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ABSTRACT Biochemical reactions within individual cells result from the interactions of molecules, typically in small numbers.
Consequently, the inherent stochasticity of binding and diffusion processes generates noise along the cascade that leads to the
synthesis of a protein from its encoding gene. As a result, isogenic cell populations display phenotypic variability even in homogeneous
environments. The extent and consequences of this stochastic gene expression have only recently been assessed on a genome-wide
scale, owing, in particular, to the advent of single-cell transcriptomics. However, the evolutionary forces shaping this stochasticity have
yet to be unraveled. Here, we take advantage of two recently published data sets for the single-cell transcriptome of the domestic
mouse Mus musculus to characterize the effect of natural selection on gene-specific transcriptional stochasticity. We show that noise
levels in the mRNA distributions (also known as transcriptional noise) significantly correlate with three-dimensional nuclear domain
organization, evolutionary constraints on the encoded protein, and gene age. However, the position of the encoded protein in a
biological pathway is the main factor that explains observed levels of transcriptional noise, in agreement with models of noise
propagation within gene networks. Because transcriptional noise is under widespread selection, we argue that it constitutes an
important component of the phenotype and that variance of expression is a potential target of adaptation. Stochastic gene expression
should therefore be considered together with the mean expression level in functional and evolutionary studies of gene expression.
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ISOGENIC cell populations display phenotypic variability even
in homogeneous environments (Spudich and Koshland 1976).

This observation challenged the clockwork view of the intracel-
lular molecular machinery and led to the recognition of the sto-
chastic nature of gene expression. Since biochemical reactions
result from the interactions of individualmolecules in small num-
bers (Gillespie 1977), the inherent stochasticity of binding and
diffusion processes generates noise along the biochemical cas-
cade leading to the synthesis of a protein from its encoding gene
(Figure 1). The study of stochastic gene expression (SGE) classi-
cally recognizes two sources of expression noise. Following the
definition introduced by Elowitz et al. (2002), extrinsic noise

results from variation in the concentration, state, and location
of shared key molecules involved in the reaction cascade from
transcription initiation to protein folding. This is because mole-
cules that are shared among genes, such as ribosomes and RNA
polymerases, are typically present in low copy numbers relative
to the number of genes that are actively transcribed (Shahrezaei
and Swain 2008). Extrinsic factors also include physical proper-
ties of the cell such as size and growth rate, which are likely to
impact the diffusion process of all molecular players. Extrinsic
factors therefore affect every gene in a cell equally. Conversely,
intrinsic factors generate noise in a gene-specific manner. They
involve, for example, the strength of cis-regulatory elements
(Suter et al. 2011), as well as the stability of the mRNA mole-
cules that are transcribed (McAdams and Arkin 1997; Thattai
and Oudenaarden 2001). Every gene is affected by both
sources of stochasticity and the relative importance of each has
been discussed in the literature (Becskei et al. 2005; Raj and
Oudenaarden 2008). Shahrezaei and Swain (2008) proposed
a more general, systemic definition for any organization level,
where intrinsic stochasticity is “generated by the dynamics of
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the system from the random timing of individual reactions”
and extrinsic stochasticity is “generated by the system interact-
ing with other stochastic systems in the cell or its environment.”
This generic definition therefore includes Raser and O’Shea’s
suggestion to further distinguish extrinsic noise occurring
“within pathways” and “between pathways” (Raser and O’Shea
2005). Other organization levels of gene expression are also
likely to affect expression noise, such as chromatin structure
(Blake et al. 2003; Hebenstreit 2013) and three-dimensional
(3D) genome organization (Pombo and Dillon 2015).

Pioneeringwork by Fraser et al. (2004) has shown that SGE is
an evolvable trait that is subject to natural selection. First, genes
involved in core functions of the cell are expected to behavemore
deterministically (Barkai and Leibler 1999) because temporal
oscillations in the concentration of their encoded proteins are
likely to have a deleterious effect. Second, genes involved in
the immune response (Arkin et al. 1998; Norman et al. 2015)
and responses to environmental conditions can benefit from
being unpredictably expressed in the context of selection for
bet-hedging (Thattai and Oudenaarden 2004). As the relation-
ship between fitness and stochasticity depends on the function of
the underlying gene, selection onSGE is expected to actmostly at
the intrinsic level (Newman et al. 2006; Lehner 2008;Wang and
Zhang 2011). However, the molecular mechanisms by which
natural selection operates to regulate expression noise remain
to be elucidated.

Due to methodological limitations, seminal studies on SGE
(both at the mRNA and protein levels) have focused on only a
handful of genes (Elowitz et al.2002;Ozbudak et al.2002;Chubb
et al.2006). The canonical approach consists of selecting genes of
interest and recording the change of their noise levels in a pop-
ulation of clonal cells as a function of either: (1) the concentra-
tion of the molecule that controls the affinity of the transcription
factor (TF) to the promoter region of the gene (Blake et al. 2003;
Bar-Even et al. 2006) or (2) mutations artificially imposed in
regulatory sequences (Ozbudak et al. 2002). In parallel with
theoretical work (Kepler and Elston 2001; Batada and Hurst
2007; Kaufmann and van Oudenaarden 2007; Sánchez and
Kondev 2008), these pioneering studies have provided the basis
of our current understanding of the proximate molecular mech-
anisms behind SGE, namely complex regulation by TFs, architec-
ture of the upstream region (including the presence of the TATA
box), gene orientation (Wang et al. 2011), translation efficiency,
mRNA/protein stability (Eldar andElowitz 2010), andproperties
of the protein–protein interaction (PPI) network (Li et al. 2010).
However, measurements at the genome scale coupled with rig-
orous statistical analyses are needed to go beyond gene idiosyn-
crasies and particular histories, and test hypotheses about the
evolutionary forces shaping SGE (Sauer et al. 2007).

The recent advent of single-cell RNA sequencing makes it
possible to sequence the transcriptomeofeach individual cell ina
collection of clones, and to observe the variation of gene-specific
mRNA quantities across cells. This provides a genome-wide
assessment of transcriptional noise. While not accounting for
putativenoise resulting fromtheprocessof translationofmRNAs
into proteins, transcriptional noise accounts for noise generated

byboththesynthesisanddegradationofmRNAmolecules(Figure
1). However, previous studies have shown that transcription is a
limiting step in gene expression and that transcriptional noise is
therefore a goodproxy for expressionnoise (Newman et al.2006;
Taniguchi et al. 2011). Here, we used publicly available single-
cell transcriptomics data sets to quantify gene-specific transcrip-
tional noise and relate it to other genomic factors to uncover the
molecular basis of selection on SGE.

Materials and Methods

Single-cell gene expression data set

We used the data set generated by Sasagawa et al. (2013)
retrieved from the Gene Expression Omnibus repository (ac-
cession number GSE42268). We analyzed expression data
corresponding to embryonic stem cells (ESC) in G1 phase,
for which more individual cells were sequenced. A total of
17,063 genes had non-zero expression in at least one of the
20 single cells. Similar to Shalek et al. (2014), a filtering
procedure was performed where only genes whose expres-
sion level satisfied log[fragments per kilobase of transcripts
per million mapped fragments (FPKM) + 1] .1.5 in at least
one single cell were kept for further analyses. This filtering
step resulted in a total of 13,660 appreciably expressed genes
for which transcriptional noise was evaluated.

