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Abstract: Coeliac disease (CD) is a clinically heterogeneous autoimmune disease with variable presen-
tation and progression triggered by gluten intake. Molecular or genetic factors contribute to disease
heterogeneity, but the reasons for different outcomes are poorly understood. Transcriptome studies
of tissue biopsies from CD patients are scarce. Here, we present a high-resolution analysis of the
transcriptomes extracted from duodenal biopsies of 24 children and adolescents with active CD and
21 individuals without CD but with intestinal afflictions as controls. The transcriptomes of CD patients
divide into three groups—a mixed group presenting the control cases, and CD-low and CD-high
groups referring to lower and higher levels of CD severity. Persistence of symptoms was weakly
associated with subgroup, but the highest marsh stages were present in subgroup CD-high, together
with the highest cell cycle rates as an indicator of virtually complete villous atrophy. Considerable
variation in inflammation-level between subgroups was further deciphered into immune cell types
using cell type de-convolution. Self-organizing maps portrayal was applied to provide high-resolution
landscapes of the CD-transcriptome. We find asymmetric patterns of miRNA and long non-coding
RNA and discuss the effect of epigenetic regulation. Expression of genes involved in interferon
gamma signaling represent suitable markers to distinguish CD from non-CD cases. Multiple path-
ways overlay in CD biopsies in different ways, giving rise to heterogeneous transcriptional patterns,
which potentially provide information about etiology and the course of the disease.

Keywords: molecular subgroups; gene expression signatures; villous atrophy; immune cell de-
convolution; machine learning; self-organizing maps; personalized diagnostics

1. Introduction

Coeliac Disease (CD) is a systemic autoimmune-mediated enteropathy triggered by
gluten peptides from wheat and closely related cereals [1,2]. The ingestion of gliadin in
genetically susceptible individuals may lead to intraepithelial lymphocytosis, crypt hyper-
plasia, villous atrophy and a chronic inflammatory cell infiltrate in the lamina propria [3].
CD is one of the most prevalent food intolerance with a prevalence of currently 1.4%,
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and a historic increase over the last three decades [4,5]. CD patients carry at least one
allele of HLA-DQ2 or HLA-DQ8, which define a specific type of membrane receptors
on antigen presenting cells (APCs), responsible for the body’s first line of defense. After
binding gliadin, APCs may activate an inflammatory response [6]. However, CD-associated
HLA-DQ molecules are not the only trigger for disease development since similar HLA-
haplotypes occur in approximately 40 percent of the general population [7]. The diagnosis
of CD is challenging and relies on the assessment of a highly variable clinical status, anti-
body measurements, histological evaluation of intestinal biopsies. The latter is classified
by Marsh staging, which is based on assessment of villous atrophy and crypt hyperplasia
as well as the count of intraepithelial lymphocytes (IELs). Furthermore, the response to
gluten-free diet, which is nowadays the only treatment for CD, is an additional clinical
criterion. For children and adolescents with suspected CD, biopsies are avoidable for
establishing a CD diagnosis if IgA antibodies against tissue transglutaminase reach more
than a tenfold excess compared with the upper limit of normal level (≥10 × ULN) and if
IgA Endomysium antibodies show positivity in a second blood sample [8]. Otherwise, this
diagnostic approach isn’t recommended for adults. Upper endoscopy with small bowel
biopsy serves to establish the diagnosis for most adult patients and also for children with
only mild elevated antibodies (<10 × ULN) with suspected coeliac disease. Previously
regarded as a gold standard of diagnostics, unsatisfactory inter-observer agreement was
reported between histopathologists [8–11]. The use of validated standard operating proce-
dures (SOPs) with correct orientation and cutting of the duodenal specimen is critical for
an accurate interpretation of the mucosal architectural [11,12]. At this point transcriptome
studies of duodenal tissue may shed light on the diagnosing challenge of coeliac disease.

