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Carbon monoxide (CO) gas therapy is a promising cancer treatment. However, gas
delivery to the tumor site remains problematic. Proper tunable control of CO release in
tumors is crucial to increasing the efficiency of CO treatment and reducing the risk of CO
poisoning. To overcome such challenges, we designed ZCM, a novel stable
nanotechnology delivery system comprising manganese carbonyl (MnCO) combined
with anticancer drug camptothecin (CPT) loaded onto a zeolitic imidazole framework-8
(ZIF-8). After intravenous injection, ZCM gradually accumulates in cancerous tissues,
decomposing in the acidic tumor microenvironment, releasing CPT and MnCO. CPT acts
as a chemotherapy agent destroying tumors and producing copious H2O2. MnCO can
react with the H2O2 to generate CO, powerfully damaging the tumor. Both in vitro and in
vivo experiments indicate that the ZCM system is both safe and has excellent tumor
inhibition properties. ZCM is a novel system for CO controlled release, with significant
potential to improve future cancer therapy.

Keywords: H2O2 generator, CO gas therapy, camptothecin, ZIF-8 nanoparticles, TME (tumor microenvironment)
INTRODUCTION

The targeted development of cancer treatment technology—including chemotherapy, radiotherapy,
and immunotherapy—has enormous potential in tumor treatment, although most such
technologies are yet to be used routinely in the clinic (1–5). Among therapeutic approaches
being developed, treating cancer with CO gas is both novel and practical, yet remains
underexplored. High-dose CO can reduce cell protein synthesis by inhibiting cellular
mitochondrial respiration and induce cancer cell apoptosis (6–8). The safety and potency of CO
therapy relies on the precise release of large amounts of CO directly into the tumor (8). However,
most CO-related anticancer treatments are still in their initial stages, as the gaseous nature of CO
makes controlled release highly problematic.
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As a CO prodrug, manganese carbonyl (MnCO) has a
Fenton-like reaction with H2O2 to generate CO gas in situ (9).
CO can then bind hemoglobin in tumor tissue, reducing its
capacity for oxygen transport, causing mitochondrial damage,
and thus achieving an anticancer effect without causing side
effects systemically (9). Zhu and coworkers designed a novel type
of CO delivery system using the immune evasion ability and
tumor targeting of tumor-derived exosomes (EXO),
encapsulating MnCO into exosomes by electroporation
method to form the MMV system (6); this system could
achieve a powerful antitumor effect in combination with low-
dose radiotherapy. Both in vivo and in vitro experiments have
verified the rationality of the MMV combined with RT designed
by their team, and there is no inflammatory reaction and other
side effects during the treatment period, which has good
biological safety. Jin and his team used hollow mesoporous
silica nanoparticle (hMSN) nanocarriers to effectively
encapsulate MnCO and constructed a nano-drug (MnCO@
hMSN) for antitumor research (10). After being internalized
into the tumor tissue, the nanomedicine (MnCO@hMSN) will
react with H2O2 in the tumor (a new Fenton-like reaction that
releases CO gas in situ) to achieve antitumor effects. In vivo
experiments have shown that within the treatment cycle. The
weight of the mice did not have any abnormalities, and the tumor
proliferation was significantly inhibited (10). However, in cancer
cells, although intracellular H2O2 concentration can reach 50 mM,
endogenous H2O2 is unable to achieve satisfactory efficiency (11–
13). Insufficient H2O2 in the tumor microenvironment (TME) is a
profound problem for MnCO-based cancer therapy. CPT is a
natural product topoisomerase inhibitor operating via several
mechanisms including induction of cellular DNA damage (14–
16). It is also an H2O2 enhancer, inducing high levels of H2O2 in
the tumor (14). This property has interested several researchers.
Tang et al. overcame the lack of target-specific, high-intensity
luminescence by creating a target-specific chemiluminescence
strategy, where CPT was loaded into the CLDRS system,
enhancing H2O2 concentration and chemiluminescence (14).
However, CPT has poor delivery to tumors and low water
solubility, limiting its systemic use in cancer therapy.

Use of new nanocarriers allows for the design of secure and
efficient multifunctional nanoplatforms for accurate drug
Frontiers in Oncology | www.frontiersin.org 2
delivery and effective cancer treatment. As a new metal-organic
framework (MOF), ZIF-8 has good drug delivery properties and
biocompatibility (17–21). Compared to other metal-organic
framework (MOF) materials (22–26), ZIF-8 has several unique
characteristics. ZIF-8 comprises 2-methylimidazole and Zn2+.
Zinc is the second most abundant transition metal in biology,
while biogenic amino acid histidine contains an imidazole group
(27). ZIF-8 has exceptional chemical and thermal stability,
particularly in aqueous conditions; high specific surface area;
and negligible physiological toxicity (28). Moreover,
decomposition occurs easily under acidic conditions (pH 5.0–
6.0), making ZIF-8 suitable for stimulus-responsive controlled
drug release of payloads in the acidic tumor microenvironments
(18). ZIF-8 is thus an ideal template for preparing hollow
nanomaterials with adjustable sizes for small-molecule drug
delivery. The ZIF-8-loaded drugs are less likely to leak during
transit to their site of action, retaining pharmaceutical activity
until they reach their target tumors (29, 30). Efficient delivery of
CPT/MnCO using ZIF-8 nano-frameworks is expected to
overcome many limitations of current CO gas therapy.

