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a b s t r a c t

We present a novel framework that integrates segmentation of lesion masks and prediction of COVID-
19 in chest CT scans in one shot. In order to classify the whole input image, we introduce a type of
associations among lesion mask features extracted from the scan slice that we refer to as affinities.
First, we map mask features to the affinity space by training an affinity matrix. Next, we map them
back into the feature space through a trainable affinity vector. Finally, this feature representation is
used for the classification of the whole input scan slice.

We achieve a 93.55% COVID-19 sensitivity, 96.93% common pneumonia sensitivity, 99.37% true
negative rate and 97.37% F1-score on the test split of CNCB-NCOV dataset with 21192 chest CT scan
slices. We also achieve a 0.4240 mean average precision on the lesion segmentation task. All source
code, models and results are publicly available on https://github.com/AlexTS1980/COVID-Affinity-
Model.

© 2021 Published by Elsevier B.V.
1. Introduction

There are three main approaches to the early detection of
OVID-19: reverse transcription polymerase chain reaction (RT-
CR), which is considered to be the golden standard for the
OVID-19 diagnosis [1], chest X-ray (CXR) images and chest com-
uter tomography (CT) scans. CXR is more rapid, and hence
referable at the times of high workload at radiological depart-
ents. CT scans are slower to obtain, but they are more accurate,
ecause of the axial (slices of images), rather than the frontal
ngle of CXR. Both methods quickly became an active area of
esearch in the Deep Learning (DL) community, with a large
umber of open-source datasets, such as CNCB-NCOV [2] and
odels, such as COVIDNet [3], JCS [4], COVIDNet-CT [5] and many
ther. 2D lung CT analysis can also be extended to 3D, as in [6],
y combining a set of slices to obtain the full scan. In addition to
T-PCR, CXR and CT scans, datasets of lungs ultrasound scans are
ometimes used, as in [7].
There is a number of DL approaches to COVID-19 classifica-

ion: straightforward combination of an existing or custom-made
eature extractor, see e.g. [8–12], augmentation of the classifica-
ion module with the segmentation functionality, e.g. in [4,13,14],
nd a fusion of instance segmentation of lesions with the image-
evel classification, [15,16]. In addition, several models segment

E-mail address: alex.ter-sarkisov@city.ac.uk.
ttps://doi.org/10.1016/j.asoc.2021.108261
568-4946/© 2021 Published by Elsevier B.V.
instances of lesions, without classifying the whole slice or scan. In
such case medical practitioner has to infer the class of the image
from the location and features of the lesions in order to classify
the scan, see e.g. [17].

Recently a new set of segmentation models was introduced.
In [18], authors introduce a dual-branch combination net that
segments lungs and lesions in individual CT slices: it predicts the
slices class and fuses all slices to classify the whole scan. In [19]
the input in the model is a 3D CT scan which is sliced into a bag
of separate images and patches of lesions to classify the severity
of lung infection.

An example of an analytical rather that DL solution was in-
troduced in [20]. It uses histogram normalization and several
optimization tools to find multilevel thresholds for lesion seg-
mentation in chest CT scans. In [21] an encoder–decoder model
utilizing atrous convolution and attention was introduced for
lesion segmentation in CT slices.

Although in most publications the reported model’s accuracy
is high, their real-life applicability is limited due a number of fac-
tors, such as a small dataset used for training and validation, and
hence limited capacity to generalize to in-the-wild data. For ex-
ample, [8,11,14] predict two classes (e.g. COVID-19 and Common
Pneumonia) instead of three (COVID-19, Common Pneumonia and
Control). Many models rely on a large training split [e.g. 5] and
a long list of data augmentation tricks (image cropping, shearing,

jitter, etc.) alongside a relatively small test split. At the same time,

https://doi.org/10.1016/j.asoc.2021.108261
http://www.elsevier.com/locate/asoc
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ummary of the CNCB-NCOV [2] segmentation dataset. Only positive images
images with lesions) are used to train the model. Both positive and negative
lices are used to evaluate the model.
Split Positive Negative Total

Train/Val 475 175 650
Test 71 29 100

in [22] a much smaller dataset was used for training, due to the
functionality of Mask R-CNN [23] that extracts mask feature maps
and segments different types of lesions derived from regions of
interest (RoIs). Also, in [24] good results were achieved using
truncated ResNet18 and ResNet34 backbones.

In order to improve the performance and stability of the
odels, some of them use only regions in feature maps instead of
ntire feature maps (localization of features). In [25] an ensemble
f majority-voting ResNet18 networks was trained on sets of ran-
omly sampled and cropped patches from different areas of chest
-rays. In [4] a UNet pixel-level semantic segmentation model
as used to extract image-level masks to augment the classi-

ier’s feature maps. Often a combination of segmentation and
lassification helps with deriving saliency maps that increases the
xplainability of the model’s results, such as in [4,25].
Novelty of our approach can be summarized in the following

ay:

1. Methodology: we repurpose lesion mask features that Mask
R-CNN uses for lesion mask segmentation to classify the
whole input chest CT scan slice. This is done by deriving
multiple affinities, a type of association among lesion mask
features, using trainable Affinity matrix and Affinity vector.
Affinity representations are computed for all channels (fea-
ture maps) in RoIs, and then mapped back into the feature
space to predict the class of the image.

