The inbreeding coefficient was positive for the entire population in the Cantabrian

Mountains, it was marginally negative for the Western Cantabrian subpopulation, and it was

Fig 3. Genetic assignment, admixture and gene flow among brown bear subpopulations in the Cantabrian Mountains. (a) Posterior probability of

assignment of individual genotypes to each of the genetic clusters matching the two subpopulations. Thresholds of assignment to the CanWest and CanEast

genetic clusters are represented as horizontal lines. Admixed individuals (denoted “A”) have intermediate assignment posterior probabilities. First generation

migrants (denoted “M”) were assigned with higher posterior probability to the subpopulation other than that from which they were sampled. (b) Average

posterior probabilities of assignment to each genetic cluster per subpopulation, and for the Western Cantabrian subpopulation without migrants, or for first

generation migrants alone. (c) Relative migration flows (in number of migrants, Nm). Significantly asymmetric migration flow is marked with an asterisk.

https://doi.org/10.1371/journal.pone.0227302.g003
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Fig 4. Probability of assigning each individual sampled from the Western and Eastern Cantabrian subpopulations to the CanEast and CanWest genetic

clusters. Less negative values correspond to higher assignment probabilities.

https://doi.org/10.1371/journal.pone.0227302.g004
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positive and significant for the Eastern Cantabrian subpopulation. The differences between the

two subpopulations are consistent with the estimates of inbreeding coefficients obtained using

BAYESASS (S5 Table).

We did not estimate Ne for the entire Cantabrian population because population structure

results in biased Ne estimation using the Linkage Disequilibrium method. We estimated Ne of

1.8 for the Eastern Cantabrian subpopulation and 24.7 for the Western Cantabrian subpopula-

tion (excluding migrants). Neb was 2.1 for the Eastern Cantabrian subpopulation and 5.3 for

the Western Cantabrian subpopulation (including migrants) (Table 1).

As expected for bottlenecked populations [44], we observed heterozygosity excess in the

entire Cantabrian population, as well as in both subpopulations, based on both Wilcoxon and

Sign tests (Table 1). Heterozygosity excess was significant (p<0.05) for the Wilcoxon test in all

cases, except for the Western Cantabrian subpopulation without migrants, for which it was

only marginally significant (p<0.1). Sign tests were significant for heterozygosity excess

(p<0.05) only for the entire Cantabrian population and for the Eastern Cantabrian subpopula-

tion. M ratio values for the entire population and all subpopulations were also significantly

below average and critical ratio values expected for stable populations.

Discussion

Origins and phylogeographic affinities

Our results have helped clarify the phylogeographic relationships of the Cantabrian brown

bear population in relation to other Iberian and European populations. Previous studies have

reported the existence of two main mitochondrial DNA lineages in Eurasia [14,54], corre-

sponding to Western Eurasian (Clade 1, comprising two subclades: 1a and 1b) and Eastern

Eurasian lineages (Clade 3a). In those studies, the Cantabrian brown bear population was

included in the Western Eurasian lineage (more specifically in Clade 1a), which is closely

related to the Pyrenean population [13,14,15]. However, we found that the Cantabrian brown

bear population is not monophyletic, haplotypes Can/CanW and CanE are not sister groups

and are geographically structured. Nevertheless, both haplotypes belong to the Western Eur-

asian lineage (Clade 1a) [14,54]. Haplotype CanE is more closely related to the Pyr haplotype

previously reported in Taberlet and Bouvet [14] than it is to Can/CanW, indicating that the

Eastern Cantabrian subpopulation is more closely related to the historical brown bear popula-

tion of the Pyrenees. The current Pyrenean population is primarily derived from individuals

translocated from Slovenia in 1995 and, currently, there is no evidence that the original Pyre-

nean population persisted after the translocation event [55]. Thus, it is likely that the current

Pyrenean brown bear population is genetically more similar to the Slovenian population

[3,56], and the closest population to historical Pyrenean brown bears could actually be the

Eastern Cantabrian subpopulation.