Measure of transcriptional noise

The expressionmean (m) and variance (s2) of each gene over
all single cells were computed. Wemeasured SGE as the ratio
F* ¼ s2= ds2ðmÞ; where ds2ðmÞ is the expected variance given
the mean expression. To compute ds2ðmÞ; we performed sev-
eral polynomial regressions with logðs2Þ as a function of
logðmÞ; with degrees between 1 and 5. We then tested
the resulting F* measures for residual correlation with
mean expression using Kendall’s rank correlation test.
We find that a degree 3 polynomial regression was suffi-
cient to remove any residual correlation with F* (Kendall’s
t= 0.0037, P-value = 0.5217). F* can be seen as a general
expression for the Fano factor and noise measure: when
using a polynome of degree 1, the expression of F*
becomes F* ¼ s2=exp

�
aþ b:logðmÞ� ¼ s2

�
expðaÞ:mb; and is

therefore equivalent to the Fano factor when a= 0 and b= 1,
and equivalent to noise when a = 0 and b = 2.

Genome architecture

The mouse proteome from Ensembl (genome version: mm9)
was used to get coordinates of all genes. The Hi-C data set for
ESCs from Dixon et al. (2012) was used to get 3D domain
information. Two genes were considered in proximity in one
dimension (1D) if they are on the same chromosome and no
protein-coding gene was found between them. The primary
distance (in number of nucleotides) between their mid-
point coordinates was also recorded as 1D a distance mea-
sure between the genes. Two genes were considered in
proximity in 3D if the normalized contact number between
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the twowindows that the genes belonged to was non-null. Two
genes belonging to the same window were considered to be in
proximity. We further computed the relative difference of SGE
between two genes by computing the ratio ðF*2 2 F*1Þ

�ðF*2 þ F*1Þ:
For each chromosome, we independently tested whether there
was a correlation between the primary distance and the relative
difference in SGE with a Mantel test, as implemented in the
ade4 package (Dray and Dufour 2007). To test whether genes
in proximity (1D and 3D) hadmore similar transcriptional noise
than distant genes, we contrasted the relative differences in
transcription noise between pairs of genes in proximity and
pairs of distant genes. As we test all pairs of genes, we per-
formed a randomization procedure to assess the significance
of the observed differences by permuting the rows and columns
in the proximity matrices 10,000 times. Linear models account-
ing for “spatial” interactions with genes were fitted using the
generalized least squares (GLS) procedure, as implemented in
the nlme package for R. A correlation matrix between all tested
genes was defined as G ¼ fgi;jg; where gi;j is the correlation
between genes i and j.We defined gi;j ¼ 12 expð2ldi;jÞ;where
di; j takes 1 if genes i and j are in proximity, and 0 otherwise
(binary model). Alternatively, di; j can be defined as the actual
number of contacts between the two 20-kb regions [as defined
by Dixon et al. (2012)] to which the genes belong (proportional
model). Parameter l was estimated jointly with other model
parameters, it measures the strength of the genome spatial
correlation. Models were compared using Akaike’s informa-
tion criterion (AIC). We find that the proportional correlation
model fitted the data better and therefore selected it for fur-
ther analyses.

TFs and histone marks

TFmapping data from the Ensembl regulatory build (Zerbino
et al. 2015) were obtained via the biomaRt package for R. We
used the Grch37 build as it contained data for stem cell epi-
genomes. Genes were considered to be associated with a
given TF when at least one binding evidence was present in
the 3-kb upstream flanking region. TFs associated with more
than five genes for which transcriptional noise could be com-
puted were not considered further. A similar mapping was
performed for histone marks by counting the evidence of
histone modifications in the 3-kb upstream and downstream
regions of each gene. A logistic principal component analysis
(PCA) was conducted on the resulting binary contingency
tables using the logisticPCA package for R (Landgraf and
Lee 2015), for TF and histone marks separately. Principal
components (PCs) were used to define synthetic variables
for further analyses.

Biological pathways, PPIs, and network topology

Wedefinedgenes either in the top10% least noisy or in the top
10% most noisy as candidate sets, and used the Reactome PA
package (Yu and He 2016) to search the mouse Reactome
database for overrepresented pathways with a 1% false dis-
covery rate (FDR).

Centrality measures were computed using a combination
of the igraph (Csardi and Nepusz 2006) and graphite (Sales
et al. 2012) packages for R. As the calculation of assortativity
does not handle missing data (that is, nodes of the pathway
for which no value could be computed), we computed assor-
tativity on the subnetwork with nodes for which data were
available. Reactome centrality measures could be computed
for a total of 4454 genes with expression data.

PPIs were retrieved from the iRefIndex database (Razick
et al. 2008) using the iRefR package forR (Mora andDonaldson
2011). Interactions were converted to a graph using the ded-
icated R functions in the package, and the same methods
were used to compute centrality measures as for the pathway
analysis. Because the PPI-based graph was not oriented, au-
thority scores were not computed for this data (as this gave
identical results to hub scores). Furthermore, as most genes
are part of a single graph structure in the case of PPIs, close-
ness values were not further analyzed as they were virtually
identical for all genes.

Gene ontology enrichment

Of the 13,660 genes, 8325 were associated with Gene Ontology
(GO)terms.Wetestedgenes forGOtermenrichmentatbothends
of the F* spectrum using the same threshold percentile of 10%
low/high-noise genes as we did for the Reactome analysis. We
carried out GO enrichment analyses using two different algo-
rithms implemented in the /topGO/ R package.: “Parent-child”
(Grossmann et al. 2007) and “Weight01,” a mixture of two algo-
rithms developed by Alexa et al. (2006). We kept only the terms
that appeared simultaneously onbothParent-child andWeight01
at under a 1% significance level, controlling for multiple testing
using the FDR method (Benjamini and Hochberg 1995).

Sequence divergence

Ensembl’s Biomart interface was used to retrieve the proportion
of nonsynonymous (Ka) and synonymous (Ks) divergence esti-
mates for eachmouse gene relative to the human ortholog. This
information was available for 13,124 genes.

Gene age

The relative taxonomic ages of the mouse genes have been
computed and are available in the form of 20 phylostrata
(Neme and Tautz 2013). Each phylostratum corresponds to a
node in thephylogenetic tree of life. Phylostratum1corresponds
to “All cellularorganisms”whereasphylostratum20corresponds
to “Mus musculus,” with other levels in between. We used this
published information to assign each of our genes to a specific
phylostratum and used this as a relative measure of gene age:
Age = 21 2 phylostratum, so that an age of 1 corresponds to
genes specific to M. musculus and genes with an age of 20 are
found in all cellular organisms.

Linear modeling

We simultaneously assessed the effect of different factors on
transcriptional noise byfitting linearmodels to the gene-specific
F* estimates. To avoid colinearity issues of intrinsically
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correlated explanatory variables, we conducted a data reduction
procedure using multivariate analysis. We used variants of PCA
onexplanatory variables in three groups: network centralitymea-
sures, Ka/Ks and gene age with standard PCA, and TF-binding
evidence and histone methylation patterns using logistic PCA, a
generalization of PCA for binary variables (Landgraf and Lee
2015). In each case, we used the most representative compo-
nents (totaling $75% of the total deviance) as synthetic vari-
ables. PCA analysis was conducted using the ade4 package for R
(Dray and Dufour 2007) and logistic PCA was performed using
the logisticPCA package (Landgraf and Lee 2015).