2. Accuracy: for the classification problem, our best model
achieves 93.55% COVID-19 sensitivity and 97.37% F1 score
on test split. For lesion segmentation, our best model
achieves mean average precision (mAP), main MS COCO
criterion, of 0.424. These results improve on those reported
in [15,22] and most reported OS models, including Mask
R-CNN

3. Domain adaptation: we finetune and evaluate our model
to another large COVID-19 dataset, iCTCF. As with CNCB-
NCOV, finetuning to iCTCF uses a small share of the training
split, but achieves 95.73% COVID-19 sensitivity and 97.53%
F1 score. This demonstrates the potential of our model to
generalize to the unseen data.

The rest of the paper is structured as following: Section 2
iscusses the datasets used for segmentation and classification
roblems, Section 3 introduces the model’s methodology, Sec-
ion 4 presents results and analysis of the experiments (including
omain adaptation) and Section 5 concludes.

. Data and related work

Raw chest CT scan data is taken from CNCB-NCOV repos-
tory, [2], http://ncov-ai.big.ac.cn/download. It is provided by
NCB-NCOV and is split into two subsets: experimental data
aken from COVID-19 positive patients labelled at pixel level
clean lungs and lesion masks) that we use for the segmenta-
ion problem (750 images), and the data labelled at slice level
hat we use for the classification problem (over 104000 im-
ges). The former dataset contains a total of 3 positive (non-
ackground): Ground Glass Opacity (GGO), Consolidation (C) and
2

healthy lungs. The latter dataset contains 3 image-level labels:
COVID-19, Common Pneumonia (CP) and Normal/Control.

Summary of the segmentation dataset is presented in Table 1.
The presence of negative slices (slices that do not contain any le-
sions) in COVID-19-positive patients is explained by the specifics
of the manifestation of COVID-19: slices closer to the top or
bottom of the lungs tend to have smaller lesion manifestation
than those in the middle.

We merged clean lungs and the background, and two types
of lesions into one, therefore segmentation labels contain only
one ‘positive’ class: lesions. Train/validation/test splits for the
classification model in Table 2 are taken from COVIDx-CT [5].
This is done for the sake of comparability with other models
and consistency of the results, as the negative images for posi-
tive classes (i.e. lesion-free slices taken from COVID/CT-positive
patients) were removed from the final data by the developers
of COVIDx-CT. Instead of using the full train split, we randomly
sampled a small subset (second row in Table 2). Only 3000 images
in total (1000 per class) were used to train all models reported in
Section 4.4. Validation and test splits were used in full (21036
and 21192 images resp.). We used the remainder of the training
data (over 58000 images) for the domain adaptation studies, see
Section 4.5.

2.1. Comparison to other solutions

Some of the best results in the available literature, e.g. [3,5,25]
and many other depend on a number of dataset augmentation
tricks. In addition, in [5], the ratio of train to test split 2.9153
(last column in Table 2) is very high, i.e. the test split is much
smaller than the train split, which makes our solution, with ratio
of 0.1415 more robust. On top of it, we did not use any of
the following data balancing/augmentation tricks implemented in
many other studies:

1. Image enhancement (histogram equalization),
2. Image manipulation (rotation, jittering, random bounding

boxes, shearing, cropping, etc.),
3. Class-based resampling (class balancing).

While these tricks are legitimate and widely used, they obfuscate
the insight, to what extent the reported results are due to the
model’s efficiency rather than these data tricks. Apart from the
subtraction of the global mean and division by the global stan-
dard deviation, we applied no other data manipulations to either
dataset, which is one of the strengths of our approach. Additional
statistical analysis of the data in Tables 1 and 2 was presented
in [5,16,22].

The selected CNCB-NCOV dataset is preferable to most other
publicly available COVID-19 datasets:

• Radiopedia (www.radiopedia.org) medical segmentation
dataset contains scans from 9 patients (CNCB-NCOV:150
patients)

• UCSD dataset [13] contains 746 images across two classes
(COVID vs Non-COVID),

• COVID-CTset dataset [26] contains 12058 images across two
classes (COVID vs Normal),

• SARS-COV-2-CT-Scan dataset [27] contains 2481 images
across two classes (COVID vs CP).