We designed a therapeutic strategy that combines chemotherapy
drug CPT and CO gas prodrug MnCO in a ZIF-8 nanocarrier with
good drug delivery properties forming a composite system we
named ZCM (Scheme 1). After intravenous injection, ZCM
circulates systemically, reaching the tumor target, where it is
endocytosed. Subsequently, CPT and MnCO are released in
response to the acidic tumor microenvironment, where CPT also
acts as a H2O2 generator increasing the concentration of H2O2 in
the tumor, synergistically improving the anticancer activity of
MnCO. MnCO reacts with H2O2 to generate CO in situ, directly
damaging mitochondria. In vitro and in vivo experiments indicate
that the ZCM system has a high antitumor effect and does not
induce significant off-target toxicity, since ZCM does not leak
MnCO. The development of ZCM highlights a powerful new
approach to MOF-based nanomedicines.
RESULTS AND DISCUSSION

ZIF-8 nanomaterials of approximately 100 nm were prepared
using a simple stirring method (30). Then ZCMs were
SCHEME 1 | Illustration of a novel H2O2 generator for enhanced CO gas therapy.
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synthesized by simultaneous embedment of CPT and MnCO
into ZIF-8 to form a ZCM system, as shown in Figures 1A, B for
transmission electron microscope (TEM) images of pure ZIF-8
and ZCM. A TEM image of ZCM, as measured in an acidic
environment (Figure 1C), suggests that ZCM can decompose in
an acidic environment. The diameter of ZCM (Figure 1D)
showed almost no changes, again indicating that ZCM was
stable and did not alter due to inclusion of drugs. The
absorption of CPT, ZIF-8, MnCO, and ZCM was measured
using UV–vis absorption spectroscopy, with results indicating
the successful preparation of ZCM (Figure 1E). The drug loading
efficiency of CPT and MnCO in ZCM was found to be 14.6% and
17.8%. ZCM’s drug release ability was also studied (Figure 1F).
Under neutral conditions, ZCM did not decompose and CPT was
not released. At pH = 6.5, after 48 h of coculture, CPT release was
approximately 30%. At pH = 5.5, CPT release was approximately
38% at 24 h; after 48 h, this had reached almost 90%, with the CPT
almost completely released. As shown in Figure S1, the release rate
of CO rapidly enhances with increasing H2O2 concentrations. This
indicated that ZCM can release CO in response to the tumor
microenvironment. This indicates that ZCM can help control
payload release in the tumor environment, which is expected to
alter the tumor microenvironment and realize CO gas therapy.

Our ZCM system performs well, and we are actively
conducting in vitro antitumor trials. Although MnCO greatly
inhibits tumors, the CO yield generated by the H2O2-MnCO
reaction is affected by the H2O2 concentration in the tumor: at
50–100 mM, this is higher than in ordinary cells, but is still
limited. Therefore, it is necessary to increase the tumor H2O2

concentration. Our system contains the chemotherapeutic drug
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CPT, which produces H2O2. We verified the ability of ZCM to
produce CO; see Figures 2A, D. The control group and single
ZIF-8 or ZC showed no fluorescence, suggesting a low
intracellular CO concentration. ZM containing MnCO shows
weak fluorescence. The green fluorescence of the ZCM treatment
group was the strongest, since CPT can generate H2O2 in TME,
promoting the reaction between MnCO and H2O2. Changes in
mitochondrial membrane potential (MMP) in tumor cells were
monitored using the JC-1(5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethyl-
imidacarbocyanine) probe method. Typically, JC-1 dye
accumulates in the mitochondria, where it aggregates, producing
a red fluorescence. However, in damaged mitochondria where
MMP is reduced, monomeric dye is released into the cytoplasm,
producing green fluorescence. Figures 2B, E shows the high
green/red fluorescence ratio of cells treated with ZCM. This is
consistent with reduced mitochondrial damage due to ZCM. Once
ZCM is decomposed by the acidic environment of tumor cells,
MnCO will react with H2O2 in TME to produce CO gas in situ.
This causes serious mitochondrial damage. In addition, we
measured the ROS content of different formulations: the ZCM
group had high fluorescence, while that of the ZC and ZM groups
was much lower (Figure 2C). This may be because CPT alters the
tumor microenvironment and MnCO produces elevated ROS.
ROS can degrade cellular protein and DNA, thus killing tumor
cells (27, 31–33). AnMTT assay test indicated that the cell viability
of the control and ZIF-8 groups was minimally affected, while ZC
alone or ZM induced moderate tumor growth inhibition
(Figure 2F). Our ZCM system showed the greatest tumor
inhibition, reaching 90%. There are significant differences when
compared to other experimental groups, suggesting that ZCM-
A B