Fundamental transcriptomic research is focusing on small-intestinal samples of CD
patients and on the cell types present therein in order to uncover pathogenic pathways
that are altered in the small intestine of CD patients. These techniques are expected
to open new options for CD diagnostics and monitoring. Particularly, transcriptome
studies of intestinal biopsies of CD patients have revealed genes and pathways that are
altered in the disease and might serve as biomarkers for small intestinal damage and
function. Previous gene expression studies were performed on the purpose of Marsh-score
discrimination [13], to characterize villous atrophy [14–16], epithelial destruction [17],
upregulation of immunity [18,19], differences of gene expression of CD in adults and
children [20] and of genes mutated in CD [19,21,22] (see also [23] for a review).

Overall, these studies indicate correspondence between established histological and
serum markers on one hand and molecular transcriptomic signatures on the other hand.
However, heterogeneity of transcriptomic patterns is extensive and requires further clar-
ification. A systematic view on the relations between transcriptomic indications of villi
atrophy, crypt dysplasia, signs of inflammation, immune cell infiltration and other factors
in order to make it usable for an improved management for CD patients is still lacking.

We have performed a detailed analysis of the transcriptional heterogeneity of duo-
denal biopsies from 24 Patients with CD, 20 patients without CD, and one patient with
unclear diagnosis recruited as part of the ABCD (Antibody diagnostics in pediatric Coeliac
Disease) study in two children hospitals in Leipzig (Saxonia, Germany). We applied a
comprehensive analysis and visualization strategy based on self-organizing maps (SOM)
machine learning and downstream functional analysis [24–26].

In the first part of the paper the cases were stratified by means of unsupervised
clustering and characterized based on previous knowledge to obtain a comprehensive view
on CD as seen by transcriptomics. In the second part, functional analysis is further refined by
extracting information about immune cell infiltration and by high-resolution personalized
portrayal of the transcriptomic landscape of CD. In the third part, we address the issue of
feature selection for diagnosing CD in our data and we present a novel tool for exploring
the data under the specific perspective of interested scientists called SOM-browsing.
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2. Results
2.1. Clustering Identifies Three Transcriptional Subgroups of CD Patients

We analyzed gene expression data of duodenal probes from 24 children and adolescents
aged between 5 months and 18 years with active CD (Table 1). Another 21 patients of the
same age range without CD diagnosed but with diverse intestinal afflictions served as
controls. One further patient could not be clearly diagnosed (Table 1). Gene expression data
of each patient were transformed into self-organizing maps (SOM) transcriptomic portraits
providing “personalized” images of their gene expression states (see below). Clustering of
SOM-transformed metagene data provides four major groups of samples: the first group
contains only disease control samples referred as reference group (R). A second M-group
(mixed, 31% of all samples) collects a mixture of four control, four CD samples and one with
unclear diagnosis while the remaining two groups are exclusively formed by CD-samples.
They were assigned as CD-low (CD-L, n = 8, 27%) and CD-high (CD-H, n = 12, 41%). Based
on similarity analysis by means of the pairwise correlation heatmap (Figure 1A) and sample-
SOM (Figure 1B), one sees that CD-L and M group transcriptomes show intermediate
features combining that of the reference and of the CD-H groups. Biopsies in each of
the groups were ranked with increasing expression levels of the gene signature ‘colonic
inflammation’ extracted from ulcerative colitis biopsies for better representation [27,28].
Other key functional expression signatures show either activation or deactivation in the
different groups (see ‘barcodes’ in Figure 1A and next subsection for details).

Figure 1. Typing of the patients. (A) The pairwise correlation heatmap visualizes cross-correlations between the biopsies,
which split into four expression groups: disease controls serving as reference (R), mixed (M), less severe ‘coeliac disease
low’ (CD-L) and severe ‘CD-high’ (CD-H). Gene expression levels of characteristic functional signatures are shown as
black-white ‘barcodes’ below the heatmap (see Figures A2–A4 for details). They upregulate (black color) specifically in some
of the biopsy groups. The samples within each group were ranked with increasing expression of the gene signature “colonic
inflammation” [27]. High expression levels of this signature are associated with diagnosed CD together with positive
(auto)-antibodies and histology. X = patient with unclear diagnosis. (B) The sample diversity map (sample SOM, see also
Figure A1) visualizes similarity relations between the transcriptomes of the different biopsies (circles) in two dimensions.
The distances between the samples scale with their mutual similarity, which was estimated in terms of correlation coefficients
between their expression portraits (see below). (C) The silhouette plot further supports clustering: Positive silhouette scores
indicate stable clustering of the respective samples within the cluster environment chosen (see Materials and methods).
Negative scores indicate closer similarity to another cluster.
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Table 1. Clinical and histological characteristics of the patient groups 1.