For the domain adaptation study in Section 4.5 we used the iCTCF
dataset [28,29] with 13676 images, and the rest of the CNCB-
NCOV training data that was not used for the training of the
model in Section 4

http://ncov-ai.big.ac.cn/download
http://www.radiopedia.org
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Fig. 1. Overall flowchart of the algorithm. Normal black arrows: training data (images and labels), broken black arrows: test data (images and labels), dotted black
arrow: weight copy, red arrows: loss computation, green arrows: model evaluation. Best viewed in color.
Fig. 2. One Shot Affinity Model. Features from FPN (last backbone layer) are passed to RPN (Region Proposal Net) layer to predict raw bounding boxes and both of
hem are passed to the RoI layer to extract RoIs and predict class, box and mask of objects. Light blue background: Mask R-CNN layers shared by the segmentation
nd classification problems; purple background + blocks: RoI segmentation branch; light green background + red blocks: RoI classification branch, Affinity layer and
mage classifier; blocks with broken edges: loss computation. Normal arrows: features, broken arrows: batches, dotted arrows: labels, broken+cross arrow: weight
opy from the segmentation to the classification branch. The details of the RoI segmentation and classification branches see Fig. 3. Best viewed in color.
Table 2
Summary of the CNCB-NCOV [2] classification dataset and COVIDx-CT splits.
Split COVID-19 CP Normal Total COVID-19 CP Normal Total Ratio Train/Test

patients patients patients patients slices slices slices slices

Train [5] 300 420 144 864 12520 22061 27201 61782 2.9153
Train-ours 10 10 10 30 1000 1000 1000 3000 0.1415
Validation 95 190 47 332 4529 7400 9107 21036 –
Test 116 125 52 293 4346 7395 9450 21192 –
3. Methodology

The overall protocol of the algorithm is visualized in Fig. 1:
ight green background is the training protocol, light magenta
ackground is testing protocol. Stages I and III: segmentation
raining and testing, Stages II and IV: classification training and
esting.

The overall architecture of the Affinity model is presented in
ig. 2. Backbone (feature extractor + FPN), RPN and segmenta-
ion branch in the RoI layer are inherited from Mask R-CNN.
ugmentations of its architecture for the classification problem
n this study are classification branch in the RoI layer, Affinity
3

layer and image classifier. Augmentation of the RoI layer with the
classification branch was first introduced in [15].

For the architecture of the RoI layer see Fig. 3. Segmentation
branch (box and class functionality omitted for clarity) solves
the problem of detection, classification and segmentation of ob-
jects in CT images, and is trained using instance-level gt data
(boxes, class labels and masks). Classification branch has the
same architecture as the segmentation branch. Its weights are not
trainable; instead, they are copied from the segmentation branch
each training iteration.

For the detailed discussion of Mask R-CNN, [30], in the context
of COVID-19 segmentation, see [15,22], especially for the differ-
ence between training and evaluation (test) stages and weight
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Fig. 3. Region of Interest layer with segmentation and classification branches. For clarity and emphasis on masks, we omitted RoI box and label functionality.
Backbone (ResNet18+FPN) and RPN functionality (red blocks) is the same for both stages: features (normal red arrows) and raw boxes (broken red arrows). In the
segmentation stage (light blue background), mask loss (blocks with broken edges) is computed by taking prediction from MaskPrediction(S) (blue broken arrows) and
gt labels (green broken line). At classification stage (light magenta background) batches (broken magenta arrows) are fed forward through the classification branch.
MaskAlign(S) and MaskAlign(C): map raw boxes to FPN features to extract RoI (lesion) mask features. MaskHead(S) and MaskHead(C): mask feature refinement.
MaskPrediction(S): mask features upsampling, predictions and binarization for loss computation, MaskPrediction(C): mask features upsampling. Note mask features
in MaskAlign(S), MaskAlign(C) and MaskHead(S), MaskHead(C) are the same in both stages due to the parametrization thereof. Best viewed in color.
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copy from segmentation into classification branch. Here we will
only explain the concept of lesion (RoI) mask features, which is
critical to our study.

3.1. Roi mask features for lesion segmentation

One of the essential concepts of instance segmentation, are
ocal (regional) features. RoI layer accepts a batch of raw box
andidates from RPN and global (image-level) features from FPN,
nd, using an algorithm called RoIAlign, maps raw RPN boxes
o global FPN features, to crop, resize, and extract two sets of
atches with RoI (regional) features: one with box+class features,
he other with mask features. RoI box and class features are used
o predict box coordinates and object classes, RoI mask features
re used to segment masks of each object.
In Fig. 3, for better clarity, we omit RoI box+class function-

lity, and show only RoI mask features. Lesion mask features
or object segmentation are extracted from MaskAlign(S), and
assed through MaskHead(S) and MaskPrediction(S) (light blue
ackground). RoI batch of mask features has dimensionality b ×

C×H×W , where b is the batch size, C is the number of channels,
H,W are its height and width. Finally, in MaskPrediction(S) object
masks are predicted and binarized, compared to gt labels to
compute and backpropagate segmentation loss.

3.2. Lesion mask features for image classification

The first novelty of our solution is repurposing RoI mask
features for image classification. As shown in Fig. 3, classification
branch (light magenta background) has the same architecture
and the functionality as the segmentation branch (light blue
background). MaskAlign(C) extracts RoI batch, passes it through
MaskHead(C) and MaskPrediction(C). Unlike MaskPrediction(S),
MaskPrediction(C) does not extract object masks, so its output is
4

a batch of RoI mask features with dimensionality β ×C ×H ×W ,
here β is the size of this batch, and the remaining variables are
he same as defined in Section 3.1. Batch of RoI mask features is
he only output of the RoI classification branch, that is accepted
y the Affinity layer.
The novelty of this approach cf. [15] is the replacement of

oI box and class confidence scores with RoI mask features. The
dvantage of the new approach is explained by the fact that RoI
ask features contain a more detailed and rich information about

he objects. In [15] the output of the classification branch has
imensionality β × 5 (batch size, 4 box coordinates + confidence
core). Unlike [15], where only β is a hyperparameter, in this
tudy all four dimensionality values are hyperparameters.
From now on we will refer to lesion (RoI) mask features as

oIs, for simplicity and clarity.

