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MicroRNAs (miRNAs) are short noncoding RNAs that play important roles in regulating gene expressing, and the perturbed
miRNAs are often associated with development and tumorigenesis as they have effects on their target mRNA. Predicting potential
miRNA-target associations frommultiple types of genomic data is a considerable problem in the bioinformatics research. However,
most of the existingmethods did not fully use the experimentally validatedmiRNA-mRNA interactions.Here, we developedRMLM
and RMLMSe to predict the relationship between miRNAs and their targets. RMLM and RMLMSe are global approaches as they
can reconstruct the missing associations for all the miRNA-target simultaneously and RMLMSe demonstrates that the integration
of sequence information can improve the performance of RMLM. In RMLM, we use RMmeasure to evaluate different relatedness
between miRNA and its target based on different meta-paths; logistic regression and MLE method are employed to estimate the
weight of differentmeta-paths. In RMLMSe, sequence information is utilized to improve the performance of RMLM.Here, we carry
on fivefold cross validation and pathway enrichment analysis to prove the performance of our methods. The fivefold experiments
show that our methods have higher AUC scores compared with other methods and the integration of sequence information can
improve the performance of miRNA-target association prediction.

1. Introduction

MicroRNAs (miRNAs) are important endogenous 21-22 nt
RNAs that play important regulatory roles in gene expression.
Several studies have shown that miRNAs participate in the
regulation of amount cellular process, such as cell prolifer-
ation and differentiation [1], development [2], and disease
[3, 4]. Considering the importance of miRNAs, it is critical to
identify and deciphermiRNA-target interactions at a genome
level.

All the time, scientists and academics have made great
efforts in uncovering the associations betweenmiRNAand its
targets by using biological experiments [5–8]. However, it is
impossible to depict a complete picture of miRNA regulation
mechanisms only relying on biological experiments due to
the high expenses on time and cost [9]. Therefore, compu-
tational approaches must be designed to be a cost-effective
choice to describe the complete mechanism of miRNA

regulatory. Now, many computational approaches show great
advantage in predicting putative miRNA targets [10–13].

Over the past decade, plenty of miRNA-mRNA pairs
prediction approaches have been developed to identify
miRNA targets by using sequence data, including Tar-
getScanS/TargetScan [14, 15], miRanda [16], Pictar [17],
DITAT-MicroT [18], and PITA [19]. The majority of these
prediction algorithms were built on specific binding rules,
including the degree of site conservation, thermodynamic
stability, sequence complementarity, energy, target site con-
text, secondary structure, and site accessibility. Because of
the complex character of miRNA-target interactions, these
sequence-based methods have relatively high false-positive
rate [20]. Furthermore, those predictions methods were
mostly only at static sequence level, leading to those exact
interactions that are specific to certain conditions or diseases.
More importantly, sequence-based methods do not support
statistically significant predictions as the miRNA binding
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sites are small, causing the results by different methods to be
inconsistent.

To identify condition-specific interactions, many
methods integrating expression profiles information into
sequence-based predictions have been proposed to study
miRNA-mRNA regulatory mechanism. These methods are
based on the assumption that gene has negative correlations
with the miRNA because of the downregulation effect that
miRNAs have on their targets.These methods can be divided
into four categories including simple correlation analysis [21,
22], simple/regularized regression models [23–25], Bayesian
inference [19, 26], and causally inference between miRNAs
and their targets [27]. Pearson correlation, one of the typical
simple correlation methods, is commonly used in computing
the strength of the association between a pair of miRNA and
mRNA. However, Pearson correlation has high false-positive
rate as the simplicity of it. Furthermore, Pearson correlation
is mainly used in predicting linear associations. Lasso
regression [24, 25], one of the regression models, is a high-
dimensionalmethod used to extractmore reliable association
as they usually optimize the network provided by sequence-
based method and retain the relatively reliable edges.
GenMir++ [19], the first and well-cited Bayesian inference
method, calculates the existence probabilities of the relation-
ship between a miRNA and its target based on a Bayesian
model. However, this method needs prior information, such
as sequence information. In general, methods in Bayesian
category assume different priors [28] and are difficult in
learning parameters. MCMG (joint analysis of multiple
cancer for MiRNA-gene interactions), based on empirical
Bayesian model [29], identifies miRNA-target associations
that are either specific to a cancer type or common to several
cancers by jointly analyzed across cancers. Muniategui et al.
use do-calculus to estimate the causal effects themiRNAhave
on all the target mRNAs. The four categories methods can
improve prediction performance as they integrate expression
profiles information into sequence-based predictionmethods
[30]. But, most of the existing approaches cannot effectively
use the valuable experimentally validated information [31–
34]. Besides, the lack of miRNA expression profile may cause
the unreliability of the predicted miRNA-target associations.