We built a linear model with F* as a response variable and
13 synthetic variables as explanatory variables. As the synthetic
variables are PCs, they are orthogonal by construction. The fitted
model displayed a significant departure to normality and was
further transformed using the Box-Cox procedure [“boxcox”
function from the MASS package for R (Venables and Ripley
2002)]. Residues of the selectedmodel hadnormal, independent
residue distributions (Shapiro–Wilk test of normality, P-value =
0.121; Ljung–Box test of independence, P-value = 0.2061) but
still displayed significant heteroscedasticity (Harrison–McCabe
test, P-value = 0.003). To ensure that this departure from the
Gauss–Markov assumptions does not bias our inference, we used
the “robcov” function of the rms package to get robust estimates
of the effect significativity (Harrell 2015). The relative impor-
tance of each explanatory factor was assessed using the method
of Lindeman, Merenda, and Gold (Lindeman et al. 1979), as
implemented is the R package relaimpo. The significance of the
level of variance explained by each factor was computed using a
standard ANOVA procedure.

Additional data sets

The aforementioned analyseswere additionally conducted on
the bone marrow-derived dendritic cell (BMDC) data set of

Shalek et al. (2014). Following the filtering procedure estab-
lished by the authors in the original paper, genes that did not
satisfied the condition of being expressed by an amount such
that log(TPM + 1) . 1 in at least one of the 95 single cells
were further discarded, where TPM stands for transcripts per
million. This cut-off threshold resulted in 11,640 genes being
kept for investigation. The rest of the analyses were con-
ducted in the same way as for the ESC data set.

Jackknife procedure

A jackknife procedure was conducted to assess: (1) the ro-
bustness of our results to the choice of actual cells used to
estimate mean and variance in gene expression and (2) the
power of the pooled RNA sequencing analysis for which only
three replicates were available. This analysis was conducted
by sampling3,5, 10, and15of theoriginal 20 single cells of the
ESC data set (Sasagawa et al. 2013), 1000 times in each case.
The exact same analysis was conducted on each random
sample as for the complete data set, and model coefficients
and their associated P-values were recorded.

Data availability

All data sets and scripts to reproduce the results of this study
are available under the DOI 10.6084/m9.figshare.4587169.

Results

A new measure of noise to study genome-wide
patterns of SGE

We used the data set generated by Sasagawa et al. (2013),
which quantifies gene-specific amounts of mRNA as FPKM
values for each gene and each individual cell. Among these,
we selected all genes in a subset containing 20 ESCs in G1
phase to avoid recording variance that is due to different cell

Figure 1 A systemic view of gene expression. CDS, coding
sequence; TFs, transcription factors.
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types or cell-cycle phases. The Quartz-Seq sequencing pro-
tocol captures every poly-A RNA present in the cell at one
specific moment, allowing the assessment of transcriptional
noise. Following Shalek et al. (2014), we first filtered out
genes that were not appreciably expressed to reduce the con-
tribution of “technical” noise to the total noise. For each gene,
we further calculated the mean m in FPKM units and variance
s2 in FPKM2 units, as well as two previously published mea-
sures of stochasticity: the Fano factor, usually referred to as
the bursty parameter, defined as s2=m, and noise, defined as
the coefficient of variation squared (s2=m2). Both the vari-
ance and Fano factor are monotonically increasing functions
of the mean (Figure 2A). Noise is inversely related to mean
expression (Figure 2A), in agreement with previous observa-
tions at the protein level (Bar-Even et al. 2006; Taniguchi
et al. 2011). While this negative correlation was theoretically
predicted (Tao et al. 2007), it may confound the analyses of
transcriptional noise at the genome level, because mean gene
expression is under specific selective pressure (Pál et al.
2001). To disentangle these effects, we developed a new
quantitative measure of noise, independent of the mean ex-
pression level of each gene. To achieve this, we performed
polynomial regressions in the log-space plot of variance vs.
mean. We defined F* as s2

obs=s
2
pred (see Materials and Meth-

ods), that is, the ratio of the observed variance over the var-
iance component predicted by the mean expression level. We
selected the simplest model for which no correlation between
F* and mean expression was observed, and found that a de-
gree 3 polynomial model was sufficient to remove further
correlation (Kendall’s t=20.0037, P-value= 0.5217, Figure
2A). Genes with F*, 1 have a variance lower than expected
according to their mean expression, whereas genes with F*.
1 behave the opposite way (Figure 2B). This approach fulfills
the same goal as the running median approach of Newman
et al. (2006), while it includes the effect of mean expression
directly into themeasure of stochasticity instead of correcting
a posteriori a dependent measure (in that case, the Fano
factor). We therefore use F* as a measure of SGE throughout
this study.

SGE correlates with the 3D structure of the genome

We first sought to investigate whether genome organiza-
tion significantly impacts the patterns of SGE. We assessed
whether genes in proximity along chromosomes displaymore
similar amounts of transcriptional noise than distant genes.
We tested this hypothesis by computing the primary distance
on the genomebetween eachpair of genes, that is, the number
of base pairs separating them on the chromosome, as well as
the relative difference in their transcriptional noise (see Ma-
terials and Methods). We found no significant association be-
tween the two distances (Mantel tests, each chromosome
tested independently). However, contiguous genes had sig-
nificantly more similar transcriptional noise that noncontig-
uous genes (permutation test, P-value , 1 3 10204, Figure
S1). Using Hi-C data frommouse embryonic cells (Dixon et al.
2012), we report that genes in contact in three dimensions

have significantly more similar transcriptional noise than
genes not in contact (permutation test, P-value , 1 3 10203,
Figure S1). Most contiguous genes in one dimension also ap-
pear to be close in three dimensions, and the effect of 3D
contact is stronger than that of 1D contact. These results
therefore suggest that the 3D structure of the genome has a
stronger impact on SGE than the position of the genes along
the chromosomes. We further note that while highly signifi-
cant, the size of this effect is small, with a mean difference in
relative expression of 21.10% (Figure S1).

TF binding and histone methylation impact SGE

The binding of TFs to promoters constitutes one notable
source of transcriptional noise (Figure 1) (Blake et al.
2003; Newman et al. 2006). In eukaryotes, the accessibility
of promoters is determined by the chromatin state, which is
itself controlled by histone methylation. We assessed the ex-
tent to which transcriptional noise is linked to particular TFs
and histonemarks by using data from the Ensembl regulatory
build (Zerbino et al. 2015), which summarizes experimental
evidence of TF binding and methylation sites along the ge-
nome. First, we contrasted the F* values of genes with bind-
ing evidence for each annotated TF independently. Among
13 TFs represented by at least five genes in our data set, we
found that four of them significantly influence F* after adjust-
ing for a global FDR of 5%: the transcription repressor CTFC
(adjusted P-value = 0.0321), the TF CP2-like 1 (Tcfcp2l1,
adjusted P-value = 0.0087), the X-linked Zinc Finger Protein
(Zfx, adjusted P-value = 0.0284), and the Myc TF (MYC,
adjusted P-value = 0.0104). Interestingly, association with
each of these four TFs led to an increase in transcriptional
noise. We also report a weak but significant positive correla-
tion between the number of TFs associated with each gene
and the amount of transcriptional noise (Kendall’s t =
0.0238, P-value = 0.0007). This observation is consistent
with the idea that noise generated by each TF is cumulative
(Sharon et al. 2014). We then tested if particular histone
marks are associated with transcriptional noise. Among five
histone marks represented in our data set, three were found
to be highly significantly associated to a higher transcrip-
tional noise: H3K4me3 (adjusted P-value = 2.0 3 102146),
H3K4me2 (adjusted P-value = 5.53 102121), and H3K27me3
(adjusted P-value = 5.3 3 10234). Methylation on the fourth
lysine of histone H3 is associated with gene activation in
humans, while trimethylation on lysine 27 is usually associ-
ated with gene repression (Barski et al. 2007). These results
suggest that both gene activation and silencing contribute
to the stochasticity of gene expression, in agreement with
the view that bursty transcription leads to increased noise
(Blake et al. 2003; Newman et al. 2006; Batada and Hurst
2007).