.3. Affinity layer

Main contribution of our study is using RoIs for image classifi-
ation. This is done in the Affinity layer in three stages: first, the
oIs are accepted, refined, and vectorized. Next, trainable Affin-
ty matrix and Affinity vector compute affinities (associations)
mong RoIs, and output a single feature vector. Image class is
redicted from this vector in the image classifier.

.3.1. Roi mask feature refinement
The objective of this stage is to obtain features relevant to the

lassification problem by refining them is several stages. Although
hese stages are similar to MaskHead and MaskPredictor layers in
oI classification branch, the key difference is that RoI refinement
ayer is trainable wrt image class loss.

In this stage, RoIs’ dimensionality is downsampled from β ×

× H × W to β × C × H/2 × W/2, then upsampled back
to β × C × H × W a total of N times: N × (Conv2D →
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atchNorm2D → ReLU → ConvTranspose2D) layers. The kernel
ize of ConvTranspose2D is the same as Conv2D, which guar-
ntees that the output of the refinement stage has the same
imensionality as the input, β × C × H × W .

.3.2. Roi vectorization
Next, we vectorize RoIs, i.e. we transform the batch of RoIs

rom dimensionality β × C × H × W to β × C × 1 × 1 in order
o simplify affinity computation and reduce processing time. This
s done in three steps: in the first two steps, RoIs’ H and W
re halved, in the last step they are downsampled to 1 × 1 :

× Conv2D → ReLU → BatchNorm2D. H,W must be divisible
y 2 twice. Kernel sizes of the first two Conv2D layers are 2 × 2,
nd the kernel size of the third one is divisible by the height and
idth of the features after the first two. These layers are also
rainable wrt image loss. After these operations the dimensions
f RoI batch is β × C × 1 × 1, which we simplify to β × C .
We denote each RoI vector xk, 1 ≤ k ≤ β , and the expression

value) in jth channel in the kth RoI is xk,j. Matrix of the RoI batch
s X with dimensions β × C . Matching RoI vectorization to the
riginal RoI mask features logic in the RoI layer, each value xk,j
s a ‘summary’ of the jth feature map in the kth RoI, obtained by
ownsampling the feature map from H × W to 1 × 1.

.3.3. Affinity matrix w
This is the key novelty of the whole model, in which we derive
set of affinities among RoIs. For each channel j in RoIs there
xists a set of C∗ different affinities. Each value in this set is the
trength of the corresponding affinity in channel j.
We refer to this stage as semi-supervised learning, because

one of the β RoIs is labelled in any way. Only the input image
as a label (COVID-19, CP, Normal, see Fig. 2). Therefore, the
eights in the Affinity matrix and Affinity vector are updated only
sing gradients from the image loss.
Each vector xk has C channels, so, by composing the vectors

ow-wise, the RoI matrix X can be written as a matrix size β × C
f row vectors xk, see Eq. (1). Rows are RoIs, and each column is
vector of values in the jth channel, x̂j. We introduce a trainable
ffinity matrixW, which consists of C∗ column vectorswr , Eq. (2),
o the dimensions of W are β × C∗. The purpose of W is to map
oIs from feature space to affinity space, therefore, each wr maps
oIs to the rth subspace of affinities.

=

⎡⎢⎢⎣
x1
x2
...

xβ

⎤⎥⎥⎦ (1)

=

[
w1 : w2 : . . . : wC∗

]
(2)

ur objective is to learn C∗ affinities for each of C channels across
ll RoIs. To do so, we have to take a dot-product between each
r and x̂j, Eqs. (3) and (4), therefore, W is transposed. Each term
r,kxk,j in the sum in Eq. (4) is the strength of rth affinity in the

th channel in kth RoI. Therefore, dot-product yr,j is the strength
f the rth affinity in the jth channel across all RoIs. We refer to Y
s affinity representation matrix.

= WT
⊗ X =

[
y1 : y2 : . . . : yC

]
(3)

r,j = wr ◦ x̂j =

β∑
k=1

wr,kxk,j (4)

atrix Y consists of C column vectors yj, so the dimensionality of
is C∗

×C . Example of the affinity representation matrix is given
n Fig. 4. Although Y could be used as an image class predictor,

ollapsing it into a vector will speed up the computation.