On the whole, the limitations of existing methods are
summarized as follows. Firstly, sequenced-based prediction
algorithms suffer from a high false-positive rate; second, the
methods integrating expression profile data can only analyse
one cancer every time; third, somemethods cannot effectively
utilize validated knowledge. To solve these problems, we pro-
pose two network-based approaches, RMLM and RMLMSe,
to identify miRNA-target interactions based on meta-path.
Meta-path is a good measuring method to compute the
relatedness between the same or different types of objects in
heterogeneous information network, as it contains a certain
sequence of different link types [35]. Different meta-paths
have different semantic meaning corresponding to different
relationships between connected objects. In RMLM, we first
utilize RM (a meta-path related measure proposed by Cao
et al. [36]) to evaluate the existence probability of a link
betweenmiRNA and its targets. As differentmeta-path corre-
sponds to different relation graphs, we may improve the final
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Figure 1: Network schema of the miRNA-target network. The
network contains two types of objects, miRNA and its targets. Each
box represents one type of nodes, and each dashed line represents
one type of links. The numbers in the figure represent the numbers
of nodes/links of different types.

performance when integrating these different graphs by
appropriate weights corresponding to different meta-paths.
Thus, we then employ logistic regression and maximum-
likelihood estimation (MLE) method to estimate the weight
of different meta-path. Here, the issue of relationship pre-
diction can be regarded as a two-class classification problem
by using Bayesian analysis and logistic regression and then
the MLE method can be employed to estimate the parameter
vector. In RMLMSe, sequence information is integrated to
improve the performance of the RMLM. Furthermore, as
global approaches, RMLM and RMLMSe can remodel the
missing relationship for all the diseases-associated miRNAs
at the same time. Fivefold cross validations, pathway enrich-
ment analysis about global network, and three important
diseases network show that our proposed methods work well
in predicting the relationship between miRNA and its target.

2. Problem Definition

In this part, we describe the concepts of Heterogeneous
Information Network and meta-path used in this paper.

2.1. Heterogeneous Information Network. A heterogeneous
information network is an important type of information
network with multiple types of nodes and multiple types
of links [36–38]. It can be represented as 𝐺 = (𝑉, 𝐸). 𝑉
is the set of nodes, which involves 𝑛 types of nodes: 𝑉

1
=

{V1
1
, V2
1
, . . . , V𝑥

1
}, . . . , 𝑉

𝑛
= {V1
𝑛
, V2
𝑛
, . . . , V𝑦

𝑛
}, where V𝑗

𝑖
is 𝑗th node

of type 𝑖. 𝐸 ⊆ 𝑉 × 𝑉 is the set of links between the nodes in
𝑉, which involves𝑚 types of links.

Each type of links between source node of type 𝑖 and tar-
get node of type 𝑗 corresponds to a binary relation 𝑅

𝑖𝑗
. More

specifically,𝑅𝑠𝑡
𝑖𝑗
= 1 if V𝑠

𝑖
(𝑠th nodes of type 𝑖) and V𝑡

𝑗
(𝑡th nodes

of type 𝑗) are connected by a link of type 𝑅𝑖𝑗. For example, in
Figure 1, the relation between miRNA and gene is “regulate.”
Particularly, 𝑅𝑠𝑡

𝑖𝑗
equals 1 if 𝑠th miRNA regulates 𝑡th gene.

Moreover, a weighted matrix𝑊
𝑖𝑗
= |𝑉
𝑖
| × |𝑉
𝑗
| can be used

to describe the relation𝑅
𝑖𝑗
, where𝑊𝑠𝑡

𝑖𝑗
∈ [0, 1] is the existence

probability of link between nodes V𝑠
𝑖
and V𝑡

𝑗
. Particularly,

𝑊
𝑠𝑡

𝑖𝑗
= 1, if there exists an edge between V𝑠

𝑖
and V𝑡
𝑗
. Otherwise,

𝑊
𝑠𝑡

𝑖𝑗
is set as 0 in initialization for the unknown links.

2.2. Meta-Path. In heterogeneous information network,
meta-path is defined on network schema. A meta-path 𝑃 is
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described in the form 𝐴
1
→ 𝐴
2
→ ⋅ ⋅ ⋅ 𝐴

𝑛−1
→ 𝐴
𝑛
, where

𝐴
𝑖
is 𝑖th type of object and a relation must exist from 𝐴

𝑖−1

to 𝐴
𝑖
, 𝑖 = 2, 3, . . . , 𝑛. Similarly, we define the inverse path

of 𝑃 as 𝑃
−1, denoted as 𝐴

𝑛
→ 𝐴

𝑛−1
→ ⋅ ⋅ ⋅ 𝐴

2
→ 𝐴

1
.