Patient Group Reference Mixed CD-Low CD-High

N (cases) 17 9 8 12
Diagnosis

Coeliac disease 0 (0.0%) 5 (55.5%) 8 (100%) 12 (100%)
Disease controls 17 (100%) 3 (33.3%) 0 (0.0%) 0 (0.0%)

Unclear 0 (0.0%) 1 (14.2%) 0 (0.0%) 0 (0.0%)
Age

Median (range) 14 y (1–17) 10 y (3–12) 8 y (3–17) 13 y (4–15)
Age interval

1y–4y 3 (17.6%) 1 (11.1%) 2 (25.0%) 5 (41.7%)
5y–8y 1 (5.9%) 2 (22.2%) 1 (12.5%) 1 (8.3%)

9y–12y 3 (17.6%) 6 (66.7%) 1 (12.5%) 1 (8.3%)
13y–17y 10 (58.5%) 0 (0.0%) 4 (50.0%) 5 (41.7%)

Sex
Female 13 (76.5%) 6 (66.7%) 7 (87.5%) 5 (41.7%)

Gastrointestinal complaints
at least one sign of clear

malabsorption (1)

asymptomatic (2)

17 (100%) 8 (88.9%) 6 (75.0%) 9 (75%)
0 (0.0%) 3 (33.3%) 3 (37.5%) 7 (58.3%)
0 (0.0%) 0 (0.0%) 1 (12.5%) 3 (25.0%)

Symptoms since (3)

<3 months 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (8.3%)
3–24 months 11 (64.7%) 4 (4.44%) 4 (50.0%) 5 (41.7%)
>24 months 5 (29.4%) 4 (44.4%) 2 (25.0%) 3 (25%)
IgA-aTTG

positive 1 (5.9%) 6 (66.7%) 8 (100%) 11 (91.7%) (4)

IgG-EmA
Positive 1 (5.9%) 6 (66.7%) 8 (100%) 12 (100%)

IgG-aDGL
positive 1 (5.9%) 4 (44.4%) 6 (75.0%) 11 (91.7%)

HLA-Type
negative 10 (58.8%) 2 (22.2%) 0 (0.0%) 0 (0.0%)
DQ2 (5) 7 (41.2%) 6 (66.7%) 7 (87.5%) 11 (91.7%)

DQ8 0 (0.0%) 1 (11.1%) 1 (12.5%) 1 (8.3%)
DQ2 and DQ8 1 (5.9%) 0 (0.0%) 0 (0.0%) 1 (8.3%)
Marsh stage

Normal 15 (88.2%) 4 (44.4%) 0 (0.0%) 0 (0.0%)
Marsh 1 2 (11.8%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
Marsh 2 0 (0.0%) 0 (0.0%) 1 (12.5%) 0 (0.0%)

Marsh 3A 0 (0.0%) 4 (44.4%) 2 (25.0%) 3 (25.0%)
Marsh 3B/C 0 (0.0%) 1 (11.1%) 5 (62.5%) 9 (75.0%)

(1) malabsorption includes chronic diarrhea, weight loss, and failure to thrive. (2) all asymptomatics were CD
patients with type I diabetes. (3) information about symptoms duration was missing for one patient in the reference
group. (4) one patient with partial IgA deficiency. (5) includes HLA-DQ2.5 and HLA-DQ2.2. CD-L = low-severity
coeliac disease, CD-H = high-severity coeliac disease, IgA-aTTG = IgA antibodies against tissue transglutaminase,
IgA-EmA = IgA anti-Endomysium, IgG-aDGL = IgG antibodies against deamidated gliadin peptides, M = Mixed
group R = Reference group.

