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It is widely known that morphological changes of the liver and the spleen occur during the clinical course of chronic liver diseases.
In this paper, we proposed a morphological analysis method based on statistical shape models (SSMs) of the liver and spleen for
computer-aided diagnosis and quantification of the chronic liver. We constructed not only the liver SSM but also the spleen SSM
and a joint SSM of the liver and the spleen for a morphologic analysis of the cirrhotic liver in CT images. The effective modes are
selected based on both its accumulation contribution rate and its correlation with doctor’s opinions (stage labels). We then learn
a mapping function between the selected mode and the stage of chronic liver. The mapping function was used for diagnosis and
staging of chronic liver diseases.

1. Introduction

Chronic liver disease is a major worldwide health problem.
Liver cirrhosis is a chronic liver disease that can be generally
integrated into early, middle, and late stages. The appropriate
treatment for liver cirrhosis depends strongly on the esti-
mated stage. Since the late stage cirrhosis is often associated
with an incidence of hepatocellular carcinoma, in radiology
practice, early detection is essential for investigating the cause
and slowing down the effects of cirrhosis [1]. Diagnosis and
staging of chronic liver diseases are an important issue. The
current clinical methods for detecting and staging cirrhosis
are according to histological findings from results of liver
biopsy or manually analyzing the morphological criteria on
magnetic resonance (MR) imaging. However, liver biopsy
subjects the patient to a risk of serious complications [2].The
manual analyzing process results in subjective diagnosis and
is a difficult assignment for inexperienced radiologists. Con-
sequently, researchers dedicated to develop computer-aided
diagnosis (CAD) systems to assist the cirrhosis diagnosis.
Liver tissue fibrosis is a distinctive characteristic of cirrhosis.

Lesion tissue can be distinguished by having different texture
in medical imaging. By far, all CAD schematics for cirrhosis
diagnosis are exclusively based on texture analysis of the liver.
Wang et al. [3] used the texture analyze with co-occurrence
matrix method to analyze ultrasonograms of normal or
diseased livers; although they proved that the texture analysis
can help cirrhosis diagnosis, the diagnostic accuracy was not
yet satisfied.The research group of Gifu University [4–6] and
Kayaalti et al. [7] used texture features as input; they classified
normal/cirrhotic liver by Artificial Neural Network (ANN)
and Support Vector Machine (SVM), respectively. Both of
them obtained high accuracy classification result.

However, texture analysis based methods have a major
limitation that the texture difference between each cirrhosis
stage is difficult to detect with current medical imaging
techniques. As a result of this, it is practically impossible
to estimate the proceeding stage of cirrhosis by texture
analysis. Besides the tissue fibrosis, cirrhosis has another
notable characteristic: morphological changes of the liver
occur during the clinical course of chronic liver diseases [8].
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Figure 1: Typical shapes of normal (a) and cirrhosis (b) data.

The typical CT volumes are shown in Figure 1. The normal
liver is shown in the left, and the cirrhotic liver is shown in the
right. It can been seen that the cirrhotic liver will cause the left
lobe’s hypertrophy and the right lobe’s atrophy. Though the
morphologic change of the liver can be detected on computed
tomography (CT), the visual assessment is subjective and
limited in depicting minimal changes.

The liver shape can be represented by a statistical shape
model (SSM) [9, 10]. Compared with the conventional math-
ematical shape model such as a spherical harmonic model
(SPHAM), SSM is statistically leaned from a population of
objects or organs, and it is an object (or organ) specified shape
model.The shape is constrained in its eigen subspace. To date
little research has been done on the construction of statistical
shape models of anatomical organs, such as brain [11], heart
[12], liver [13], and spleen [14].The SSM has also been applied
to automatic segmentation of medical images [15–17]. In our
previous works, we constructed a statistic shapemodel (SSM)
of the liver and shown that coefficients of the model can be
used for classification of cirrhotic livers and normal livers
[18, 19]. The classification accuracy was about 60%–80%,
which is depending on the number of training samples. In
this paper, we improve our previous work from the following
three aspects. (1) In order to improve the diagnosis accuracy
of the cirrhotic liver, we newly constructed multiple SSMs
(the liver SSM, the spleen SSM, and a joint SSM of the liver
and the spleen) for morphological analysis, which is based
on the well-known fact that the chronic liver diseases or
cirrhosis will also cause significant morphological changes
on spleen [20]. (2) The effective modes for diagnosis of the
cirrhotic liver are selected based on both its accumulation
contribution rate and its correlation with doctor’s opinion
(labels). In our previous work, we select themodes only based
on its accumulation contribution rate. (3) In our previous
work, we treated the diagnosis of the cirrhotic liver as a two-
class (normal and abnormal) classification problem. It is not
possible to estimate the proceeding stage of the cirrhotic liver.
In this paper, we use support vector regression (SVR) [21] to
learn a mapping function between the selected modes (mode
coefficients) and the stage label.Themapping function is used
to estimate the stage of the chronic liver diseases.