During the Last Glacial Maximum (LGM), several mammal species found refuge in south-

ern European peninsulas [57]. For certain species, mtDNA phylogenetic patterns reveal differ-

entiation within those peninsulas, with some populations being more closely related to central

and north European populations than they are to other peninsular populations. This pattern

has been observed for Iberian populations of roe deer, Capreolus capreolus [58,59] and wild

boar, Sus scrofa [60,61]. Here, we found a similar east-west differentiation pattern for brown

bears in northwestern Iberia. That phylogeographic pattern may be consistent with the move-

ment of populations from northern European regions into the peninsulas during the LGM,

driving original pre-LGM populations further into the peninsulas [60]. Where those popula-

tions persisted in the peninsulas, it is possible to observe phylogenetic lineages with different

affinities.
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Similarly, it is also conceivable that the differences we report for the Cantabrian brown bear

population could result from identical population dynamics occurring before and during the

LGM. According to this latter hypothesis, the Western Cantabrian subpopulation (represented

by the haplotype CanW) would represent a remnant of the pre-LGM Cantabrian population.

A different population coming from the east (possibly from the Pyrenees and currently repre-

sented by the haplotype CanE) could have driven this population westward during the LGM.

Thus, contemporary Eastern Cantabrian bears may be descended from bears that secondarily

colonized the Cantabrian Mountains via the Pyrenees. It is important to emphasize that

despite being closer to the Pyr haplotype, the CanE haplotype differs from the latter by one

mutational step, which is consistent with patterns observed for other species (see [60]). Valdo-

siera et al. [62] raised the possibility that Iberian brown bear populations received genetic con-

tributions from other European populations, more specifically via mitochondrial gene flow,

based on analyses of ancient brown bear DNA. Curiously, when we compared the haplotypes

detected in this study with those identified by Valdosiera et al. [62], we found that: (a) haplo-

type CanW matched the Cantabrian haplotype first reported by Taberlet and Bouvet [14] that

was related to other haplotypes exclusively sampled within Iberia; and (b) CanE still stood out

as a previously unreported haplotype that was more closely related to haplotypes sampled in

Iberia, the Pyrenees and France (S2 Fig).

These findings reinforce the urgency of preserving the Cantabrian population, which might

represent the only remnant of more ancient and diverse Iberian lineages. The potentially dis-

tinct origins of the two Cantabrian subpopulations have not prevented historical gene flow

between them, as discussed in more detail below. However, gene flow in brown bear popula-

tions is mostly mediated by male dispersal, so it has limited impact on patterns of matrilineal

(mtDNA) lineages [63,64].

Genetic structure, diversity and health

The patterns identified from Cantabrian brown bear mitochondrial lineages provide further

support for dividing this population into two genetic clusters (CanWest and CanEast), as also

established here (and in previous studies) using nuclear recombinant markers. These genetic

clusters strongly match the Western and Eastern Cantabrian subpopulations, which are

strongly differentiated from each other. According to previous authors [8,65,66,67], this differ-

entiation might be due to strongly reduced connectivity between the subpopulations nearly

two centuries ago. Our results suggest that apart from this more recent isolation, the two sub-

populations might be descended from historically distinct populations. The genetic diversity

of both Cantabrian brown bear subpopulations appears to have been increasing over recent

years (Table 2) [62], even though their observed diversity remains low when compared with

other European populations such as the Scandinavian brown bear population (Ho = 0.82;

[68]). There is also evidence that diversity of the Iberian brown bear population has decreased

from the Pleistocene to modern times [62].

The strong evidence we found of bottlenecks in the Cantabrian subpopulations may explain

their low genetic diversity. Higher genetic diversity is normally associated with more stable

populations, having larger population sizes, such as those observed in Scandinavia [16,17].