Specifically, relation A
𝑖−1

→ 𝐴
𝑖
is the inverse relation of

𝐴
𝑖
→ 𝐴

𝑖−1
. For example, in Figure 1, a meta-path “gene →

miRNA → gene” is a composite sequence between genes.The
relation from miRNA to gene is “regulate” and the relation
from gene to miRNA is “regulate−1”; “regulate−1” is the
inverse relation of “regulate.” Meta-path can connect object
of the same or different types; thus, they can show knowledge
between homologous objects or heterologous objects. For
example, in Figure 1, for gene 𝑖 and gene 𝑗, they can connect
through another gene 𝑘, gene 𝑖 → gene 𝑘 → gene 𝑗;
this means gene 𝑖 and gene 𝑗 have relation with gene 𝑘

simultaneously and there may exist relation between gene 𝑖

and gene 𝑗 by information transfer. However, gene 𝑖 and gene
𝑗 can also connect by miRNA 𝑘, gene 𝑖 → miRNA 𝑘 →

gene 𝑗; this means gene 𝑖 and gene 𝑗 are regulated by a
commonmiRNA 𝑘 and theremay exist relation between gene
𝑖 and gene 𝑗 by information transfer. Different meta-paths
of different relations correspond to different relation graphs
with different semantics. For example, in Figure 1, the meta-
path “gene → gene” denotes that two genes are connected by
“PPI” links, while the meta-path “gene → miRNA → gene”
corresponds to the semantic that two genes are regulated by
a common miRNA. Thus, similarity between the same or
different type of nodes can be described by different meta-
paths with different semantics.

In this paper, the meta-path from source node of type
𝑖 to target node of type 𝑗 is described as 𝑃

𝑖𝑗
. Particularly,

𝑃
𝑖𝑖
is the meta-path between nodes of the same type 𝑖; 𝑃

𝑖𝑖𝑠

is 𝑠th meta-path of 𝑃
𝑖𝑖
. 𝑃
𝑗𝑗
and 𝑃

𝑗𝑗𝑡
are the same to 𝑃

𝑖𝑖
and

𝑃
𝑖𝑖𝑠
. 𝑃
𝑖𝑗𝑠𝑡

is a meta-path by connecting 𝑃
𝑖𝑖𝑠
, 𝑅
𝑖𝑗
, and 𝑃

𝑗𝑗𝑡
in

sequence; it can be written as a certain sequence of relations:
𝑅
𝑘0𝑘1

, 𝑅
𝑘1𝑘2

, . . . , 𝑅
𝑘𝑛−1𝑘𝑛

; here 𝑘
0
= 𝑖, 𝑘

𝑛
= 𝑗 and the length of

𝑃
𝑖𝑗𝑠𝑡

is 𝑛.

3. Method

RMLM and RMLMSe consist of three steps. In the first
step, we utilize MISIM (proposed by Wang et al. in [39]) to
calculate the miRNA functional similarity matrix and then
construct the heterogeneous network. Next, we calculate the
relatedness between any miRNA and its targets and extract
the feature vector of these interactions. In RMLM, the feature
vector only contains different relatedness of different meta-
path between miRNA and its targets. However, in RMLMSe,
the feature vector not only contains different relatedness
from different meta-path, but also contains feature extracted
from sequence information. Finally, logistic regression and
MLE method are employed to compute the different weights
of different meta-paths. Sections 3.1–3.4 are the detailed
introduction of RMLM. Section 3.5 is about RMLMSe.

3.1. Construction of the Heterogeneous Network

3.1.1. miRNA-miRNA Similarity Estimation. In [39], Wang
et al. compute miRNA-miRNA functional similarity score

based on the assumption that miRNAs with similar functions
tend to be related to similar disease. To get the miRNA-
miRNA similarity matrix, there contains three procedures.
We takemiRNA 𝑖 andmiRNA 𝑗 as an example. First, we iden-
tify diseases that related to these two miRNAs, encoded as
𝐷
𝑖
and 𝐷

𝑗
. We can obtain the relationship between miRNAs

and diseases fromThe Human MicroRNA Disease Database
(HMDD dataset). Then, we can calculate similarity of any
pair of diseases using a hierarchical structure. The semantic
similarity of disease is calculated based on directed acyclic
graph obtained from the US National Library of Medicine
in 2015 (MeSH, https://www.nlm.nih.gov/mesh/). Finally, we
utilize the similarity score between 𝐷

𝑖
and 𝐷

𝑗
to compute

the relatedness score between miRNA 𝑖 and miRNA 𝑗. In
this paper, we use SM (a 491 × 491 matrix) to represent the
miRNA-miRNA similarity matrix; SM(𝑖, 𝑗) is the functional
similarity score between miRNA 𝑖 and miRNA 𝑗.