Low noise genes are enriched for housekeeping
functions

We investigated the function of genes at both ends of the F*
spectrum. We defined as candidate gene sets the top 10%
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Figure 2 Transcriptional noise and mean gene
expression. (A) Measures of noise plotted against
the mean gene expression for each gene, in log-
arithmic scales: Variance, Fano factor (variance/
mean), noise (square of the coefficient of varia-
tion, variance/mean2), and F* (this study). Lines
represent quantile regression fits (median, first,
and third quartiles). Point and bars represent me-
dian, first, and third quartiles for each category of
mean expression obtained by discretization of the
x-axis. (B) Distribution of F* over all genes in this
study. Vertical line corresponds to F* = 1. SGE,
stochastic gene expression.
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least noisy or the top 10% most noisy genes in our data set,
and tested for enrichment of GO terms and Reactome path-
ways (see Materials and Methods). It is expected that genes
encoding proteins participating in housekeeping pathways
are less noisy because fluctuations in the concentrations of
their products might have stronger deleterious effects
(Pedraza and van Oudenaarden 2005). On the other hand,
SGE could be selectively advantageous for genes involved in
immune and stress responses, as part of a bet-hedging strat-
egy (e.g., Arkin et al. 1998; Shalek et al. 2013). A GO terms
enrichment test revealed significant categories enriched in
the low-noise gene set only: molecular functions “nucleic
acid binding” and “structural constituent of ribosome;” the
biological processes “nucleosome assembly,” “innate immune
response in mucosa,” and “translation;” and the cellular
component “cytosolic large ribosomal subunit” (Table 1).
All these terms but one relate to gene expression, in agree-
ment with previously reported findings in yeast (Newman
et al. 2006). We further find a total of 41 Reactome pathways
significantly overrepresented in the low-noise gene set (FDR
set to 1%). Interestingly, the most significant pathways be-
long to modules related to translation (RNA processing, ini-
tiation of translation, and ribosomal assembly), as well as
several modules relating to gene expression, including chro-
matin regulation and mRNA splicing (Figure 3). Only one
pathway was found to be enriched in the high-noise set:
TP53 regulation of transcription of cell cycle genes (P-value =
0.0079). This finding is interesting because TP53 is a central
regulator of the stress response in the cell (Hussain and
Harris 2006). These results therefore corroborate previous
findings that genes involved in the stress response might be
evolving under selection for high noise as part of a bet-hedging
strategy (Shalek et al. 2013; Viney and Reece 2013). The small
amount of significantly enriched Reactome pathways by high-
noise genes can potentially be explained by the nature of the
data set: as the original experiment was based on unstimulated
cells, genes that directly benefit from high SGE might not be
expressed under these experimental conditions.

Highly connected proteins are synthesized by
low-noise genes

The structure of the interaction network of proteins inside the
cell can greatly impact the evolutionary dynamics of genes
(Jeong et al. 2000; Barabási and Oltvai 2004). Furthermore,
the contribution of each constitutive node within a given
network varies. This asymmetry is largely reflected in the

power-law-like degree distribution that is observed in virtu-
ally all biological networks (Barabási and Albert 1999), with
a few genes displaying many connections and a majority of
genes displaying only a few. The individual characteristics of
each node in a network can be characterized by various mea-
sures of centrality (Newman 2003). Following previous stud-
ies on protein evolutionary rate (Fraser et al. 2002; Hahn
et al. 2004; Jovelin and Phillips 2009) and PPI networks (Li
et al. 2010), we asked whether, at the gene level, there is a
link between the centrality of a protein and the amount of
transcriptional noise. We study six centrality metrics mea-
sured on two types of network data: (1) pathway annotations
from the Reactome database (Fabregat et al. 2016) and (2)
PPI data from the iRefIndex database. PPI data are typically
more complete (5553 genes with gene expression data) but
do not include information on functional interactions. The
Reactome database is based on published functional evi-
dence, but encompasses less genes (4454 genes for which
expression data are available). In addition, graphs represent-
ing PPI networks are not oriented while graphs representing
Pathway annotations are, implying that distinct statistics can
be computed on both types of networks.

We first estimated the pleiotropy index of each gene by
counting how many different pathways the corresponding
proteins are involved in. We then computed centrality mea-
sures as averages over all pathways in which each gene is
involved. These measures include: (1) node degree, which
corresponds to the number of other nodes a given node is
directly connected with; (2) hub score, which estimates the
extent to which a node links to other central nodes; (3)
authority score, which estimates the importance of a node
by assessing how many hubs link to it; (4) transitivity, or
clustering coefficient, defined as the proportion of neighbors
that also connect to eachother; (5) closeness, ameasureof the
topological distance between a node and every other reach-
able node (the fewer edge hops it takes for a protein to reach
everyother protein in anetwork, thehigher its closeness); and
(6) betweenness, a measure of the frequency with which a
protein belongs to the shortest path between every pair of
nodes.

We find that node degree, hub score, authority score; and
transitivity are all significantly negatively correlated with
transcriptional noise on pathway-based networks: the more
central a protein is, the less transcriptional noise it displays
(Figure 4, A–D and Table 2). We also observed that pleiot-
ropy is negatively correlated with F* (Kendall’s t=20.0514,

Table 1 GO terms significantly enriched in the 10% genes with lowest transcriptional noise

Ontology GO ID GO term FDR Fisher “parent2child” FDR Fisher “weight01”

MF GO:0003735 Structural constituent of ribosome 2.28 3 10207 6.81 3 10220

MF GO:0003676 Nucleic acid binding 8.16 3 10206 6.06 3 10204

BP GO:0006412 Translation 4.08 3 10208 7.15 3 10212

BP GO:0002227 Innate immune response in mucosa 6.49 3 10204 6.22 3 10203

CC GO:0022625 Cytosolic large ribosomal subunit 4.48 3 10203 1.40 3 10212

GO, Gene Ontology; ID, identifier; FDR, False Discovery Rate; MF, Molecular Function; BP, Biological Process; CC, Cellular Compartment.
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P-value = 8.31 3 10207, Figure 4E and Table 2), suggesting
that a protein that potentially performs multiple functions at
the same time needs to be less noisy. As pleiotropic genes are
themselves more central (e.g., correlation of pleiotropy and
node degree: Kendall’s t = 0.2215, P-value , 2.2 3 10216)
and evolve more slowly (correlation of pleiotropy and Ka/Ks
ratio: Kendall’s t = 20.1060, P-value , 2.2 3 10216), we
controlled for these variables and found consistent results
(partial correlation of pleiotropy and F*, accounting for cen-
trality measures and Ka/Ks: Kendall’s t=20.0254, P-value =
7.45 3 10206). Closeness and betweenness, on the other
hand, show a negative correlation with F*, yet this was much
less significant (Kendall’s t=20.0254, P-value = 0.0109 for
closeness and t = 20.0175, P-value = 0.0865 for between-
ness, see Figure 4, F and G and Table 2). Inmodular networks
(Hartwell et al. 1999), nodes that connect different modules
are extremely important to the cell (Guimera and Amaral
2005) and show high betweenness scores. In yeast, high be-
tweenness proteins tend to be older and more essential (Joy
et al. 2005), an observation also supported by our data set
(betweenness vs. gene age, Kendall’s t = 0.0619, P-value =
1.09 3 10207; betweenness vs. Ka/Ks, Kendall’s t = 20.0857,
P-value = 3.83 3 10216). However, it has been argued that in
PPI networks, high betweenness proteins are less essential due
to the lack of directed information flow, compared to, for in-
stance, regulatory networks (Yu et al. 2007), a hypothesis that
could explain the observed lack of correlation.

