Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

1,1,1,3,3,3-Hexafluoro-2,2-bis[4-(4nitrophenoxy)phenyl]propane

H. Nawaz, ${ }^{\text {a }}$ Zareen Akhter, ${ }^{\text {a }}{ }^{*}$ Michael Bolte, ${ }^{\text {b }}$ M .S. Butt ${ }^{\text {a }}$ and Humaira M. Siddiqi ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan, and ${ }^{\text {b }}$ Institut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany
Correspondence e-mail: zareenakhter@yahoo.com
Received 5 July 2008; accepted 15 July 2008
Key indicators: single-crystal X-ray study; $T=173 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; R factor $=0.045 ; w R$ factor $=0.092 ;$ data-to-parameter ratio $=12.5$.

In the title compound, $\mathrm{C}_{27} \mathrm{H}_{16} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{6}$, the nitro groups are almost coplanar with the aromatic rings to which they are attached [dihedral angles $=3.5(5)$ and $6.2(3)^{\circ}$]. The dihedral angles between adjacent aromatic rings are 78.07 (8) and $71.11(8)^{\circ}$ for nitrophenyl/phenyl and $69.50(8)^{\circ}$ for phenyl/ phenyl. An intermolecular $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction seems to be effective in the stabilization of the structure.

Related literature

For related literature, see: Liaw et al. (2005); Yang et al. (2003); Miyagawa et al. (2003); Leu et al. (2003); Zhou et al. (2001.

Experimental

Crystal data

```
\(\mathrm{C}_{27} \mathrm{H}_{16} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{6}\)
\(M_{r}=578.42\)
Monoclinic, \(P 2^{6} / c\)
\(a=25.523\) (3) А
\(b=10.5530(12) \AA\)
\(c=9.3869(8) \AA\)
\(\beta=98.248\) (8) \({ }^{\circ}\)
\(V=2502.2(5) \AA^{3}\)
```

$Z=4$
Mo $K \alpha$ radiation
$\mu=0.14 \mathrm{~mm}^{-1}$

Data collection
Stoe IPDSII two-circle diffractometer
Absorption correction: none
13020 measured reflections

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044 \quad 371$ parameters
$w R\left(F^{2}\right)=0.092$
$S=0.91$
4653 reflections
$T=173$ (2) K
$0.23 \times 0.10 \times 0.10 \mathrm{~mm}$

4653 independent reflections 2651 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.076$

H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.20 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-0.21 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 46-\mathrm{H} 46 \cdots C g 1^{\mathrm{i}}$	0.95	3.04	3.710	129

Symmetry code: (i) $x,-y+\frac{1}{2}, z+\frac{1}{2} . C g 1$ is the centroid of the C31-C36 ring.
Data collection: X-AREA (Stoe \& Cie, 2001); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

The authors are grateful to the Department of Chemistry, Quaid-I-Azam University, Islamabad, Pakistan, and to the Institute for Inorganic Chemistry, University of Frankfurt, Germany, for providing laboratory and analytical facilities.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2089).

References

Leu, C. M., Chang, Y. T. \& Wei, K. H. (2003). Chem Mater. 15, 3721-3727.
Liaw, D. J., Chang, F. C., Leung, M., Chou, M. Y. \& Muellen, K. (2005). Macromolecules, 38 4024-4029.
Miyagawa, T., Fukushima, T., Oyama, T., Iijima, T. \& Tomoi, M. (2003). J. Polym. Sci. Part A Polym. Chem. 41, 861-871.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Stoe \& Cie (2001). X-AREA. Stoe \& Cie, Darmstadt, Germany
Yang, C. P., Hsiao, S. H. \& Wu, K. L. (2003). Polymer, 44, 7067-7078.
Zhou, H. W., Liu, J. G., Qian, Z. G., Zhang, S. Y. \& Yang, S. Y. J. (2001). J. Polym. Sci. Part A Polym. Chem. 39, 2404-2413.