3.1.2. Construction of the Heterogeneous Network. We con-
struct the heterogeneous network by connecting the miRNA
interaction network and PPI utilizing the bipartite graph of
the miRNA-target association network. The schema of the
heterogeneous network used in this paper is illustrated in
Figure 1. The network contains two types of objects, miRNA
and its targets. A meta-path 𝑃 is defined at the object type
level and is denoted in the form of 𝐴

1
→ 𝐴
2
→ ⋅ ⋅ ⋅ 𝐴

𝑛−1
→

𝐴
𝑛
, where 𝐴

𝑖
represent the object of type.

3.2. Relatedness Measure. The RM measure [36] is a path-
constrained measure and it can calculate the relatedness of
heterogeneous objects with the same or different types in a
uniform framework. It has been proven that RM has some
good properties, such as symmetric and self-maximum, and
has shown its potential to mining valuable information in
heterogeneous network. Therefore, here we use RM measure
to calculate the relatedness between miRNA and its targets.
RM measure is based on the Linkage Homophily Principle
defined as follows.

Linkage Homophily Principle. Two nodes are more likely to be
directly linked if most of their respective similar nodes are
linked.

In general, the computing of nodes similarity is based
on their neighbors. However, in heterogeneous networks,
the same type similar nodes can be linked by heterogeneous
nodes through composite paths. For example, two similar
genes can be connected by a common miRNA, “gene →

miRNA → gene.” Thus, we can utilize meta-path to extract
the generalized neighbor and define the similarity. Here, we
first extract the meta-path that connects the source node
and target node. We take source node V𝑝

𝑖
and meta-path

𝑃
𝑖𝑖𝑠

as an example. The neighbors of node V𝑝
𝑖
based on 𝑃

𝑖𝑖𝑠

are the nodes of type 𝑖 that linked to V𝑝
𝑖
by 𝑃
𝑖𝑖𝑠
, denoted as

𝑁
𝑝

𝑖
. Similarly, we can get the generalized neighbors of target

node V𝑞
𝑗
and meta-path 𝑃

𝑗𝑗𝑡
, denoted as𝑁𝑞

𝑗
. Then, we can use

the connectivity between 𝑁
𝑝

𝑖
and 𝑁

𝑞

𝑗
to calculate the link’s

existence probability between nodes V𝑝
𝑖
and V𝑞
𝑗
.
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Suppose RMP
𝑖𝑖𝑠
is the similarity matrix of 𝑖th type node

along the meta-path 𝑃
𝑖𝑖𝑠
. Similarity, RMP

𝑗𝑗𝑡
represents the

similarity matrix of 𝑗th type node along the meta-path 𝑃
𝑗𝑗𝑡
.

In general, similarity can be calculated by the path counts.
Expected path number is the number where all of the links
may exist from node of type 𝑖 to node of type 𝑗. Let meta-
path 𝑃

𝑖𝑗𝑠𝑡
= {𝑅
𝑘0𝑘1

, 𝑅
𝑘1𝑘2

, . . . , 𝑅
𝑘𝑛−1𝑘𝑛

}, 𝑘
0
= 𝑖, and 𝑘

𝑛
= 𝑗; then

the expected path number RMP
𝑖𝑗𝑠𝑡

is computed as follows:

RMP
𝑖𝑗𝑠𝑡

=

𝑛

∏

𝑝=1

𝑤
𝑘𝑝−1𝑘𝑝

= RMP
𝑖𝑖𝑠

× 𝑊
𝑖𝑗
× RMP

𝑗𝑗𝑡
. (1)

Here, 𝑃
𝑖𝑗𝑠𝑡

is a meta-path composed of 𝑃
𝑖𝑖𝑠
, 𝑅
𝑖𝑗
, and 𝑃

𝑗𝑗𝑡
;

RMP
𝑖𝑗𝑠𝑡

is amatrixwhose size is |𝑉
𝑖
|×|𝑉
𝑗
|.The computation of

RMP
𝑖𝑖𝑠
(or RMP

𝑗𝑗𝑡
) is similar to the computation of RMP

𝑖𝑗𝑠𝑡
.

Now the relatedness between nodes of type 𝑖 and nodes of
type 𝑗 along the meta-path 𝑃

𝑖𝑗𝑠𝑡
can be formulated as follows:

RM
𝑖𝑗𝑠𝑡

=
RMP
𝑖𝑗𝑠𝑡

RMP
𝑖𝑖𝑠

× 1 × RMP
𝑗𝑗𝑡

=
RMP
𝑖𝑖𝑠

× 𝑊
𝑖𝑗
× RMP

𝑗𝑗𝑡

RMP
𝑖𝑖𝑠

× 1 × RMP
𝑗𝑗𝑡

.