5

.3.4. Affinity vector v
Once affinity representation matrix Y is obtained, we take its

atrix–vector product with the trainable affinity vector v with
∗ elements. Vector v scales the affinities, i.e. weighs their effect,
nd maps them back into the feature space, Eqs. (5)–(7).

v =

⎡⎢⎢⎣
v1
v2
...

vC∗

⎤⎥⎥⎦ (5)

z = YT
⊙ v =

⎡⎢⎢⎣
z1
z2
...

zC

⎤⎥⎥⎦ (6)

j = yj ◦ v =

C∗∑
r=1

yj,rvr (7)

e transpose Y and take dot-product of each yj with v to get
ector of feature representations z, Eq. (6). Each term in the sum
n Eq. (7), yj,rvr is the weight of the rth affinity in channel j.
atching this expression to the RoI mask feature logic in the RoI

ayer, zj in Eq. (7) is a value that expresses features in jth channel
across all RoIs, adjusted for C∗ affinities among these features.
Vector z is the only output of the Affinity layer.

3.4. Image classification module and loss functions

Feature vector z is the input in the final image classification
module with two fully connected layers and the output class
logits layer with 3 neurons (one neuron per class).

The model solves a segmentation and classification problem
simultaneously in one shot, using a linear combination of two loss
functions, Eq. (8).

LTotal = LSEG + LCLS (8)

LCLS = −tClk log σ (hk(s)) −

∑
k̸=Cl

(1 − tClk ) log(1 − σ (hk(s))) (9)

tClk =

{
1 if k=Cl
0 else

n Eq. (8) LSEG loss is the same as in Mask R-CNN [30]: two losses
n RPN (object/background+raw boxes), and three in RoI (boxes,
lasses and masks). Eq. (9) is per-class binary cross-entropy. This
eans that we compute 3 image class loss values. Here σ is the
igmoid function, hk(s) is a logit value of the kth neuron for some
inear input map s, Cl is the correct class of the input image.

. Experimental results

.1. Training protocol

Each iteration, the presented model is trained in two stages:
egmentation stage and classification stage.

egmentation stage. Gradient computation and weight updates
re switched off for the classification branch in the RoI layer,
ffinity layer and image classifier. Segmentation loss is com-
uted for the output in RPN and the segmentation branch in RoI.
eights in the backbone, RPN and RoI segmentation branch are
pdated using gradients from LSEG. Weights from RoI segmenta-
ion branch are copied into the RoI classification branch.

lassification stage. Gradient computation and weight updates
re switched off for RPN and RoI (both branches). Image-level
oss is computed using Eq. (9) for the output of the image classi-
ier. Weights in backbone, Affinity layer and image classifier are
pdated using gradients from L .
CLS
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Fig. 4. Affinity representation, Y matrix in Eq. (3) with dimensionality C∗
× C for COVID-19, CP, and Normal classes. Each value in the matrix is yr,j , Eq. (4). Left

column: affinities after 1 epoch, right column: affinities after 100 epochs. Color gamma is normalized between 255 (red, strong positive affinity) and −255 (blue,
strong negative affinity). Best viewed in color.
4.2. Implementation details

The model was trained using Adam optimizer with a fixed
learning rate of 1e−5 and regularization hyperparameter 1e−3.
Image batch size was set to 1 for both problems. RoI mask
features batch size β was set to 8 to minimize computation time
(also, increasing it did not lead to a noticeable improvement in
the accuracy). Hence, the dimensionality of the batch of RoI mask
features (output of the classification branch) is 8×256×28×28
(256: number of channels in FPN, 28: hyperparameter for height
and width of RoIs). The input in the Affinity layer after feature
refinement and vectorization is 8 × 256. We experimented with
four C∗ values: 8, 16, 32, 64 (further increase of C∗ did not im-
prove the model’s performance). The number of stages in the
feature refinement N was set to 3.

Each model was trained for 100 epochs, which took about
14 h. All experiments were carried out on a single GPU with 8Gb
6

of VRAM. Backbone for all models was ResNet18+FPN. All other
hyperparameters for training and evaluation of both stages were
taken from [15,22].

Segmentation and classification results presented in
Sections 4.3 and 4.4 , clearly demonstrate three observations:

1. Increase in the number of affinities among RoI mask fea-
tures does not necessarily translate into the progress in
accuracy both in segmentation and classification, across all
metrics

2. This observation is also true for each particular model: for
example, models that achieve high classification accuracy
do not match it in segmentation, The opposite is also true.

3. The new solutions improve on benchmark models in seg-
mentation for all metrics, and in classification for all met-
rics except common pneumonia
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able 3
verage Precision on the segmentation data test split (100 images). Best results
n bold.
# affinities AP@50%IoU AP@75%IoU mAP

8 0.590 0.389 0.424
16 0.571 0.352 0.391
32 0.614 0.382 0.395
64 0.603 0.414 0.422

Mask R-CNN (head only) [22] 0.511 0.301 0.298
Mask R-CNN (full) [22] 0.565 0.413 0.352

4.3. Segmentation results

For the details of the segmentation precision metrics, see [31],
s we used average precision (AP) at two Intersect over Union
IoU) threshold values: AP@50%IoU and AP@75%IoU, and mean AP
mAP) across 10 IoU thresholds between 50% and 95% with a 5%
tep (main MS COCO metric).
We merged clean lungs with the background, and GGO with

, so there is only one ‘positive’ class (lesions). At test (evalua-
ion) time the model outputs a pre-defined set of box and class
redictions with softmax confidence scores, and binarized masks
or each predicted object. All predictions with a confidence score
xceeding a pre-set threshold are output alongside their boxes,
lasses and masks. We set this confidence threshold to 0.05, and
he maximum number of object predictions to 100, see Fig. 6 for
he visualization.