The cases in groups CD-H and CD–L show high levels of IgG-antibodies against
deamidated gliadin peptides (IgG-aDGL, ≥25 U/mL) and of IgA class antibodies against
tissue transglutaminase (IgA-TTG, ≥20 U/mL). They also show high levels of IgA en-
domysial antibodies (IgA-EmA, ≥1:10 U/mL, all p < 0.01 in Fisher’s exact test) and enrich
the HLA-DQ2 type. CD-H patients have the highest marsh stages (3B and 3C) (p < 0.01,
Fisher’s exact test) and highest median age (12.5 years) among all three groups with CD
patients. A percentage of 25% of the patients of CD-H suffer from diabetes type 1. Seven
out of eight CD-L patients are females and most of them (87.5%) show signs of malab-
sorption. Malabsorption is also typical for all patients of group M and except one, all
other (88.9%) had gastrointestinal afflictions but none of them had diabetes. Clinical and
histological characteristics of subgroups are summarized in Table 1. Taken together, accord-
ing to transcriptomic characteristics we identified one reference group and three groups
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of CD-patients differing from patients with other gastrointestinal afflictions according
to transcriptome characteristics of the duodenum. The groups CD-H and CD-L suggest
different levels of CD severity both showing symptoms of inflammation by exhibiting high
titers of IgA-aTTG and IgA-EmA and high Marsh stages compared to groups M and R
(p < 0.01, Fisher’s exact test). Alternatively we have in view the option that CD-L mimicries
lower severity because slightly varying tissue composition of the biopsies.

2.2. Expression Signatures Characterize the Functional State of the Small Intestine Epithelium

Next we performed functional analysis of the transcriptome data using gene sets
related to the functional categories gene ontology (GO) biological process (BP) [29] and to
immune response characteristics [30] (Figure 2A,B, see also Figures A2 and A3 for further
functional categories). Subgroups R, M and, to a less degree, CD-L show high expression of
gene sets reflecting normal metabolic functions of the colon such as flavonoid biosynthetic
process, ion transport, oxidative-phosphorylation (OxPhos), cholesterol efflux and cellular
glucuronidation. Their expression level markedly drops in CD-H thus indicating the loss of
these functions of the healthy intestine. Contrarily, groups CD-H and also CD-L show high
expression of inflammatory signatures such as interferon signaling pathways, especially
of interferon-È-mediated signaling, antigen processing and presentation, T-cell receptor
pathway and positive regulation of T-cell migration, which all indicate activation of the
immune system and the infiltration of inflammatory cells into the intestine epithelium
in the CD groups in contrast to the R group. Moreover, samples of group CD-H and
partly also of CD-L up-regulate processes related to cell division (e.g., the gene sets DNA
replication, nucleosome assembly, mitotic nuclear division and cell cycle, Figure 2A). These
functions can be interpreted as molecular indicators of crypt hyperplasia and villous
atrophy representing characteristic features of coeliac disease [31], which is associated with
villous flattening in the small bowel and the loss of digestive functions. In support of this
result, we find that the expression level of a gene signature of the bottom ‘lower’ crypt
showing highly proliferative characteristics [32] progressively increases from M via CD-L
towards CD-H groups, while the expression of a gene signature of the healthy villi with
characteristics of the ‘upper crypt’ decays (Figure 2D). The latter set of ‘consisting villi’
includes genes of mucosa and the villi membrane (AQP10, LAMA1, MUC12), as well as
genes transcribing for enzymes of normal intestinal functions like LCT and G6PC. The
basal-crypt set includes genes involved in cell proliferation and cell cycle regulation, which
are expressed by crypt progenitor cells.