(2)

Here 1 is a matrix in which all the elements are 1 and the size
of is |𝑉

𝑖
| × |𝑉

𝑗
|. Similarly, RM

𝑖𝑗𝑠𝑡
is also a |𝑉

𝑖
| × |𝑉

𝑗
| matrix

and RM𝑝𝑞
𝑖𝑗𝑠𝑡

is the relatedness measured between V𝑝
𝑖
and V𝑞

𝑗

following 𝑃
𝑖𝑗𝑠𝑡

.

3.3. Construction of the Feature Vector. We can get the
relatedness between miRNAs and their targets as described
in Section 3.2. Now we get the feature vector as follows:

(1) Extract meta-path 𝑃
𝑖𝑖
of 𝑖th type node and 𝑃

𝑗𝑗
of 𝑗th

type node.

(2) Compute the similarity based on any pair of meta-
paths 𝑃𝑖𝑖 and 𝑃

𝑗𝑗 and then get the feature vector.

In RMLM, the feature vector between miRNA 𝑖 and gene
𝑗 is defined as

𝜙
𝑖𝑗
= (𝑓
1
, 𝑓
2
, . . . , 𝑓

𝑛
) , (3)

where 𝑓
1
to 𝑓
𝑛
represent the different similarities of different

meta-paths with different semantic meaning.

3.4. Parameter Estimation. As different meta-path corre-
sponds to different relation graphs, the final result may
be improved by combining these different graphs through
different weights. Here, logistic regression and maximum-
likelihood estimation (MLE) method can be employed to
estimate the weight.

In this paper, we regard the issue of relationship predic-
tion as a two-class classification problem by using Bayesian
analysis and logistic regression. Based on logistic regression

and under general assumption [31, 32], the posterior proba-
bility of a specific relation can be formulated as follows:

𝑝 (𝑥
𝑖
= 1 | 𝜑

𝑖
, 𝜔) =

exp (𝜔
𝑇
𝜑
𝑖
)

exp (𝜔𝑇𝜑
𝑖
) + 1

, (4)

𝑝 (𝑥
𝑖
= 0 | 𝜑

𝑖
, 𝜔) =

1

exp (𝜔𝑇𝜑
𝑖
) + 1

. (5)

Here 𝜔 is a weight vector served as parameters and 𝜑
𝑖
is

the feature vector of the link 𝑥
𝑖
. Then, MLE method can be

employed to estimate the parameter vector 𝜔. The likelihood
function can be written as

𝐿 (𝜔; 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑁
) =

𝑁

∏

𝑖=1

𝑝 (𝑥
𝑖
| 𝜑
𝑖
, 𝜔) . (6)

Here 𝑥
𝑖
is the link to calculate and𝑁 is the number of links,𝜑

𝑖

is the feature vector that is calculated according to RM, and𝜔

is the weight vector of the feature according to differentmeta-
path. The log likelihood of (6) is

ln 𝐿 (𝜔; 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑁
)

=

𝑁

∑

𝑖=1

[𝑥
𝑖
𝜔
𝑇
𝜑
𝑖
− ln (1 + exp (𝜔

𝑇
𝜑
𝑖
))] .

(7)

The log likelihood (7) is a convex function [40].Hence, we
can find a unique global optimal solution by solving a convex
optimization problem.

3.5. Final Score. The logistic regression based algorithm
returns a set of posterior probabilities. One can directly use
those probabilities to make decision. However, the posterior
probabilities do not always work well because it is difficult
to set a threshold for a relation between miRNA and its
target. Here, we utilize a percentage value as the final score
to evaluate the strength of the relation between a miRNA and
its target. The final score is calculated as follows:

𝑞
𝑖
=


{𝑗 | 𝑝

𝑖
≥ 𝑝
𝑗
}


𝑛
, 𝑖 = 1, 2, . . . , 𝑛. (8)

Here {𝑝
1
, 𝑝
2
, . . . , 𝑝

𝑛
} is the posterior probabilities of any

association, and 𝑞
𝑖
is the top percentage value of 𝑝

𝑖
among

all those posterior probabilities. The larger the final score is,
the more likely the association exists.