A very import hyperparameter is mask threshold, which is a
alue used for mask binarization: mask logits (MaskPrediction(S)
n Fig. 3) are converted into a binary mask: all pixels exceeding
he threshold are mask, the rest are background. We set this
hreshold to 0 (which corresponds to 0.5 threshold for sigmoid).

Precision is computed using overlaps between predicted (bi-
arized) object masks and gt masks. If the overlap exceeds the
oU threshold (e.g. 50%), and the class is predicted correctly, the
rediction is a True Positive. If either of these conditions fails, or
he object has a better prediction, it is a False Positive. If a lesion
s not predicted, it is a False Negative. Once all predictions are
btained, a Precision–Recall curve is constructed to calculate the
verage precision for the input image.
In Table 1 there is a large number of negative images, i.e. im-

ges without any lesions. At training stage, they are discarded.
t test stage, we use the following rule: if the input image is
egative, and the model does not predict any lesions therein,
ts precision is 1. In case there are no objects and at least one
rediction, or there are objects and no predictions, precision is 0.
For the rest of hyperparameters and computation details see

ttps://github.com/AlexTS1980/COVID-Affinity-Model and
15,22].

Segmentation results are presented in Table 3. The model with
he number of affinities C∗

= 8 achieved a 0.424 mAP, which is
ell above the MS COCO average. So far, we could not identify
different COVID-19 open-source lesion segmentation model

nd reimplement it in a similar way to add to the benchmark
omparison. Instead, we add results for Mask R-CNN from [22]
hat was trained with the same hyperparameters. We report the
ull model (all weights were trainable) and ‘heads’ only (RPN
nd RoI trainable, backbone frozen with weights pretrained on
mageNet).

From the results in Table 3 we can infer two things: first, our
odel improves on both Mask R-CNN models across all three
riteria. For mAP, our best model (C∗

= 8) outperforms the full
odel by 0.072, and the weakest one (C∗

= 16) by 0.039. The
mallest gap between our best model and the full Mask R-CNN is

∗
bserved for AP@75%IoU: C = 64 outperforms it only by 0.001.

7

Next, none of the Affinity model architectures consistently
achieves top result across all criteria. For AP@50%IoU model with
C∗

= 32 outperforms the next best (C∗
= 64) by 0.011. For

AP@75%IoU model with C∗
= 64 outperforms the next best

(C∗
= 8) by 0.024. For mAP, model with C∗

= 8 outperforms
the next best (C∗

= 64) by 0.002.
In Fig. 6 we present examples of segmentation outputs. CT

scan slice in Fig. 6(a) is taken roughly from the middle section
of the scan. There is a single large lesion (GGO) at the bottom
of the left lung (mask on the right). The model correctly predicts,
classifies and segments the lesion with a high softmax confidence
of 99%. The map in the middle shows the same prediction with
sigmoid intensity of the mask prediction.

Fig. 6(b) displays the scan from the lower lobe, with two
small lesions areas in the left lung. Although both are accurately
detected and classified with softmax confidence of 85% and 75%,
mask segmentation is not very accurate. This is clear from the
middle image with the sigmoid intensity of the predicted masks
that is concentrated mostly on the left of the first predicted
box (prediction with confidence of 0.85%), and starts to fade
quickly outside of it. The same is true for the second prediction
(confidence of 0.75%). As a result, after binarization, most of the
mask remains unpredicted. In Fig. 6(c) the slice (upper lobe)
contains only clean lungs. The ‘prediction’ is a background with a
confidence of 0.001%.

4.4. Classification results

To compute classification accuracy, we used per-class (c) sen-
sitivity, precision and class-adjusted F1 score, Eqs. (10)–(12).

Sens(c) =
TP

TP + TN
(10)

Prec(c) =
TP

TP + FP
(11)

1score = 2
C∑

c=1

w(c) ×
Sens(c) × Prec(c)
Sens(c) + Prec(c)

(12)

here w(c) is the share of each class in the test split. Details of
he test split are in Table 2. The share of COVID-19 in the test split
s 22%, the share of CP is 35%, and the share of Normal is 43%.