Gene sets of immune function provide further details about the immune response
in CD. One finds increasing expression of gene signatures of lymphoid cells such as T-
cells, activated T helper cells and cytotoxic T-cells, effector memory CD8+ cells, B-cells
and also upregulation of interferon mediated pathways (Figure 2B). The profiles of, e.g.,
activated CD4+ and of other T-cells further show subtle fine structures. The latter profile
anti-correlates with the profile of the ‘healthy villi’ signature which indicates association
between the integrity of the colon mucosa and its immune state in agreement with [33].
Expression profiles of a series of immunity-related genes revealed activation of HLA class II
antigen presentation in CD paralleled by up-regulation of their regulator (CIITA) and of the
immune checkpoint inhibitors CTL4, IDO1, LAG3 and PD-L1. (Figure 2C). Interestingly, the
majority of gene signatures related to immune response and of HLA-genes show markedly
increased expression levels in biopsies of patients with diagnosed CD and Marsh-scores of
3B/C thus separating CD and non-CD cases also in the mixed group M (see the vertical
dashed line in Figure 2A,C and below for further discussion). Gene sets characterizing type
2 epithelial-mesenchymal transition (EMT2) associate with chronically inflamed tissue [34].
We find high activity of EMT2 signature in the CD-H subgroup, which associates with
inflammation and possibly leads to fibrosis (Figure A5).
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Figure 2. Gene set expression signatures characterize the functional context of CD-types: Expression heatmaps of, (A) gene
sets referring to GO category biological process (BP) and, (B) of ‘Immunome’ related gene sets taken from [30] reveal
functional categories up- or down-regulated in CD-H and CD-L (marked in red or blue, respectively). The former ones
include different gene sets related to inflammation and activated immune response. The heatmap in (C) collects a series
of immunity related genes and indicates upregulation of HLA type II receptors, of their regulator CIITA and of immune
checkpoint inhibitors LAG3 and IDO1. Please note that inflammatory expression characteristics strongly associate with
CD-diagnostics using the Marsh-score: The vertical dashed line divides CD versus non-CD cases (except one Marsh 3A
biopsy). (D) Profiles of gene sets characterizing functions of the healthy villi (upper crypt), and of basal (lower) crypt taken
from [32] indicate antagonistic expression changes from R towards CD-H groups due to progressive villous atrophy.

Interestingly, expression signatures from the healthy colon [35], of lymphoma biop-
sies [24], of the signature KEGG vascular smooth muscle (Figure A3B), G-protein coupled
receptor signaling (Figure A5, see also Figure A6 for pathway activation across the groups),
of plasma membrane (Figure A2), of signal transduction, apoptosis and microvillus assem-
bly (Figure 2) show specific activation in CD-L and deactivation in M-samples. Overall,
the combination of these signatures can be interpreted as a mixture of epithelial, vascular
and smooth muscle characteristics possibly originating from contaminations of lamina
propria and eventually mucosa muscularis and submucosal components in the biopsies as
an alternative option in addition to the indications of low CD severity. We also surveyed
expression signatures taken from previous studies on CD which were developed for Marsh-
score discrimination [13], to characterize villous atrophy [14], epithelial destruction [17],
upregulation of immunity via the NFκB pathway [18] and of genes mutated in CD [21]
(Figure A4). Overall, we observed marked expression differences between our CD-L and
–H cases on one hand and the R-group on the other hand in agreement with those studies.

The polar diagrams in Figure 3 provide an overview about the major functional
characteristics of the four groups of biopsies identified. ‘Consisting villi’ functionality
decays in all three CD-related groups but especially in CD-H opposed by gain of different
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immune-related, inflammatory, type 2 EMT and proliferative function. Taken together
duodenal tissue samples from CD patients show concerted changes of expression signatures
indicating loss of digestive functions of the duodenum and of villous atrophy paralleled by
increased immune response.

Figure 3. Polar ‘fingerprint’ diagrams of the expression status of CD-types. Each of the axes refer to one gene set. Expression
values were scaled in units of the gene set Z (GSZ)-scores estimating mean expression of the gene set in each group divided
by its standard variation. White and yellow areas indicate over- (GSZ > 0) and under-expression (GSZ < 0) compared with
the mean expression averaged over all samples studied. All CD-diseased groups were characterized by loss of healthy colon
functionalities (‘consisting villi’), increased inflammation and proliferative characteristics compared with reference.