Therefore, the low genetic diversity observed in the Cantabrian population can be linked to its

isolation from other European brown bear populations and its fragmented nature [6]. Low

genetic diversity, particularly in small and isolated populations, is often related with higher

extinction risk. Nevertheless, a recent study revealed that the small and isolated Apennine

brown bear population was able to survive for several millennia, accumulating deleterious

mutations, mostly by drift, while preserving variation in key regions of the genome associated
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with immune system and olfactory perception [69]. Drift is stronger in smaller populations and,

thus, the small population sizes of the Cantabrian subpopulation can also contribute to lower

genetic diversity. Recent studies have estimate population sizes of ~200 individuals for the

Western Cantabrian subpopulation and ~19–30 individuals for the Eastern Cantabrian subpop-

ulation [11,70]. We identified a minimum number of 43 individuals in the Western Cantabrian

subpopulation (50 individuals if migrants are also considered), and a minimum number of 30

individuals in the Eastern Cantabrian subpopulation. It is important to note that these numbers

must not be interpreted as census sizes for these two subpopulations since the sampling time-

span and sample size are not adequate for such estimates, in particular for the Western Canta-

brian population. Among other causes of population decline, it is possible that the Eastern Can-

tabrian subpopulation is actually “losing” individuals to the Western Cantabrian subpopulation.

Our estimates also show a large difference in the effective population sizes of the Western (Ne =

24.7) and Eastern (Ne = 1.8) Cantabrian subpopulations. However, these results should be inter-

preted with caution since there are several methods for estimating effective population sizes,

which are based on different time-scales and initial assumptions [71].

Gene flow and dispersal of individuals

Our results reveal evidence of migration between the two Cantabrian subpopulations. There is

solid proof of recent bear migration from the Eastern to Western subpopulation, since seven

male individuals sampled in the West were assigned with high posterior probability to the

Eastern Cantabrian subpopulation and possessed the CanE haplotype. Moreover, our results

show that gene flow operates in both directions, but with a higher level of allelic introgression

from the Eastern Cantabrian subpopulation into the Western Cantabrian subpopulation, a

finding corroborated both by mitochondrial and genotype data. In fact, migration (gene flow)

estimates based on allele frequencies (available in S6 Table) and on genotypes (S5 Table) are

indicative of long-term and on-going asymmetrical gene flow from the Eastern to the Western

Cantabrian subpopulation, contradicting previous studies that reported stronger gene flow in

the opposite direction [8,67]. Together with our identification of first generation migrants

from the Eastern into the Western Cantabrian Mountains, these results suggest that current

migration is likely to be more intense from East to West.

Long-term monitoring of these populations [70] shows that the Western Cantabrian sub-

population (n = 200) is considerably larger than the Eastern Cantabrian subpopulation (n = 25

to 30), suggesting that the previously reported west-to-east gene flow across the Cantabrian

Mountains could support recovery of the Eastern Cantabrian subpopulation through the

Table 2. Summary of the genetic diversity of the two Cantabrian brown bear subpopulations obtained from different studies.

Period of study (years) No. of genotypes (loci) used Ho FIS Reference
Western subpopulation 2002–2003 91 (�11) 0.49 - Garcı́a-Garitagoitia et al. 2006 (in [67])

2006–2008 31 (�14) 0.44 - [8]

2013–2014 12 (�16) 0.49 0.026 [67]

2010–2017 50 (�12�) 0.515 -0.017 This study

Eastern Subpopulation 1996–1997 20 (�8) 0.36 - Rey et al. 2000 (in [67])

1991–1999 27 (�11) 0.47 - Garcı́a-Garitagoitia et al. 2006 (in [67])

2006–2008 9 (�14 0.28 - [8]

2013–2014 26 (�16) 0.54 0.038 [67]

2010–2017 30 (�12�) 0.453 0.141 This study

� Despite our analytical threshold of 12 loci, most genotypes were reconstructed based on�14 loci (average 14.5).

https://doi.org/10.1371/journal.pone.0227302.t002
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arrival of reproductive individuals from the Western Cantabrian subpopulation. However, our

results provide strong evidence for male migration from the Eastern Cantabrian subpopulation

into the Western Cantabrian subpopulation, i.e. against the gradient of population size. A sim-

ilar pattern of asymmetrical male-mediated migration was recently reported for brown bears

in the Carpathian mountains [72].