Classification accuracy results for each attempted number of
ffinities C∗ are presented in Table 4. For the benchmark com-
arisons, ResNet18 was trained and tested on our data from
cratch, COVIDNet-CT [5] model was evaluated using the model
vailable online. Results for COVIDNet-CT reported in Table 4 are
ifferent from the ones in [5]. Results for DarkCOVIDNet [33]
ere taken from https://github.com/muhammedtalo/COVID-19.
ll other results were taken from the respective publications.
Overall, the model with C∗

= 16 produces the largest num-
er of top results. It achieves the highest COVID-19 sensitivity
f 93.55%, Negative class sensitivity of 99.47% and F1 score of
7.37%. Affinity models outperform the best benchmark models
n all classes, except CP: Model with C∗

= 16 outperforms
esNet18 by 0.95% for COVID-19, COVIDNet-CT by 0.51% for Nor-
al, and COVIDNet-CT by 2.03% in F1 score. The main difference

rom segmentation results, is that C∗
= 16 consistently achieves

op results, but does worse than other models in segmentation
roblem.
From the comparison of the models’ performance for both

roblems we can observe that the actual number of affinities can-
ot be used as a predictor of the model’s success. This observation
s visualized in Figs. 5(a)–(d), in which we plot each model’s rank
or each criterion. First, we plotted mAP vs F1 score (Fig. 5(a))
nd AP@50%IoU vs COVID-19 sensitivity (5(b)). Possibly the only
onsistent increase can be observed for F1 score for 16 and

https://github.com/AlexTS1980/COVID-Affinity-Model
https://github.com/muhammedtalo/COVID-19
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Table 4
Class sensitivity and F1 scores on the COVIDx-CT test split (21191 images). Best class results in bold.
Model COVID-19 CP Negative F1score Test set size

Ours (8 affinities) 92.34% 97.74% 99.13% 97.26%
21191Ours (16 affinities) 93.55% 96.93% 99.47% 97.37%

Ours (32 affinities) 90.93% 97.08% 99.06% 96.71%
Ours (64 affinities) 93.50% 96.57% 96.85% 96.05%

COVID-CT-Mask-Net [22] 90.80% 91.62% 91.10% 91.50% 21191
ResNet50 [13] 85.90% – – 88.10% 746
COVNet [9] 90.00% – – 89.04% 434
LightCNN [32] 88.23% – – 84.56% 392
ResNet18 92.59% 96.25% 92.03% 93.61% 21191
DarkCOVIDNet [33] 85.71% 85.22% 93.57% 89.73% 224
COVIDNet-CT [5] 81.70% 98.74% 98.95% 95.34% 21191
VGG16 [28] 85.00% 97.00% 98.00% – 19685
Fig. 5. Rank of each model for two criteria. Blue: left axis, red: right axis. Fig. 5(a): mAP vs F1 score, Fig. 5(b): AP@50%IoU vs COVID-19 sensitivity, Fig. 5(c): mAP
vs AP@50%IoU, 5(d): F1 score vs COVID-19 sensitivity. Best viewed in color.
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greater number of affinities. Next, we plot mAP vs AP@50%IoU
(two main segmentation criteria, 5(c)) and F1 score vs COVID-19
sensitivity (two main classification criteria, Fig. 5(d)). We justify
these sets of pairs of metrics by the fact that mAP and F1 score are
the main metrics for, resp. segmentation and classification, and
AP@50%IoU and COVID-19 are next important. Same logic applies
to the other two pairs.

Affinity representation matrix Y for the model with C∗
= 64

nd 3 different classes of input images is visualized in Fig. 4(a)–(c)
fter training for 1 (left) and 100 (right) epochs (in the latter case
he input image is always correctly classified). Each element yr,j
of the matrix is the strength of the rth affinity in the jth channel.
The structure of the matrix in Fig. 4(a), Negative class, displays
a greater presence of inactive (pale/white) affinities, but several
affinities are consistently negative across all channels. Figs. 4(b),
Common Pneumonia, and 4(c), COVID-19, are similar in the way
that both of them have a large number of both strong and weak
affinities, and a large number of affinities is consistently strong
across all channels. Also, a large number of affinities change sign
and magnitude across channels.

4.5. Ablation study and domain adaptation

4.5.1. CNCB-ncov dataset (left-out part of the train split)
A total of 58782 images from the train split (see Table 2) were

left out of the main investigation.
Classes breakdown in this split do not deviate substantially

from the test and validation splits: normal class is 45.14%, CP is
36.24%, COVID-19 is 18.16%. Table 5 reports the models’ accuracy.
Overall, these results are comparable to those in the test split, see
Table 4. The model with C∗

= 16 achieves the highest Negative
lass sensitivity of 99.43%, the model with C∗

= 32 achieves the
ighest COVID-19 sensitivity of 98.69%, CP sensitivity of 98.18%
nd F1 score of 98.41%. With respect to F1 score, compared to the
esults in Table 4, it improves C∗

= 8 result by 1.04%, C∗
= 16

∗ ∗
y 1.00%, C = 32 by 1.70% and C = 64 by 1.26%. o

8

.5.2. iCTCF dataset
One of the challenges of fast and reliable COVID-19 diagno-

is is the generalization of models to other datasets. According
o [34], there is a number of pitfalls that prevent DL models from
eing used in the real clinical environment. These issues include
oth methodological flaws, and the reproducibility of the results.
lthough publications tend to report optimistic results, achieved
y specific models, their methodology often suffers from the lack
f the details of the data manipulation, training protocol, and also
rom various forms of data bias (labels, experimental settings,
ontrol groups, etc.).
Most importantly, many datasets are either small, or suffer

rom a severe form of class imbalance in test splits, which inflates
he models’ accuracy, which does not translate into the ability to
eneralize to external datasets, or the data available in the real
linical environment. The use of varying, and often unclear evalu-
tion metrics prevents the direct comparison of the models. Also,
any of the models are not publicly available (e.g. on Github),
hich diminishes the reproducibility of results even more. Most
ublications do not address any of these challenges, regardless of
he chosen methodology or datasets.