Byapplying similarmeasureson thePPInetwork,we report
significant negative correlations between F* and PPI central-
ity measures (Figure 4, H–K and Table 2). Because the PPI
network is not directed, authority scores and hub scores can-
not be distinguished. The results obtained with the mouse

PPI interaction network are qualitatively similar to the ones
obtained by Li et al. (2010) on Yeast expression data (Li et al.
2010). In addition, we further report that genes involved in
complex interactions (that is, genes that interact with more
than one other protein simultaneously) have reduced noise in
gene expression (Wilcoxon rank test, P-value = 8.053 3
10205, Figure 4L), corroborating previous findings in Yeast
(Fraser et al. 2004). Conversely, genes involved in polymeric
interactions, that is, where multiple copies of the encoded
protein interact with each other, did not show significantly
different noise than other genes (Wilcoxon rank test,
P-value = 0.0821, Figure 4M).

It was previously shown that centrality measures nega-
tively correlatewith evolutionary rate (Hahn andKern 2004).
Our results suggest that central genes are selectively con-
strained for their transcriptional noise, and that centrality
therefore also influences the regulation of gene expression.
Interestingly, it has been reported that central genes tend to
be more duplicated (Vitkup et al. 2006). The authors pro-
posed that such duplication events would have been favored
as they would confer greater robustness to deleterious muta-
tions in proteins. Our results are compatible with another
nonexclusive, possible advantage: having more gene copies
could reduce transcriptional noise by averaging the number
of transcripts produced by each gene copy (Raser and O’Shea
2005).

Network structure impacts transcriptional noise of
constitutive genes

Whereas estimators of node centrality highlight gene-specific
properties inside a given network, measures at the whole-
network level enable the comparisonofnetworkswithdistinct

Figure 3 Enriched pathways in the low-noise gene set. Depicted pathways are the 15 most significant in the 10% of genes with lowest transcriptional
noise.
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properties. We computed the size, diameter, and global tran-
sitivity for each annotated network in our data set (1,364 net-
works, see SupplementaryMaterial, File S1), whichwe compared

with the average F*measure of all constitutive nodes. The size
of a network is defined as its total number of nodes, while
diameter is the length of the shortest path between the two

Figure 4 Factors driving stochastic gene expression. Correlation of F* and all tested network centrality measures (A-G: pathway networks, H-M: protein-protein
interaction networks), as well as protein conservation (Ka/Ks ratio) and gene age (N andO). Point and bars represent median, first, and third quartiles for each category of
mean expression obtained by discretization of the x-axis, together with the quantile regression lines estimated on the full data set. PPI, protein–protein interaction.
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most distant nodes. Transitivity is a measure of connectivity, de-
fined as the average of all nodes’ clustering coefficients. Interest-
ingly, while network size is positively correlated with average
degree and transitivity (Kendall’s t=0.5880,P-value, 2.2310216

andKendall’s t=0.1166, P-value=1.08310210, respectively),
diameter displays a positive correlation with average degree
(Kendall’s t = 0.2959, P-value , 2.2e216) but a negative
correlation with transitivity (Kendall’s t = 20.0840, P-value =
2.17310205). This is becausediameter increases logarithmically
with size, that is, the addition of new nodes to large networks
does not increase the diameter as much as addition to small
networks. This suggests that larger networks are relatively more
compact than smaller ones, and that their constitutive nodes are
therefore more connected. We find that average transcriptional
noise correlates negatively with network size (Kendall’s t =
20.0514, P-value = 0.0039), while being independent of the
diameter (Kendall’s t = 0.0061, P-value = 0.7547 see Table
3). These results are in line with the node-based analyses, and
show that themore connections anetworkhas, the less stochastic
the expression of the underlying genes is. This supports the view
of Raser and O’Shea (2005), that the gene-extrinsic, pathway-
intrinsic level is functionally pertinent and needs to be distin-
guished from the globally-extrinsic level.

We further asked whether genes with similar transcriptional
noise tend to synthesize proteins that connect to each other
(positive assortativity) in a given network or, on the contrary,
tend to avoid each other (negative assortativity).We considered
all Reactome pathways annotated to the mouse and estimated
their respective F* assortativity.We found themeanassortativity
to be significantly negative, with a value of20.1384 (one sam-
ple Wilcoxon rank test, P-value, 2.2e216), meaning that pro-
teins with different F* values tend to connect with each other
(Figure S3). Maslov and Sneppen (2002) reported a negative
assortativity between hubs in PPI networks, which they hypoth-
esized to be the result of selection for reduced vulnerability to

deleterious perturbations. However, in our data set, we find the
assortativity of hub scores to be significantly positive (average
of 0.1221, one sample Wilcoxon rank test, P-value = 1.212 3
10212, Figure S5), although with a large distribution of assor-
tativity values. As we showed that hub scores correlate nega-
tively with F* (Table 2), we asked whether the assortativity of
hub proteins can explain the assortativity of F*. We found a
significantly positive correlation between the two assortativity
measures (Kendall’s t = 0.2581, P-value , 2.2 3 10216).
However, the relationship between the measures is not linear
(Figure S5), suggesting a distinct relationship between hub
score and F* for negative and positive hub score assortativity.
Negative assortativity of hub proteins contributes to a negative
assortativity of SGE (Kendall’s t = 0.2730, P-value , 2.2 3
10216), while the effect vanishes for pathways with positive
hub score assortativity (Kendall’s t = 0.0940, P-value = 3.1353
10204). While assortativity of F* is closer to 0 for pathways
with positive assortativity of hub score, we note that it is still
significantly negative (average = 20.0818, one sample
Wilcoxon test with P-value , 2.2 3 10216). These results
suggest the existence of additional constraints that act on
the distribution of noisy proteins in a network.

Transcriptional noise is positively correlated with the
evolutionary rate of proteins

In the yeast Saccharomyces cerevisiae, evolutionary divergence
between orthologous coding sequences correlates negatively
withfitness effect on knockout strains of the corresponding genes
(Hirsh and Fraser 2001), demonstrating that protein functional
importance is reflected in the strength of purifying selection act-
ing on it. Fraser et al. (2004) studied transcription and translation
rates of yeast genes and classified genes in distinct noise cate-
gories according to their expression strategies. They reported that
essential genes display lower expression noise than the rest. Fol-
lowing these pioneering observations, we hypothesized that
genes under strong purifying selection at the protein sequence
level should also be highly constrained for their expression and
therefore display a lower transcriptional noise. To test this hy-
pothesis, we correlated F* with the ratio of Ka/Ks, as measured
by sequence comparison betweenmouse genes and their human
orthologs, after discarding geneswith evidence for positive selec-
tion (n = 5). In agreement with our prediction, we report a
significantly positive correlation between the Ka/Ks ratio and
F* (Figure 4N, Kendall’s t = 0.0557, P-value, 1.1433 10205),
that is, highly constrained genes (low Ka/Ks ratio) display less
transcriptional noise (lowF*) than fast-evolving ones. This result
demonstrates that genes encoding proteins under strong purify-
ing selection are also more constrained on their transcriptional
noise.