2.3. Immune Cell Infiltration

Our expression data refer to ‘bulk’ samples representing mixtures of different cell
types present in the duodenum biopsies including epithelial cells, fibroblasts and infiltrat-
ing immune cells. The composition of immune cell types can be deduced by means of
cell-deconvolution methods based on cell-specific transcriptome signatures derived from
independent experiments. We here applied “Cibersort” to estimate the relative amount
of 22 immune cell-types in each of the biopsies [36] (Figure 4A). Largest fractions refer to
plasma cells, naïve and memory resting CD4+ T-cells, T follicular helper and T regulatory
cells, however with variable fractions between the different sample groups. Immune cells
roughly divide into two groups of either increased or decreased relative amounts in the
CD groups compared with the R-, and partly, M-type biopsies (Figure 4B). The former
group includes activated T-cells (CD8+ and CD4+) and activated natural killer cells (NK).
Stratification of the amounts of immune cells according to the biopsy groups show further
details (Figure 4C). The fractions of activated CD4+ and of CD8+ T-cells increase with CD
severity while that of resting natural killer cells decays, which, overall, reflects increasing
inflammation. CD is characterized by the presence of gluten-specific CD4+ T cells in the
lamina propria and by a prominent intraepithelial T-cell infiltration in the epithelial layer
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that promotes the development of small-intestine inflammation [37]. The proportion of γδT
cells was found to slightly increase in CD-L in comparison to M and R. It was previously
shown that γδT cells are elevated in the duodenal epithelium of CD patients in comparison
to controls using flow cytometry [38,39] providing a potential marker in patients where
diagnosis is not straightforward. Further, in CD patients on a gluten-free diet, exposure to
gluten induces the appearance of activated, gut-homing CD8+ and γδT cells in the periph-
eral blood [40]. The proportion of those cells is high in CD-L and CD-H. Infiltration of NK
cells decay in inflamed duodenal tissue of active CD in agreement previous studies [41].

Figure 4. Immune cell infiltration in CD biopsies was estimated using transcriptome deconvolution method [36]. (A) The
method estimates the relative composition of 22 immune cell-types with single-biopsy (left part, biopsies are ranked with
increasing villous atrophy as estimated by means of the GSZ-score of the gene set ‘lower crypt’) and group-wise resolution
(right part). (B) The heatmap clusters immune cells into two major groups with enhanced amounts in CD or non-CD cases.
(C) Group-wise immune cell compositions for all 22 immune cell types overall reflect increasing inflammation in CD, e.g., via
increased amounts of activated CD4 and CD8 T-cells in CD-L and especially CD-H groups while the amount of resting CD4
and NK-cells decays. (D) Villous atrophy profiles of immune cells reveal growing amounts of M0 and M1 macrophages and
decaying amounts of M2 macrophages and of dendritic cells. The samples were sorted with increasing GSZ-score of the gene
set ‘basal crypt’. The cell type compositions according to Cibersort were then fitted using smooth LOESS functions to obtain cell
type compositions as a function of basal crypt transcriptional activity serving as measure of progressing villous atrophy.
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Next, we ask how immune cell composition changes as a function of villi atrophy.
After sorting biopsies with increasing GSZ-expression score of the lower crypt signature
(see Figure 4A, left part, and Figure 2D) we fitted the percentages of selected immune cells
by smooth continuous functions (Figure 4D). While the relative amount of plasma and
B-cells remained relatively constant, we find strong enrichment of CD4 memory cells with
progressive atrophy. Interestingly, the fraction of M0 and M1 macrophages gains while
the amount of M2 macrophages and of dendritic cells decrease. Macrophages are plastic
cells whose phenotype and function are continuously shaped by the surrounding microen-
vironment that can drive them to acquire a pro-inflammatory M1 or anti-inflammatory
M2 phenotype [42]. Our data show that increasing severity of CD has a pro-inflammatory
effect on macrophages driving their differentiation toward the inflammatory M1 phenotype
in correspondence with previous results showing that the coeliac epithelium modulates
macrophages response to gliadin [43]. Overall, these results highlight the importance of the
interaction between immune cells and intestinal microenvironment in CD pathogenesis and
suggests an orchestrated response of multiple players including epithelium, different types
of T-cells, macrophages and of the immune cells which may contribute to the development
and progress of the disease.