3.6. Integration of Sequence Information. In RMLMSe, we
integrate sequence information to improve the performance
of the RMLM. Here, we use sequence information from
database TargetScan, miRanda, and PITA. As they have a
relatively high false-positive rate, we only download con-
served targets information and select the data whose Pct
> 0.9 from TargetScan, mirSVR > 0.6 from miRanda, and
data in PITATOP to improve the reliability of the regulation
relationships. Sequence information from these databases
acts as new features in feature vector used in RMLMSe.
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Taking interaction between miRNA 𝑖 and gene 𝑗 as an
example, its feature vector can be written as

𝜙
𝑖𝑗
= (𝑓
1
, 𝑓
2
, . . . , 𝑓

𝑛
, 𝑓
𝑚
, 𝑓
𝑚+1

, 𝑓
𝑚+2

) . (9)

Here 𝑓
1
to 𝑓
𝑛
represent the different feature of different

meta-paths and 𝑓
𝑚
, 𝑓
𝑚+1

, and 𝑓
𝑚+2

represent the feature of
sequence information from TargetScan, miRanda, and PITA,
respectively.

3.7. Algorithm. The process description of RMLM and
RMLMSe is given as follows.

Input. The disease set 𝑑
𝑖
of each miRNA 𝑖 from HMDD and

DAG 𝑔
𝑗
of each disease 𝑗 fromMeSH, the protein interaction

matrix SP, and the miRNA-protein matrix MP.

Output. The vector of final score for each unknown interac-
tion between miRNA and its targets.

(1) Calculate the miRNA-miRNA functional similarity
matrix SM as described in Section 3.1.1.

(2) Extract meta-path 𝑃
𝑖𝑖
of 𝑖th type node and 𝑃

𝑗𝑗
of

𝑗th type node. We set the max length of meta-path
between the same type node as (3).

(3) Concatenate 𝑃
𝑖𝑖𝑠

(𝑠th meta-path of 𝑃
𝑖𝑖
), 𝑅
𝑖𝑗
, and 𝑃

𝑗𝑗𝑡

(𝑡thmeta-path of𝑃
𝑗𝑗
) in sequence to compose ameta-

path 𝑃
𝑖𝑗𝑠𝑡

going from the source nodes of type 𝑖 to
target nodes of type 𝑗. Then, the relatedness between
miRNA and its target based on meta-path 𝑃

𝑖𝑗𝑠𝑡
is

calculated according to (2).
(4) Calculate the different similarity of different meta-

path and get the feature vector of each interaction.
The feature vectors used in RMLM and RMLMSe are
described in Sections 3.3 and 3.5.

(5) Estimate parameters 𝜔 by maximizing the log likeli-
hood ln 𝐿(𝜔; 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑁
) in (7) based on 𝑥

𝑖
and 𝜑

𝑖
,

𝑥
𝑖
is the link to be calculated, and𝑁 is the number of

links.
(6) Calculate the probability for each unknown interac-

tion according to (4) by using 𝜔 and feature vector.
(7) Calculate the final score according to (8).

4. Results

4.1. Datasets

The Human MicroRNA Disease Database. HMDD [41] pro-
vides a comprehensive resource of experimentally veri-
fied miRNA-disease associations. We can get the informa-
tion through a website at http://www.cuilab.cn/hmdd. The
database (in June 2014) contains 5100 associations between
491 miRNAs and 326 diseases. In this paper, we first analyse
the global network. Then, we analyse another three diseases,
Ovarian Neoplasms (OV), Lung Neoplasms (Lung), and
Breast Neoplasms (Breast). The miRNAs associated with OV,
Lung, and Breast are 114, 132, and 202, respectively.

The Protein-Protein Interaction Database. The PPI network
was constructed by combining DNA-protein data from
TRANSFAC [42] and protein interaction data obtained from
Bossi and Lehner [43], respectively. The database contains
13306 proteins and 157426 interactions between proteins.

Experimentally Validated miRNA-mRNA Interaction
Databases. The posttranscriptional regulatory knowledge
is obtained from miRNA-target database miRTarbase v6.1.
When mapping onto our miRNA-target matrix, it retains
111770 interactions. We can get the information through a
website at (http://mirtarbase.mbc.nctu.edu.tw/).

Predicted miRNA-mRNA Interaction Database. We also uti-
lize sequence information in database TargetScan v7.0,
miRanda released at 2010, and PITA v6. These databases are
available online at http://www.targetscan.org/, http://www.
microrna.org/, and http://genie.weizmann.ac.il/pubs/mir07/,
respectively.