D E F

C

FIGURE 1 | Characterization of ZCM. (A) TEM image of ZIF-8 and (B) ZCM. (C) TEM image of decomposed ZCM. (D) DLS was used to measure the
hydrodynamic diameter of ZCM. (E) UV–vis spectra for CPT, ZIF-8, MnCO, and ZCM in PBS. (F) In vitro CPT release profile at different pH from ZCM.
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mediated increased H2O2 concentrations of TME can enhance the
effect of MnCO, inhibiting tumor growth.

We next evaluated the ZCM-mediated antitumor efficacy in
mice with CT26 tumors. To investigate the principal effect of
ZCM, BALB/c mice were injected subcutaneously into the right
flank with 1 × 106 CT26 cells. The mice were treated when the
primary tumor volume reached 200 mm3. Tumor-bearing mice
were randomly divided into five groups (five mice per group): (1)
PBS; (2) ZIF-8; (3) ZC; (4) ZM; and (5) ZCM. The equivalent
CPT dose was 10 mg/kg in groups 3 and 5. Treatment was
conducted every 3 days for 16 days. During treatment, the tumor
volumes of the control and ZIF-8 groups rose rapidly, which is
shown in Figures 3A, B. The ZC or ZM group showed a
moderate tumor suppression effect. When ZIF-8 reaches the
tumor and is endocytosed, the acidic tumor microenvironment
causes the ZIF-8 framework to decompose, releasing its drug
payload and inducing a therapeutic effect. The ZCM system had
the most marked therapeutic effect, with tumor volume growth
almost entirely suppressed during treatment. During this study,
no weight changes were detected in the treatment group,
indicating no significant systemic toxicity (Figure 3C). This is
crucial since many treatments have clear systemic toxicity, which
significantly decreases their potential utility (34–37). We used
Frontiers in Oncology | www.frontiersin.org 4
the FL-Co-1 + PdCl2 fluorescence probe to detect the CO content
of tumors, confirming that combining CPT and MnCO in ZCM
greatly enhanced CO generation in the tumor. We took tumor
tissue sections for staining. H&E, TUNEL, and Ki-67 staining
(Figures 3D, E and S2, S3) confirmed there was significant cell
necrosis in the ZCM group. As shown in Figure 4, there was
likewise no inflammatory damage, and liver and kidney indexes
were normal. The in vivo results indicate that our novel treatment
achieved both good biological safety therapy and increased tumor
H2O2 concentration, reinforcing the effect of ZCM with profound
CO-based therapy.
CONCLUSION

We designed a novel H2O2 generator ZCM to realize enhanced
CO gas therapy. Encapsulated chemotherapeutic agents CPT and
MnCO can increase the concentration of H2O2 in the tumor
microenvironment driving CO gas therapy, with an enhanced
ability to induce tumor cell apoptosis. The in vitro and in vivo
results indicate our system has an excellent tumor inhibition
effect. Our ZCM system exhibited no clear toxicity during
A

B

D E F

C

FIGURE 2 | In vitro synergetic therapeutic effects of the ZCM. (A–C) CO (FL-CO-1), JC-1 (green for JC-1 monomer and red for JC-1 aggregate), and ROS (DCFH-
DA) fluorescence images under different treatments. (D) Quantification analysis of CO (A) based on the relative intensity of counts of at least 100 cells per treatment
group (n = 3). (E) Fluorescence intensity of ROS in (C) based on the relative intensity of counts of at least 100 cells per treatment group (n = 3). (F) The survival of
CT26 cells with different treatments. **p < 0.01, ***p < 0.005; Student’s t-test.
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treatment. As non-toxic materials have better application
potential and will also reduce the pain of patients during
treatment. Although many materials have good antitumor
effects, their systemic toxicity significantly affects the
application value. We will explore the biological application of
our combination of MnCO and other novel nanotechnology
vehicles, optimizing our treatment plan.
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FIGURE 4 | (A) Histopathologic examination of the tissues including the heart, liver, spleen, lung, and kidney from tumor-bearing mice after PBS or ZCM treatment.
(B) Blood biochemistry data for kidney function marker BUN. (C) Blood biochemistry data including kidney function marker CRE. (D) Liver function markers: ALT,
AST, and ALP.
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FIGURE 3 | In vivo therapy. (A) Tumor volume, (B) weight, and (C) murine body weight were monitored in the five treatment groups (n = 5). (D) Tumor sections
were stained for H&E. (E) Fluorescence imaging for co-localization of the tumor region to test CO production. (Blue: DAPI, green: FL-CO-1). **p < 0.01, ***p < 0.005;
Student’s t-test.
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