2.4. Transcriptome Portraits Dissect the Expression Landscape into Modules of Co-Regulated
Genes Characterizing CD

Self-organizing map (SOM) machine learning was applied to transform the gene ex-
pression data into individual SOM-portraits for each sample. They enable a detailed “per-
sonalized” evaluation of the transcriptome landscapes and the identification of modules of
co-regulated genes appearing as (red or blue) spot-like areas in the portraits (Figure 5A).
One sees that the portraits of the biopsies of the M-group resemble each other independent
of their CD-diagnosis. To obtain representative group-wise expression patterns, we also
generated mean portraits for each group and differential portraits to highlight differential
spot patterns between all combinations of groups (Figure 5A, second row). Overall, five
major clusters of co-expressed genes were identified and labeled with capital letters A
to E. An overview about the transcriptional landscape is provided by the summary map
together with the functional context of the spot-modules (Figure 5B). The CD-H subtype
overexpresses spot-modules D and, specifically, E, which accumulate genes involved in
immune response and cell cycle activity, respectively. The CD-L subtype upregulates
module C, which associates with functions such as DNA binding, DNA repair, apoptosis
and also plasma membrane characteristics including G-protein coupled receptor signaling
(Figures A2 and A5). Both CD subtypes were characterized by the shared activation of
immune response functions (spot D) and an increased proliferation rate, where the CD-L
and CD-H subtypes overexpress genes related to DNA-processing and cell cycle activity,
respectively. The mixed (M) subtype is characterized by TGFbeta-receptor binding and
upregulation of genes associated with repressed chromatin states [44]. They accumulate
in spot-module B, which suggests transcriptional regulation by epigenetic mechanisms.
Overall, this group shows weaker inflammation and immune response especially of the
non-CD cases. The reference group overexpresses spot module A related to healthy colon
functions such as xenobiotic metabolism and transmembrane transport processes as for in-
stance cholesterol efflux. Spot-module A is consistently downregulated in all other groups.
Moreover, the reference group shows low inflammation and cell cycle activities.
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Beyond the major spots A–E we found a few ‘satellite’ spots such as E’ (upregulated
signatures mitochondrion, poly-A-RNA binding), B’ (ribosome, translation) and A’ (upper
crypt) further detailing cellular mechanisms of M and R groups, respectively. The healthy
villi and lower crypt profiles (Figure 2D) closely resemble the profiles of spots A and
E, respectively. Gene maps of signature genes indeed accumulate in the respective spot
areas (Figure A3B). Moreover, we find APOA4, a lipid-processing gene highly expressed in
intestinal villi, in spot A and Ki67 a broadly used cellular proliferation marker expressed in
the intestinal crypts [15,16] in spot E. Previous studies have shown that the expression ratio
APOA4:Ki67 correlates well with the degree of villous atrophy what makes it a molecular
marker for this feature [45,46].

The spot-modules harbor different genes with increased genetic risk for CD [1], which
reflects their transcriptional co-regulation together with other genes (see table in Figure 5B).
The ‘inflammatory’ spot D contains a series of type I and II HLA genes which upregulate
in concert with CD severity, among them HLA-DQA1 involved in gluten recognition and
CD4+ T-cell presentation [47,48]. Spot D also contains the genes IFNG, TNFRSF9 and
TNFSF13B previously suggested as mRNA blood markers of CD [16]. Additionally, a series
of interleukin-coding genes locate in the spot clusters reflecting their strong regulation
between the different samples groups. DUSP10, a CD-associated candidate gene from
genome wide linkage studies involved in proliferation, oxidative stress and innate im-
munity co-regulates with spot B [49]. The proliferative spot E also contains genes coding
ubiquitin-conjugating enzymes [50]. Hence, SOM portrayal enables comparison of samples
and subgroups by simple visual inspection of their expression patterns, which, in turn,
associate with different molecular functions related to CD pathophysiology.

Spot statistics counts frequency of spot detection in the individual portraits (Figure 5B,
part below). The transitory groups M and CD-L show broader distributions compared
with the R and CD-H groups, which reflects more heterogeneous expression patterns. Spot
implication analysis highlight connections between spots, which were frequently observed
together in the same biopsy portraits. This way, different areas of the expression landscape
can be assigned to the different sample groups according to spot activation as indicated in
the summary map (Figure 5B). Taken together, the gene expression patterns of the about
47,000 transcripts per sample were visualized in terms of “personalized” transcriptomic
portraits which, provide a transcriptome landscape of CD-biopsies from the duodenum.
It reveals different modules of co-expressed genes up- or down-regulated in the different
sample groups together with their functional context.
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Figure 5. SOM portraying of the expression landscape of CD. (A) Individual expression portrays of patients P1–P46, mean
group portraits and difference portraits indicate characteristic spot patterns reflecting modules of co-regulated genes.
Group specific overexpression spots (red) are indicated by red dashed circles. The portraits are color coded between red
(maximum) and blus (minimum) expression. The difference portraits between the groups reveal progressive overexpression
of the spots in the left upper corner with increasing CD-severity. Non-CD patients (P19–P22, where diagnosis of P20 is
unclear) in the mixed group are indicated by the blue frame. Maroon-to-blue colors in the portraits indicate high-to-low
expression levels of the genes located in the respective areas of the images. The overexpression summary map shows five
major (labels A–E) spots observed in the sample portraits. Spot statistics describe the spot number distribution of each
group and the mutual appearance of spots. CD-H expression portraits show typically only one spot while the broad spot
distribution of CD-L reflects a more heterogeneous expression landscape. Additional spots A’ and B’ are found primarily
in non-CD specimen of group M (see text). (B) Expression profiles of the spots, their functional context, associated risk
factor [1] and CD-specific [51] genes characterize the expression modules. Full lists of genes in the spots are provided in the
Supplementary Material, Table S1.