Older genes are less noisy

Evolutionofnewgeneswas long thought tooccur viaduplication
and modification of existing genetic material [“evolutionary tin-
kering,” (Jacob 1977)]. However, evidence for de novo gene
emergence is becoming more and more common (Tautz and
Domazet-Lošo 2011; Xie et al. 2012). De novo-created genes

Table 2 Correlation of transcriptional noise with gene centrality
measures and pleiotropy, as estimated from pathway annotations
and PPI networks

Data Measure
Correlation with

F* P-value

PathwaysDegree 20.0745 1.14 3 10213***
Hub score 20.0808 6.61 3 10216***
Authority score 20.0666 2.72 3 10211***
Clustering coefficient 20.0794 4.55 3 10215***
Closeness 20.0254 1.09 3 10202*
Betweenness 20.0175 8.65 3 10202.

Pleiotropy 20.0514 8.31 3 10207***
Size 20.0514 3.91 3 10203***
Diameter 0.0061 7.55 3 10201 (NS)
Global transitivity 20.1532 3.06 3 10217***

PPI Degree 20.0249 8.20 3 10203**
Hub score 20.0942 , 2.2 3 10216***
Transitivity 20.0338 6.24 3 10204***
Betweenness 20.0140 1.31 3 10201 (NS)

All correlations are computed using Kendall’s rank correlation test, with P-value
codes defined as *** , 0.001 , ** , 0.01 , * , 0.05 , . , 0.1. NS, non-
significant; PPI, protein–protein interaction.
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undergo several optimization steps, including their integration
into a regulatory network (Neme and Tautz 2013). We tested
whether the historical process of incorporation of new genes into
pathways impacts the evolution of transcriptional noise. We used
the phylostratigraphic approach of Neme and Tautz (2013),
which categorizes genes into 20 strata, to compute gene age
and tested for a correlation with F*. As older genes tend to be
more conserved (Wolf et al. 2009),more central [according to the
preferential attachment model of network growth (Jeong et al.
2000, 2001)], and more pleiotropic, we controlled for these
confounding factors (Kendall’s t = 20.0663, P-value = 1.58 3
10237 ; partial correlation controlling for Ka/Ks ratio, central-
ity measures and pleiotropy level, Figure 4O). These results sug-
gest that older genes are more deterministically expressed while
younger genes are noisier. While we cannot rule out that func-
tional constraints not fully accounted for by the Ka/Ks ratio could
at least partially explain the correlation of gene age and transcrip-
tional noise, we hypothesize that the observed correlation results
from ancient genes having acquired more complex regulation
schemes through time. Such schemes include, for instance, neg-
ative feedback loops, which have been shown to stabilize gene
expression and reduce expression noise (Becskei and Serrano
2000; Thattai and Oudenaarden 2001).

Position in the protein network is the main driver of
transcriptional noise

To jointly assess the effect of network topology, epigenomic
factors, Ka/Ks ratio, and gene age, we modeled the patterns
of transcriptional noise as a function of multiple predictive
factorswithin the linearmodel framework.This analysis could
be performed on a set of 2794 genes for which values were
available jointly for all variables. To avoid colinearity issues
because some of these variables are intrinsically correlated,
we performed data reduction procedures prior to modeling.
For continuous variables, including pathway and PPI network
variables, Ka/Ks ratio, and gene age, we conducted a PCA and

used as synthetic measures the first eight PCs, explaining
together . 80% of the total inertia (Figure S2A). The first
PC (PC1) of the PCA analysis is associated with pathway
centrality measures (degree, hub score, authority score, and
transitivity, Figure S2B). The second PC (PC2) corresponds
to PPI centrality measures (degree, hub score, and between-
ness), while the third component (PC3) relates to gene age
and Ka/Ks ratio. The fourth component (PC4) is associated
with PPI complex interactions and transitivity. PC5 and PC6
are essentially associated with betweenness and closeness
of the pathway network, PC7 with PPI polymeric interac-
tions, and PC8 with pathway pleiotropy. As TFs and histone
mark data are binary (presence/absence for each gene),
we performed a logistic PCA for both types of variable
(Landgraf and Lee 2015). For TFs, we selected the three first
components (hereby denoted as TFPC), which explained
78% of deviance (Figure S3A). The loads on the first compo-
nent (TFPC1) are all negative, meaning that TFPC1 captures
a global correlation trend and does not discriminate between
TFs. Tcfcp2l1 appears to be the TF with the highest correla-
tion to TFPC1. The second component TFPC2 is dominated
by TCFC (positive loading) and Oct4 (negative loading),
while the third component TFPC3 is dominated by Esrrb
(positive loading), MYC, nMyc, and E2F1 (negative loadings,
Figure S3B). For histone marks, the two first components
(hereby noted HistPC) explained 95% of variance and were
therefore retained (Figure S4A). HistPC1 is dominated by
mark H3K27me3 linked to gene repression (negative load-
ings), and HistPC2 by marks H3K4me1 and H3K4me3 linked
to gene activation (positive loadings, Figure S4A).

We fitted a linearmodel with F* as a response variable and
all 13 synthetic variables as explanatory variables. We find
that PC1 has a significant positive effect on F* (Table 3). As
the loadings of the centrality measures on PC1 are negative
(Figure S2C), this result is consistent with our finding of a
negative correlation of pathway-based centrality measures

Table 3 Linear models of transcriptional noise with genomic and epigenomic factors

OLS GLS

Coefficient SE P-value Coefficient SE P-value

(Intercept) 0.1612 0.0781 0.0392* 0.1665 0.0663 0.0121*
PC1 0.0390 0.0065 , 0.0001*** 0.0396 0.0065 , 0.0001***
PC2 20.0048 0.0069 0.4854 20.0048 0.0069 0.4838
PC3 20.0526 0.0091 , 0.0001*** 20.0518 0.0092 , 0.0001***
PC4 20.0102 0.0097 0.2905 20.0109 0.0100 0.2773
PC5 0.0117 0.0106 0.2713 0.0123 0.0106 0.2456
PC6 20.0152 0.0107 0.1536 20.0152 0.0109 0.1623
PC7 0.0210 0.0102 0.0384* 0.0211 0.0110 0.0561.

PC8 0.0100 0.0113 0.3778 0.0073 0.0114 0.5250
TFPC1 0.0028 0.0041 0.4912 0.0025 0.0034 0.4658
TFPC2 0.0025 0.0027 0.3664 0.0024 0.0026 0.3585
TFPC3 0.0032 0.0042 0.4513 0.0032 0.0037 0.3825
HistPC1 20.0031 0.001 0.0015** 20.0033 0.0010 0.0007***
HistPC2 20.0027 0.0016 0.0846. 20.0029 0.0015 0.0566.

All correlations are computed using Kendall’s rank correlation test, with P-value codes defined as *** , 0.001 , ** , 0.01 , * , 0.05 , . , 0.1. OLS, Ordinary Least
Squares; GLS, Generalized Least Squares; Pathway PC1–8, principal components on centrality measures, protein conservation, and gene age; TFPC1–3, principal components
of the logistic PCA on transcription factor binding evidence; HistPC1 and 2, principal components of the logistic PCA on histone modification marks.
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with F*. PC3 has a highly significant negative effect on F*,
which is consistent with a negative correlation with gene age
(positive loading on PC3) and a positive correlation with the
Ka/Ks ratio (negative loading on PC3, Figure S2D). The last
highly significant variable is the first PC of the logistic PCA on
histone methylation patterns, HistPC1, which has a negative
effect on F*. Because the loadings are essentially negative on
HistPC1, this suggests a positive effect of methylation, in
particular the repressive H3K27me3. Altogether, the linear
model with all variables explained 4.01% of the total vari-
ance (adjusted R2). This small value indicates either that
gene idiosyncrasies largely predominate over general effects,
or that our estimates of transcriptional noise have a large
measurement error, or both. To compare the individual ef-
fects of each explanatory variable, we conducted a relative
importance analysis. As a mean of comparison, we fitted a
similar model with mean expression as a response variable.
We find that pathway centrality measures (PC1 variable)
account for 38% of the explained variance, while protein
constraints and gene age (PC3) account for 32%. Chromatin
state (HistPC1) accounts for another 15% of the variance
(Figure 5). These results contrast with the model of mean
expression, where HistPC1 and HistPC2 account for 51 and
9% of the explained variance, respectively, and PC1 and PC3
20 and 10% only (Figure 5). This suggests that: (1) among all
factors tested, position in the protein network is the main
driver of the evolution of gene-specific stochastic expression,
followed by protein constraints and gene age, and (2) that
different selective pressures act on the mean and cell-to-cell
variability of gene expression.