To overcome some of these shortcomings, we extend our
indings to a large open-source dataset iCTCF-CT [28], http://
ctcf.biocuckoo.cn with two classes: Negative and COVID-19. The
ataset details are summarized in Table 6. We split the data
andomly into 600 training and validation and 12976 test images
note the class imbalance in the test split) achieving the test to
rain+validation split ratio of 21.62. We finetuned each model
rom the weights trained on CNCB-NCOV data for 10 epochs,
hich took about 15 min on the same GPU with 8Gb VRAM. No
hanges were applied to the models’ architecture except the final
lassification layer, replacing 3 neurons with 2. The results on
CTCF presented in Table 7, confirm that Affinity models adapt
uickly and achieve high accuracy on the external data after a
ery short finetuning.
Comparison to the result in [29] is mostly favorable. The
riginal paper did not report F1 score; VGG16 achieved high

http://ictcf.biocuckoo.cn
http://ictcf.biocuckoo.cn
http://ictcf.biocuckoo.cn
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a
s

Fig. 6. Segmentation of chest CT scan slices from test set (see Table 1). Left column: detection of lesions (bounding box + softmax class confidence + mask). Masks
re binarized by using the threshold of 0.5 for pixel-level sigmoid values for each lesion, see [22] for details. Central column: detection of lesions with pixel-level
igmoid mask scores before binarization. Right column: ground truth.
Table 5
Class Sensitivity results on the COVIDx-CT left-out train split (58782 images) and F1 score. Best results in bold.
# affinities COVID-19 CP Negative F1score

8 97.97% 97.22% 99.33% 98.31%
16 98.30% 97.10% 99.43% 98.38%
32 98.69% 98.18% 99.16% 98.41%
64 98.37% 96.78% 97.25% 97.31%
COVID-19 sensitivity of 97.00%, and low Negative sensitivity of
85.74%, i.e. the solution suffered from high false positive predic-
tions. Two models: C∗

= 16, 64 improve on the base one across
both classes: the former by 0.81% for COVID-19 and 11.92% for
Negative. The latter outperforms it by 0.92% for COVID-19 and
9

5.98% for Negative. The one with C∗
= 32 achieves top COVID-19

sensitivity of 99.35% thus beating the baseline by 2.35%, but it is
also our only algorithm that has true negative rate lower than
the baseline. Finally, the smallest model, C∗

= 8 is the only one
with COVID-19 sensitivity lower than the baseline by 1.27%. At
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able 6
ummary of the iCTCF-CT [28,29] classification dataset.
Split COVID-19 Negative Total

Train/Val 300 300 600
Test 3701 9275 12976

Table 7
Accuracy results on the iCTCF-CT test split (12976 images). Best results in bold
# Affinities COVID-19 Negative F1score

8 95.73% 98.30% 97.53%
16 97.81% 97.39% 97.51%
32 99.35% 83.27% 87.88%
64 97.92% 91.46% 93.30%

VGG16 [28] 97.00% 85.47% -

the same time, it achieves both highest true negative rate and
top F1 score of 97.53%.

Our models have the potential to be trained on a mix of
atasets, which can further improve their ability to generalize to
he new data and the real clinical environment. This will be an
mportant avenue of our future work in this area.

.6. Limitations of the methodology

After careful analysis of the results across three datasets and
wo problems, we can clearly identify one serious limitation of
he presented Affinity methodology. By comparing results in Ta-
les 3–5 and Table 7, despite the fact that Affinity models overall
utperform benchmark models, we can point out, that none of
he attempted Affinity models consistently achieved top results
cross all datasets, problems and precision criteria. The second
roblem is that models that achieved top results for CNCB-NCOV
lassification, did not perform well on CNCB-NCOV segmentation
r iCTCF (e.g. C∗

= 16) compared to other affinity models. The
odel that achieved top mAP and high F1 accuracy in iCTCF data,
utput weaker results across all classification criteria (e.g. C∗

=

).
This limitation motivates further study of the effect of affinity

epresentation on the performance of the Affinity model, as affin-
ty representation is the main step in the computation of features
or image classification.

. Conclusions

In this paper we presented a novel methodology for a one-
hot solution of lesion segmentation and COVID-19 classification
roblems.
Main methodological novelty of the solution is affinity, a type

f associations among Region of Interest mask features. The out-
ut of the affinity computation is used to predict the class of
he whole image. Using a small fraction of the CNCB-NCOV train-
ng data and without any complicated data manipulation, we
chieved strong results both in segmentation and classification
roblems. Domain adaptation studies on iCTCF dataset further
alidated the strength and the potential of our solution to gener-
lize to the new data. Thorough investigation of the structure and
he effect of the Affinity representation on the model’s accuracy
nd generalization will be the focus of our future research.
All source code, models and results are publicly available on

ttps://github.com/AlexTS1980/COVID-Affinity-Model.
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