This paper is organized as follows. In Section 2, we
describe the construction of multiple statistical shape models
(the liver SSM, the spleen SSM, and the joint SSM). In

Section 3, we describe a mode selection method for effective
mode selection. In Section 4, we briefly introduce SVR for
the mapping function. Experimental results are presented in
Section 5. The conclusion is given in Section 6.

2. Construction of Statistical Shape Models

2.1. Preprocessing: Segmentation and Normalization. As we
mentioned in the previous section, the chronic liver diseases
or cirrhosis will cause significant morphological changes on
both liver and spleen. We constructed three statistical shape
models: the liver SSM, the spleen SSM, and the joint SSM
of the liver and the spleen. As the first preprocessing step,
both the liver and the spleen are segmented manually in CT
datasets. The segmentation is performed under the guidance
of a physician in order to obtain accurate liver shape data and
spleen shape data. Then, we randomly choose one sample as
a reference sample and perform an organ-to-organ volume
rigid registration as a data normalization step to remove the
positional and rotational difference as much as possible. The
example is shown in Figure 2.

2.2. Statistical ShapeModel Constructions. The flowcharts for
construction of the individual liver/spleen SSM and the joint
SSM are shown in Figures 3(a) and 3(b), respectively. Each
normalized organ volume (liver and spleen) is converted to
a triangulated mesh surface by the use of marching cube
algorithms [22]. Each surface contains 1000 vertex points as
shown in Figure 4. Then, we use a nonrigid point matching
method proposed by Chui and Rangarajan [23] to find the
point correspondence between all of the datasets.

The liver shape or the spleen shape is represented as a
shape vector x𝑙 or x𝑠 of three components corresponding to
coordinates (𝑥, 𝑦, 𝑧) of 1000 aligned vertex points that are
obtained as the outputs of Marching cube algorithm and
nonrigid point matching as shown in (1). For the joint SSM,
the shape vector x is represented by [x𝑙, x𝑠]𝑇. The dimensions
for the individual organ shape vector and the joint organ
shape vector are 3000 and 6000, respectively,

x𝑙 or 𝑠 = [𝑥1, 𝑦1, 𝑧1, 𝑥2, 𝑦2, 𝑧2, . . . , 𝑥1000, 𝑦1000, 𝑧1000]
𝑇
. (1)
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Figure 2: An example of preprocessing: segmentation and normalization.
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Figure 3: Flowcharts for construction of SSMs. (a) Individual liver/spleen SSM, (b) joint SSM of the liver and the spleen.

Assume𝑁 is the number of training samples.Themean shape
m and covariance matrix S are calculated as

m =

1

𝑁

𝑁

∑

𝑖=1

x𝑖,

S = 1

𝑁

𝑁

∑

𝑖=1

(x𝑖 −m) (x𝑖 −m)𝑇.

(2)

The modes of variation are found on the deviations of
samples from the mean and are represented by 𝑁 orthonor-
mal eigenvectors (variation vectors) v𝑗 of S, which are called
as eigenshapes. The 3D shape of the liver can be represented
as a linear combination of mean shape and eigenshapes as
follows:

x = m +∑

𝑗

𝑏𝑗k𝑗, (3)
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Figure 4: Marching cube method: (a) volume data. (b) Triangulated mesh surface data.

where 𝑏𝑗 is the coefficient or weight of the 𝑗th mode of
variation and is estimated by calculating k𝑇(x −m). It should
be noted that the main variations could be captured by only
a few top-leading modes (eigenvectors). The coefficients can
be used as a feature vector of the 3D shape for image coding
and quantitative analysis.

3. Selection of Effective Modes

It is also an important issue to select effective modes, which
control specific aspects of shape variations that are related to
the morphological changes caused by cirrhosis. In addition
to the conventional Accumulated Variance Contribution
Rate (AVCR) based mode selection, we recently proposed a
correlation based mode selection method and combine them
to select the effective modes [24].

In the correlation based mode selection, we are going
to select modes which have strong correlation with doctor’s
opinions (labeled scores). Each sample data is labeled by
doctors. The normal data is labeled as 0, and abnormal data
is labeled as 1. Since we have 44 sets of data in the training
set (25 sets of normal data, 19 sets of abnormal data), thus, we
have a label vector rwith a dimension of 44× 1.We also create
a coefficient vector for each mode. The coefficient vector for
mode 𝑖 is represented by b𝑖, whose dimension is also 44 × 1.
The correlation between the mode 𝑖 and the label is shown as

correlation =
󵄨
󵄨
󵄨
󵄨
󵄨
r𝑇 ∗ b𝑖

󵄨
󵄨
󵄨
󵄨
󵄨

√r𝑇 ∗ r ∗ √b𝑇
𝑖
∗ b𝑖

. (4)

In this paper, we select top 4 modes from order with a large
correlation value.