We further included the effect of 3D organization of the
genome to assesswhether it could act as a confounding factor.
We developed a correlation model that allowed for genes in
contact to have correlated values of transcriptional noise. The
correlationmodel was fitted together with the previous linear
model in the GLS framework. This new model allows for one
additional parameter, l, which captures the strength of cor-
relation due to 3D organization of the genome (seeMaterials
and Methods). The estimate of l was found to be 0.0016,
which means that the spatial autocorrelation of transcrip-
tional noise is low on average. This estimate is significantly
higher than zero, and model comparison using AIC favors the
linear model with 3D correlation (AIC = 4880.858 vs. AIC =
4890.396 for a linear model without 3D correlation). Despite
the significant effect of 3D genome correlation, our results
were qualitatively and quantitatively very similar to the model
ignoring 3D correlation (Table 3).

Analysis of BMDCs supports the generality of the results

We assessed the reproducibility of our results by analyzing an
additional single-cell transcriptomics data set of 95 unstimu-
lated BMDCs (Shalek et al. 2014). After filtering (see Mate-
rials and Methods), the data set consisted of 11,640 genes.
Using the same normalization procedure as for the ESC data
set, we nonetheless report a weak but significant negative
correlation between F* andmean expression, evenwith a degree

5 polynomial regression (20.0459, P-value , 1.13e213). This
effect is due to cell RFKM values being extremely skewed in this
data set, due to the distribution per gene. To assess the impact of
the residual correlation with the mean, we computed a value of
F* (noted FR*) on a restricted data set where the variance was
between one-eighth and eight times themean (75%of all genes)
using a quantile regression on the median instead of a linear
regression. A second-degree polynomial quantile regression
proved to be sufficient to remove the effect of mean expression
(Kendall’s t=0.0114, P-value= 0.1125) on this restricted data
set. As all results were consistent when using the FR* and F*
measures, we only discuss here results obtained with F* and
refer to Supplementary Data 1 (available on FigShare under
the DOI 10.6084/m9.figshare.4587169) for detailed results
obtained with the FR* measure.

We report a highly significant positive correlation between
F* values measured on the 8792 genes with expression in
both data sets, suggesting that cell-to-cell variance in gene
expression is, to a large extent, conserved among the two cell
types (Kendall’s t = 0.1289, P-value , 2.2 3 10216, Figure
S6A). GO terms or Reactome pathway enrichment analyses
reveal less significant but consistent terms with the ESC anal-
ysis: the high-F* gene set did not show any significantly
enriched GO term or Reactome pathway (FDR set to 1%)
and the low-F* gene set revealed RNA binding as a signifi-
cantly enriched molecular function, as well as 21 enriched
pathways (Figure S7). In agreement with results from the
ESC analysis, many of the most significantly enriched path-
ways relate to gene expression, including translation and
splicing. Interestingly, the two most significant pathways
are “Vesicle-mediated transport” and “Membrane traffick-
ing,” two essential pathways for the functioning of dendritic
cells. Analyses of network centrality measures also generally
showed consistent results with the ESC data set, with more
central genes displaying reduced gene expression noise (Fig-
ure S6, B–N and Table S1). Quantitative differences con-
sisted of PPI betweenness, as well as pathway closeness
and betweenness being highly significantly negatively corre-
lated with F* while they were only weakly significant or non-
significant with the ESC data set. The only discrepancies that
we report between the two data sets relate to pathway-level
statistics. Pathway size appeared to be significantly positively
correlated with mean F*, while it was negatively correlated
on the ESC data set, yet with a comparatively higher P-value.
Similarly, pathway diameter was significantly positively cor-
related with mean F* in the BMDC data set, while it was not
significant with the ESC data. We currently have no hypoth-
esis to explain this particular discrepancy. While these results
support the generality of our observations, they also illustrate
that, in detail, the fine structure of translational noise may
vary in a cell type-specific manner.

We fitted linear models as for the ESC data set, with the
exception that no epigenomic and 3D genome data were
available for this cell type. Data reduction was performed
using PCA, with the eight first PCs explaining 81% of the total
deviance (Figure S8A). We report consistent results with the
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ESC analysis, with all major effects similar in direction and in-
tensity, highlighting the impact of network centrality measures
on expression noise (Table S2). However, with the BMDC data,
the PC2, which is associated with PPI centrality measures (Fig-
ure S8B), appears to have a significant negative impact on F*,
while it was not significantwith the ESC data set. As the loading
of the PPI centrality measures are positive on PC2, this is con-
sistentwith central genes having a lower transcriptional noise as
for the pathway network metrics (Figure S8C). Relative impor-
tance analysis revealed that network centrality measures con-
tributed most to the explained variance (48 and 21% for PC1
and PC2 respectively), while the contribution of protein con-
straints and gene age (PC3) was 24%.

Biological, not technical, noise is responsible for the
observed patterns

The noise in gene expression measured from single-cell tran-
scriptomics is a combination of biological and technical noise.
While the two sources of noise are a priori independent, gene-
specific technical noise has been observed in microarray exper-
iments (Pozhitkov et al. 2007), making a correlation of the two
types of noise plausible. If similar effects also affect RNA se-
quencing experiments, technical noise could be correlated to
gene function and therefore act as a covariate in our analyses.
To assesswhether this is the case, we used the data set of Shalek
et al. (2013), which contains both single-cell transcriptomics
and three replicates of 10,000 pooled-cell RNA sequencing. In
traditional RNA sequencing, which is typically performed on
pooledpopulations of several thousands of cells, biological noise
is averaged out so that the resulting measured noise between
replicates is essentially the result of technical noise. We com-
puted the mean and variance in expression of each gene across

the three populations of cells. By plotting the variance vs. the
mean in log-space, we were able to compute a technical F* (F*t )
value for each gene (see Materials and Methods). We fitted
linear models as for the single-cell data using F*t instead of F*.
We report that no variable had a significant effect on F*t (Table
S3). In addition, there was no enrichment of the lower 10th F*t
percentile for any particular pathway or GO term. The upper
90th percentile showed no GO term enrichment, but four path-
ways appeared to be significant: “Chromosome maintenance”
(adjusted P-value = 0.0043), “Polymerase switching on the
C-strand of the telomere” (adjusted P-value = 0.0062), “Poly-
merase switching” (adjusted P-value = 0.0062), and “Leading
strand synthesis” (adjusted P-value = 0.0062), which all relate
to DNA replication. While it is unclear why genes involved in
these pathways would display higher technical variance in RNA
sequencing, these results differ strikingly from our analyses of
single-cell RNA sequencing and therefore suggest that technical
variance does not act as a confounding factor in our analyses.