From an ecological point of view (based on source-sink dynamics), this east-to-west bias

may seem contradictory, as it could be reasonably assumed that the more stable and larger

population (Western Cantabrian) would act as a source, and disperse into the smaller, less sta-

ble and more fragmented sink population (Eastern Cantabrian) [73]. Nevertheless, we assert

that our findings are not counter-intuitive, and present three non-mutually exclusive hypothe-

ses that could explain the migration of brown bears from the Eastern into the Western Canta-

brian subpopulation.

First, the migration pattern could be explained by there being an unfavourable sex ratio in

the Eastern Cantabrian subpopulation, leading to male dispersal into Western territories where

the number of females is higher. Although we did not find significant differences in sex ratio in

this study, long-term monitoring of the brown bear subpopulations in the Cantabrian Moun-

tains [71] suggests that the Western subpopulation harbours eight to ten times the number of

reproductive females (n~34) than the Eastern subpopulation (n~4). Second, more favourable

habitats in the Western Cantabrian Mountains could explain asymmetric gene flow. However,

based on our intimate knowledge of the study area and the fact that brown bears are currently

absent from Eastern Cantabrian territories deemed highly suited to them, we feel there is less

support for this hypothesis. Third, brown bears could be forced to flee from areas with higher

human disturbance and poaching, which are more intense in the Eastern Cantabrian Moun-

tains. In fact, a recent study by Lamamy and collaborators [74] has revealed that differences on

population trend, numbers and fecundity among both subpopulations cannot be explained by

differences in habitat or landscape alone and might result from direct human influence (e.g.

poaching and bad hunting practices). Hence, it is reasonable to infer that individuals from the

Eastern Cantabrian subpopulation might be dispersing westwards to seek habitats with less

human interference and to escape human persecution. Ecological modelling of brown bear pres-

ence and distribution in relation to human activities and other critical factors might shed light

on the main drivers of brown bear dispersal and gene flow within the Cantabrian Mountains.

Implications for conservation

The above-presented hypotheses may explain in part the apparently unexpected dispersal of

brown bears from east-to-west across the Cantabrian Mountains. While reinforcing previous

findings that brown bears do move between Cantabrian subpopulations, our findings suggest

they might be dispersing from the smaller Eastern subpopulation towards the larger and more

stable Western subpopulation. Thus, instead of promoting colonization (and reinforcement)

of the Eastern Cantabrian region by bears from the Western Cantabrian Mountains, connec-

tivity between the two subpopulations may operate as a means for Eastern Cantabrian bears to

find more suitable territories.

Undoubtedly in this specific case, suitable corridors across the Cantabrian landscape are

vital to bolstering the connectivity between both subpopulations. Whether increased connec-

tivity is a consequence of active habitat improvement measures or shifting land use patterns

(e.g. progressive abandonment of historic mining activity), it is unlikely that enhancing sub-

population connectivity alone will serve to restore these two threatened subpopulations. Other

conservation measures should be implemented in order to promote settlement of individuals

in the Eastern Cantabrian Mountains. The ecological requirements of brown bears are well
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known, so appropriate habitat restoration could be implemented that would increase the car-

rying capacity of Eastern Cantabrian territories [73]. We feel that more efficient control over

poaching and other direct human persecution, as well as greater efforts to raise public aware-

ness in order to reduce human-bear conflict, might be even more successful as a means to

secure the Eastern Cantabrian subpopulation. Simultaneous implementation of both these

measures could improve the effective size, diversity and status of the brown bear subpopula-

tions across the Cantabrian Mountains, thereby ensuring their future viability. Our results

shed light on the historical affinities of the Cantabrian subpopulations of brown bears in an

Iberian context, and provide new insights into the genetic health and migration patterns of the

Cantabrian brown bear population. Our data can help with evaluations of conservation strate-

gies implemented for the brown bear population in the Cantabrian Mountains and in defining

new strategies to maintain a viable population in that region. It also provides useful informa-

tion relevant to monitoring expansions of brown bear populations, especially given recent

report of brown bear sightings and damage to apiaries in North Portugal, by national conser-

vancy agency (ICNF) rangers.
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