Finally, we take a product set of contribution rate
based selected modes and correlation based selected modes.
Figure 5 shows the schematic diagram of the proposed mode
selection method.

4. Mapping Function Estimation

Supposewe have training data {(b1, 𝑟1), (b2, 𝑟2), . . . , (b𝑁, 𝑟𝑁)},
b𝑖 is the SSM coefficient vector of the 𝑖th training sample,
𝑟𝑖 is the stage label of the 𝑖th training sample, and 𝑁 is the
number of training samples.Weuse support vector regression
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Correlation-based
selection

Final selection

Figure 5:The schematic diagram of the selection of effectivemodes.
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Figure 6: The strategy of how to estimate the stage of a new data.

[21] to estimate the stage of the cirrhotic liver. We attempt
to calculate a function as (5) that can approximately map
the coefficients (b) of selected modes to the ground truth of
cirrhosis stage (𝑟):

𝑟 = 𝑓 (b) = ⟨w, b⟩ + 𝑎, (5)

where ⟨⋅, ⋅⟩ denotes the dot product, w and 𝑎 are function
parameters to be estimated.This mapping function will allow
us to estimate the proceeding stage of a new data. Figure 6
illustrates the proposed strategy on how to estimate the stage
of the new data.

Compared to other regression strategies, Support Vector
Regression (SVR) has the advantage of being usable under
different kernel functions and highly accuratemapping based
on parameter selection [21]. Therefore, the convex optimiza-
tion problem can be given as

minimize 1

2

‖w‖2 + 𝐶
𝑁

∑

𝑖=1

(𝜉𝑖 + 𝜉
∗

𝑖
) ,

subject to
{

{

{

𝑟𝑖 − ⟨w, b𝑖⟩ − 𝑎 ≤ 𝜀 + 𝜉𝑖
⟨w, b𝑖⟩ + 𝑎 − 𝑟𝑖 ≤ 𝜀 + 𝜉∗𝑖

𝜉𝑖, 𝜉
∗

𝑖
≥ 0,

(6)

where𝐶 is a positive constant and 𝜉𝑖 and 𝜉
∗

𝑖
are slack variables.
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Equation (6) can be reformulated into a duel problem:

maximize

{
{
{
{
{

{
{
{
{
{

{

−

1

2

𝑁

∑

𝑖,𝑗=1

(𝛼𝑖 − 𝛼
∗

𝑖
) (𝛼𝑗 − 𝛼

∗

𝑗
) 𝑘 (b𝑖, b𝑗) ,

−𝜀
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𝑖
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𝑁

∑

𝑖=1

𝑟𝑖 (𝛼𝑖 − 𝛼
∗

𝑖
) ,

subject to
ℓ

∑

𝑖=1

(𝛼𝑖 + 𝛼
∗

𝑖
) = 0, 𝛼𝑖, 𝛼

∗

𝑖
∈ [0, 𝐶] ,

(7)

where 𝛼 and 𝛼∗ are Lagrange multipliers and 𝑘(b𝑖, b) is the
kernel function. The Gaussian kernel function is used in
this paper for a nonlinear mapping. The obtained mapping
function can be written as

𝑓 (b) =
𝑙

∑

𝑖=1

(𝛼𝑖 − 𝛼
∗

𝑖
) 𝑘 (b𝑖, b) + 𝑎. (8)

By (8), we are able to estimate the proceeding stage of a
new data with a coefficient vector of b.

5. Experimental Results

We used 44 clinical CT datasets (25 normal data and 19
cirrhotic liver data) for this research. Among 19 cirrhotic data,
10 cirrhotic data are labeled with stages. The number and

Table 1: The labeled data used for SVR based stage estimation
experiments.

Normal Early stage Middle and late stages
Stage label 0 1 2
Number 25 8 2

labels for each stage are shown in Table 1. We did both two-
class (normal and abnormal) classification experiments and
SVR based stage estimation experiments. We use all the 44
data for classification experiments and the labeled 35 data as
shown in Table 1 for SVR based stage estimation experiments.
We performed leave-one-out experiments to validate the
effectiveness of our method. Both the two-class (normal and
abnormal) classification experiment and the SVR based stage
estimation experiment are done.The flow of our experiments
is shown in Figure 7.