Becauseonly threereplicateswereavailable in thepooledRNA
sequencing data set, we asked whether the resulting estimate of
mean and variance in expression is accurate enough to allow
proper inference of noise and its correlation with other variables.
We conducted a jackknife procedure, where we sampled the
original cells from the ESC data set and reestimated F* for each
sample. We tested combinations of 3, 5, 10, and 15 cells, with
1000 samples in each case. In each sample,we computed F*with
the same procedure as for the complete data set, and fitted a
linear model with all 13 synthetic variables. For computational
efficiency, we did not include 3D correlation in this analysis. We
compute for each variable the number of samples where the
effect is significant at the 5% level and has the same sign as in
the model fitted on the full data set. We find that the model

Figure 5 Relative importance of explanatory factors on mean gene expression and F*. Significance codes refer to ANOVA test of variance: ***, 0.001
, ** , 0.01 , * , 0.05 , . , 0.1. PC, principal component; TF, transcription factor.
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coefficients are very robust to the number of cells used (Figure
S9A) and that three cells are enough to infer the effect of the PC1
andPC3variables, themost significant in our analyses. Twomain
conclusions can be drawn from this jackknife analysis: (1) that
the lack of significant effect of our explanatory variables on tech-
nical noise is not due to the low number of replicates used to
compute the mean and variance in expression, and (2) that our
conclusions are very robust to the actual cells used in the analysis,
ruling out drop-out and amplification biases as possible source of
errors (Kharchenko et al. 2014).

Discussion

Through this work, we provide the first genome-wide evolu-
tionary and systemic study of transcriptional noise, using
mouse cells as a model. We have shown that transcriptional
noise correlates with functional constraints not only at the
level of the gene itself via the protein it encodes, but also at the
level of thepathway(s) thegenebelongs to.We furtherdiscuss
here potential confounding factors in our analyses and argue
that our results are compatible with selection acting to reduce
noise propagation at the network level.

In this study, we exhibited several factors explaining the
variation in transcriptional noise between genes. While highly
significant, the effects we report are of small size, and a complex
model accounting for all tested sources of variationonly explains
a few percent of the total observed variance. There are several
possible explanations for this reduced explanatory power. (1)
Transcriptional noise is a proxy for noise in gene expression, at
which selection occurs (Figure 1). As transcriptional noise is not
randomly distributed across the genome, it must constitute a
significant component of expression noise, in agreement with
previous observations (Blake et al. 2003; Newman et al. 2006).
However, translational noisemight constitute an important part
of the expression noise and was not assessed in this study. (2)
Gene expression levels were assessed on ESCs in culture. Such
an experimental system may result in gene expression that dif-
fers from that in natural conditions under which natural selec-
tion acted. (3) Functional annotations in particular pathways
and gene interaction are incomplete, and network-based mea-
sures most likely have large error rates. (4) While the newly
introduced F* measure allowed us to assess the distribution of
transcriptional noise independently of the averagemean expres-
sion, it does not capture the full complexity of SGE. Explicit
modeling, for instance based in the b-Poisson model (Vu et al.
2016), is a promising avenue for the development of more so-
phisticated quantitative measures.

In a pioneering study, Fraser et al. (2004), followed byShalek
et al. (2013), demonstrated that essential genes whose deletion
is deleterious, and genes encoding subunits of molecular com-
plexes as well as housekeeping genes, display reduced gene
expression noise. Our findings go beyond these early observa-
tions by providing a statistical assessment of the joint effect of
multiple explanatory factors. Our analyses reveal that network
centrality measures are the explanatory factors that explain the
most significant part of the distribution of transcriptional noise

in the genome. Network-based statistics were first tested by Li
et al. (2010) using PPI data inYeast.Whilewe are able to extend
these results to mouse cells, we show that more detailed anno-
tation, as provided by the Reactome database, can lead to new
insights into the selective forces acting on expression noise. Our
results suggest that pathways constitute a relevant systemic
level of organization, at which selection can act and drive the
evolution of SGE at the gene level. This multi-level selection
mechanism, we propose, can be explained by selection against
noise propagation within networks. It has been experimentally
demonstrated that expression noise can be transmitted from
one gene to another with which it is interacting (Pedraza and
van Oudenaarden 2005). Large noise at the network level is
deleterious (Barkai and Leibler 1999) but each gene does not
contribute equally to it, thus the strength of selective pressure
against noise varies among genes in a given network. We have
shown that highly connected, “central”proteins typically display
reduced transcriptional noise. Such nodes are likely to consti-
tute key players in the flow of noise in intracellular networks as
they are more likely to transmit noise to other components. In
accordance with this hypothesis, we find genes with the lowest
amount of transcriptional noise to be enriched for top-level
functions, particularly if they are involved in the regulation of
other genes.

These results have several implications for the evolution of
gene networks. First, this means that new connections in a
network can potentially be deleterious if they link genes with
highly stochastic expression. Second, distinct selective pressures
at the “regulome” and “interactome” levels (Figure 1) might act
in opposite directions. We expect genes encoding highly con-
nected proteins to have more complex regulation schemes, par-
ticularly if their proteins are involved in several biological
pathways. In accordance, several studies have demonstrated
that expression noise of a gene positively correlates with the
number of TFs controlling its regulation (Sharon et al. 2014),
a correlation that we also find significant in the data set ana-
lyzed in this work. Central genes, while being under negative
selection against stochastic behavior, are then more likely to be
controlled by numerous TFs that increase transcriptional noise.
As a consequence, if the number of connections at the interac-
tome level is correlated with the number of connections at the
regulome level, we predict the existence of a trade-off in the
number of connections that a gene can make in a network.
Alternatively, highly connected genes might evolve regulatory
mechanisms allowing them to uncouple these two levels: neg-
ative feedback loops, for instance, where the product of a gene
downregulates its ownproduction, have been shown to stabilize
expression and significantly reduce stochasticity (Becskei and
Serrano 2000; Dublanche et al. 2006; Tao et al. 2007). We
therefore predict that negative feedback loops are more likely
to occur at genes that are more central in protein networks, as
they will confer greater resilience against high SGE, which is
advantageous for this class of genes.

Our results enabled the identification of possible selective
pressures acting on the level of stochasticity in gene expression.
However, the mechanisms by which the amount of stochasticity
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can be controlled remain to be elucidated. We evoked the exis-
tence of negative feedback loops that reduce stochasticity and the
multiplicityofupstreamregulatorsthat increaseit.Recentworkby
Wolf et al. (2015) andMetzger et al. (2015) add further perspec-
tive to this scheme.Wolf and colleagues found that, inEscherichia
coli, noise is higher for natural than experimentally evolved pro-
moters selected for their mean expression level. They hypothe-
sized that higher noise is selectively advantageous in cases of
changing environments. On the other hand, Metzger and col-
leagues performed mutagenesis experiments and found signa-
tures of selection for reduced noise in natural populations of
S. cerevisiae. These seemingly opposing results, combined with
our observations, provide additional evidence that the amount of
stochasticity in the expression of single genes has an optimum, as
high values are deleterious because of noise propagation in the
network; while lower values, which result in reduced phenotypic
plasticity,might be suboptimal in cases of dynamic environments.

Conclusions

Using a newmeasure of transcriptional noise, our results demon-
strate that the position of a protein in the interactome is a major
driver of selection against SGE. As such, transcriptional noise is an
essential component of the phenotype, in addition to the mean
expression level and the actual sequence and structure of the
encoded proteins. This is currently an underappreciated phenom-
enon, and gene expression studies that focus only on the mean
expression of genesmay bemissing key information about expres-
siondiversity. The studyof gene expressionmust consider changes
in noise in addition to changes in mean expression level as a
putative explanation for adaptation. However, further work that
aims to unravel the exact structure of the regulome is needed to
fullyunderstandhowtranscriptionalnoise isgeneratedorinhibited.
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