4.2. Comparisons with Other Methods. To compare the per-
formance of RMLM and RMLMSe, we applied RLSMDA
[44] and RM [36] to the same testing data. RLSMDA
was introduced to predict disease-miRNA association. We
encoded RLSMDA in MATLAB according to the derivation
process of the authors. Here, we set𝜔 used in RLSMDAas 0.5.
RMwas implemented inMATLABwith source code available
from authors personal homepage. RM is the measurement
used to calculate the similarity of objects in heterogeneous
networks. Here, the sum of the different similarities corre-
sponding to different meta-paths is utilized to predict the
miRNA-gene associations. All experiments are carried on a
Windows 7 professional computer (Inter(R) Xeon(R) CPU,
2.93GHz, 56G RAM, 64-bit OS). The performance of each
method is evaluated by fivefold cross validation. First, all
known miRNA-target associations were split into five sets
of the same size randomly: one set was set aside as the
test set and the other four sets were used as train sets. The
experiment was repeated five times so that each set was
hidden once and each hidden miRNA-target pair obtained
a predict relevance score. The ROC (receiver operating
characteristic) curve was calculated according to the various
TPR (true-positive rate) and the various FPR (false-positive
rate) through a varying threshold. The area under the ROC
curve (AUC) is employed to show the overall performance
of methods. We can see from Figure 2 that RMLM and
RMLMSe always work better than RLSMDA and RM. There
is only slight improvement when sequence information is
employed, where the AUC score increases from 0.8919 to
0.9033. This may have two reasons. First, the performance
of the RMLM already achieves a very high AUC score and
there is only a little room for it to be further improved by
using additional prior information. Second, the amount of
the sequence information mapped onto the miRNA-target
matrix is little; for example, when TargatScan, miRanda, and
PITA mapped onto the miRNA-target matrix, they leave
16,7403, 10,4631, and 13,7229 interactions, about 1.6∼2.6%
of the entire size of the miRNA-target matrix MP (a 491 ×
13306 matrix). Although the improvement of the sequence
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Figure 2: The ROC curve of the global network.
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Figure 3: The ROC curve of the OV network.

information is not significant, the increased AUC score still
indicates that additional knowledge is helpful for improving
the prediction performance as any prior knowledge, such as
sequence information, Go Ontology annotations, gene copy
numbers, and gene methylation, related to miRNA-target
associations can be employed to predict associations. Figures
3, 4, and 5 are the result when we execute the methods on
OV, Lung, and Breast database, respectively. The results are
similar to Figure 2. RMLM and RMLMSe always work better
than RLSMDA and RM, and RMLMSe only have a slight
improvement than RMLM.

4.3. The Number of Links Predicted by Our Methods. Here,
we present the number of interactions predicted based on
different thresholds in RMLM and RMLMSe. As shown in
Table 1, the numbers of interactions predicted in RMLM are
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Figure 4: The ROC curve of the Lung network.
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Figure 5: The ROC curve of the Breast network.

higher than in RMLMSe among all of the threshold.This can
further indicate the performance improvement in RMLMSe.
In future, we can utilize the associations predicted by our
method to construct miRNA-target regulatory network and
extract regulatory modules and hub nodes.

4.4. Functional Validation of mRNAs. When we get the result
of the global dataset, we compute every mRNA score and
extract the top 250 mRNAs to carry on the pathway enrich-
ment analysis with the focus on KEGG (Kyoto Encyclopedia
of Genes and Genomes) pathways (adjusted 𝑝 value < 0.05).
In this paper, 𝑝 value calculated by hypergeometric test is
a statistical value that represents the significant enrichment
of pathways. The smaller the 𝑝 value is, the more significant
the pathway enrichment is. As shown in Table 2, many of
the KEGG pathways are highly related to many cancers and
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Table 1: The number of links predicted by our methods based on different thresholds.

Database Methods Validated Th ≥ 0.9 Th ≥ 0.8 Th ≥ 0.7 Th ≥ 0.6 Th ≥ 0.5

Global RMLM 11,1770 17,2912 20,4894 23,4327 26,5883 79,8049
RMLMSe 11,1770 17,6625 21,0909 24,2946 28,1782 80,7688

OV RMLM 4,2730 5,3683 5,9580 6,4676 6,9759 23,3784
RMLMSe 4,2730 5,3891 5,9954 6,5526 7,1565 23,4562

Lung RMLM 4,7764 5,8511 6,4339 6,9397 7,4816 24,5323
RMLMSe 4,7764 5,8870 6,4881 7,0437 7,9293 24,6261

Breast RMLM 6,4403 8,6555 9,8883 10,9659 12,0730 36,4375
RMLMSe 6,4403 8,6690 9,9540 11,1719 12,6556 36,6573

The “validated” column is the number of links validated in database miRTarbase v6.1 and “Th” represents the threshold.

Table 2: In RMLMSe, the enrichment KEGG pathways of global
dataset.