In the training phase, we constructed three SSMs: the liver
SSM, the spleen SSM, and the joint SSM of the liver and the
spleen from training data set. Based on our proposed mode
selection method described in previous section, we select
one mode from each SSM, respectively. Totally, three modes
are selected. The shape variations of the selected modes are
shown in Figure 8.The coefficients of the selected modes and
the stage label are used for SVR training.
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In the test phase, the test data is projected to selected
modes. Their coefficients are used as features. In the two-
class classification experiments, we used the simple Nearest
Neighbor (NN) algorithm to classify all 44 sets of data. In
the stage estimation experiments, we used SVR as a model
of the mapping function as described in Section 4. In order
to make a comparison, we performed both classification and
stage estimation experiments with three approaches. The
first approach is the same as our previous method [18, 19].
Only the liver SSM is used, and the mode (feature) selection
is based on conventional AVCR. The second approach is
a comparison method. The model is only the liver SSM
just like our previous method (the 1st approach), but the
proposed mode selection method described in Section 3 is
used. The third approach is our proposed method in this
paper. Multiple SSMs are used for morphological analysis
with our proposed mode selection method.

The comparison of classification accuracy among three
approaches (our method, comparison method, and previous
method) is shown in Figure 9. It can be seen that the classifi-
cation accuracy for both normal livers and abnormal livers
(cirrhotic livers) is significantly improved by our proposed
multiple SSMs method and the mode selection method. The
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Figure 11: The mean score and variance of estimated results.

classification accuracies are 88% and 90% for normal and
abnormal livers, respectively.

We also compared our method with texture based
method. The mean and variance of the intensity histogram
are used as features of texture.The classification accuracies of
the texture based method are only 66% and 60% for normal
and abnormal livers, respectively, which are also shown in
Figure 9.

We also applied leave-one-out cross-validation for stage
estimation using the labeled 35 data shown in Table 1. The
preliminary results are shown in Figure 10. The horizontal
axis represents the ground truth stage of tested data. The
vertical axis represents the estimated scores using SVR.

As shown in Figure 10, there was one early stage data that
was misclassified as normal. For the misclassified early stage
case, it has very similar shape feature as normal data. Unable
to handle such extreme cases is the limitation of our complete
shape analysis based method. We also can notice a tiny
overlap between estimated results of normal and early stage
data. Besides these two defections, our method established
considerably promising result on differentiating normal and
cirrhotic data.
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Due to the data limitation,we only have two sets ofmiddle
and late stage data tested. One middle stage data can be
easily distinguished from the early stage ones.The other case’s
score is lower than two early stage cases’ scores. However,
from the mean score and variance of estimated results which
are shown in Figure 11, we can clearly observe an increment
from normal to early stage and early stage to middle stage.
This result validates the potential of our morphological
analysis and machine learning based method on estimating
the proceeding stage of the chronic liver diseases.

6. Conclusions

We developed a multiorgan based morphological analy-
sis method combined with a machine learning regression
method to assist liver cirrhosis diagnosis and quantifica-
tion. Our method can not only achieve an accurate nor-
mal/abnormal classification but also can estimate the pro-
ceeding stage of cirrhotic cases. We constructed three SSMs
(the liver SSM, the spleen SSM, and the joint SSM of the
liver and the spleen) for morphologic analysis of cirrhotic
livers. Compared with the use of conventional single liver
SSM, the classification accuracy is improved by the use of
multiple SSMs for both normal and cirrhotic livers. We
also proposed a mode selection method, which is based
on both its accumulated variance contribution rate (AVCR)
and its correlation with doctor’s label scores. Compared
with the conventional AVCR based method, our proposed
method can also improve the classification accuracy for both
normal and cirrhotic livers. The classification accuracies for
normal and cirrhotic livers are 88% and 90%, respectively.
We estimated the mapping function between the selected
modes and the stage labels by using SVR. The proceeding
stage of the cirrhotic liver can be estimated by the mapping
function. Preliminary results validated the potential of our
method. However, there are still several issues we want
to address in the future. The first issue is to increase the
number of the training samples, especially the number of
middle and late stage data. The second issue is we mixed
normal and abnormal data for computing the PCA. When
we have more data, we will try to treat the positive and
negative data separately to derivemore discriminativemodes.
The third issue is that although we obtained considerably
satisfying results, from a pathological point of view, it is
highly recommended to combine both shape and texture
analysis [25] to assist the diagnosis. Development of an
automated method for the liver and the spleen segmentation
is necessary for future automated CAD systems, and the
development is under way [26]. In addition, our multiorgan-
based statistical shape analysismethod can be applied to assist
the diagnosis of other diseases related to shape deformation.
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