Enrichment KEGG pathways 𝑝 value
1 p53 signaling pathway 4.27𝐸 − 10

2 Chronic myeloid leukemia 8.80𝐸 − 10

3 Bladder cancer 3.24𝐸 − 09

4 Glioma 6.03𝐸 − 09

5 Melanoma 1.35𝐸 − 08

6 Pathways in cancer 2.34𝐸 − 08

7 Prostate cancer 1.01𝐸 − 07

8 Cell cycle 1.61𝐸 − 07

9 Small cell lung cancer 9.71𝐸 − 07

10 Pancreatic cancer 3.26𝐸 − 06

The 𝑝 values have been obtained through hypergeometric test.

respective biological process, for instance, glioma, prostate
cancer, and colorectal cancer. Furthermore, pathways in
cancer are closely related to many cancers and P53 signaling
pathways is proved to be related to the processes of cell
division and DNA replication [45]. The result of Lung KEGG
pathways is shown in Table 3. The pathway focal adhesion
[46], adherens junction [47], and ErbB signaling pathway
[48] are proved to be related to Lung.

5. Discussion and Conclusion

The rapid increase of various biological data provides chal-
lenges and opportunities for us to complete the globalmiRNA
regulatory mechanism. In recent years, academics have made
great efforts to predictmiRNA targets.However, eachmethod
has its pros and cons, and the performance of amethod varies
on different datasets.Thus, how to get precise results is a long-
time challenge for miRNA-target association prediction.

In this paper, two novel methods, RMLM and RMLMSe,
were developed. In RMLM, we first construct miRNA-
miRNA similarity matrix. Second, we use RM to evaluate the
different relatedness between miRNAs and its target based
on different meta-path and extract the feature vectors of
links; different meta-path corresponds to different relation
graphs; we can improve the performance by combining these
different graphs through different weights of corresponding
meta-paths.Third, logistic regression andMLEmethod were

Table 3: In RMLMSe, the enrichment KEGG pathways of lung
dataset.

Enrichment KEGG pathways 𝑝 value
1 p53 signaling pathway 5.15𝐸 − 10

2 Pathways in cancer 3.11𝐸 − 08

3 Small cell lung cancer 1.12𝐸 − 06

4 Non-small cell lung cancer 1.04𝐸 − 05

5 Focal adhesion 1.53𝐸 − 05

6 Neurotrophin signaling pathway 1.81𝐸 − 04

7 Adherens junction 6.05𝐸 − 04

8 ErbB signaling pathway 1.34𝐸 − 03

9 Pathogenic Escherichia coli infection 1.89𝐸 − 03

10 MAPK signaling pathway 1.31𝐸 − 02

The 𝑝 values have been obtained through hypergeometric test.

employed to estimate the weight. Here, the issue of rela-
tionship prediction is regarded as a two-class classification
problem by using Bayesian analysis and logistic regression
and then MLE method can be employed to estimate the
parameter vector. Then, we estimate the posterior probabil-
ities between miRNAs and its targets based on the feature
vectors of links and the corresponding parameter vectors.
Finally, the final scores are obtained by using the percentage
values of individual posterior probabilities. In RMLMSe, we
utilize more information such as sequence information from
TargetSacn, miRanda, and PITA to improve the performance
of the RMLM. The results showed that there are slight
improvement when sequence information is integrated.

Compared with other methods, RMLM and RMLMSe
proposed by us have higher AUC scores. Besides, we con-
duct pathway enrichment analysis and found many relevant
pathways. These results indicate that our two methods were
reasonable and credible.

The comparison results of RMLM and RMLMSe indicate
that ourmethods have the capability to integratemore biolog-
ical data, such as sequence data and gene copy number.Thus,
with the rapid growth of the gene regulatory knowledge, our
method can integrate more prior information to improve the
prediction performance.

In addition, disease target inference [49, 50], disease-
miRNA prioritization [51–54], and lncRNA-disease associa-
tion prediction [55] are also the immediate areas of research
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focus to further study therapeutic strategy. Due to the
scalability of the proposed methods, RMLM and RMLMSe
could be applied to the different constructed heterogeneous
networks to infer disease target, miRNA-disease association,
and lncRNA-disease association, respectively. Moreover, the
performance of our methods should be further evaluated
after extending.

Of course, RMLM and RMLMSe also have some limita-
tions that need to be improved in the future. Firstly, ourmeth-
ods utilize the network topology and known miRNA-gene
associations to calculate the relatedness between miRNA
and its target. It may cause bias to miRNA-gene pair which
has more neighbor nodes. Furthermore, although the better
performance is obtained by our methods on the whole,
the predictive results should be further improved, especially
for the small output. In the future, the prediction perfor-
mance will be further improved by integrating more reliable
biological data and obtaining more known miRNA-gene
associations.
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