2.5. Expression Signatures and Markers of Coeliac Disease

Two, out of the four sample groups refer exclusively to CD-patients (CD-L and CD-H)
and one divides roughly fifty-fifty into CD and non-CD cases (group M, Table 1). Next,
we ask about potential expression markers distinguishing between CD- and non-CD-
cases independent of their group membership. First we discovered previous prognostic
signatures of CD [51], Crohn’s disease [52] and of Ulcerative Colitis [27] in terms of their
expression profiles and gene maps (Figure 6A). The genes of the UP (upregulated in CD)
and DN (downregulated in CD) sets accumulate in or near spots D/E in the left upper
corner and in or near spot A in the right lower corner of the map, respectively (red circles in
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Figure 6A). The set-profiles resemble the respective spot profiles (compare with Figure 5B)
and also that of the functional sets ‘interferon gamma response’ and ‘innate immunity’
(Figure 6A). Receiver operating characteristics (ROC) illustrate their diagnostic capability.
For the functional sets they provide area-under-the-curve (AUC)-values of 0.97 and 0.94,
respectively, meaning that the CD cases can be well distinguished from non-CD cases based
on pre-defined functional gene signatures. Production of pro-inflammatory cytokines, such
as interferon gamma (IFNγ) is known as a hallmark of CD [43] transcripts of which appear
in marked amounts not only in CD-H but also in CD-L and in the CD cases of the M-group.
Additionally, some of the HLA genes are located in spot D (Figure 5B) which separate most
CD from non-CD cases (Figure 1C).

Figure 6. Prognostic expression signatures: (A) Expression profiles (mean log-expression of all genes as a function of
biopsies) and gene maps (genes of the set were shown as dots in the SOM) of prognostic signatures for Crohns disease [52],
Coeliac disease [51] and of Reactome sets ‘Interferon Gamma signaling’ and ‘Innate immunity’. Genes of the UP (upregulated
in CD) and DN (downregulated in CD) sets accumulate in opposite corners of the map (red dashed circles), respectively.
ROC-curves of the reactome sets provide AUC values for classifying CD-versus-non CD cases of 0.97 and 0.94, respectively.
The AUC prognostic maps in the part below are SOM landscapes where each pixel (metagene) is colored according to the
AUC-value of the genes included for classifying CD-versus non-CD cases. CD_UP genes in the left upper corner provide
perfect classification (AUC = 1) while CD_DN gives AUC = 0.96, which refers to misclassification of 4 biopsies. The boxplot
compares expression of the CD_UP genes for CD and non-CD cases. (B) The Volcano plot identifies top-differentially
expressed genes and their functional context. (C) miRNA and of long noncoding RNA are mapped into SOM. While
miRNA accumulate in the spot areas of highly variant expression lncRNA deplete (red dashed frames). The correlation map
indicates negative (red lines) and positive correlations between genes located in different areas of the map. The expression
of highly variant genes located in opposite corners of the map anti-correlate as a rule of thumb while genes located along
the upper and lower edge of the map mainly correlate.

For a closer view onto the expression landscape, we generated so-called AUC-maps by
calculating ROC-curves for each pixel/metagene of the SOM and colored them according
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to the obtained AUC value (Figure 6A, part below). Two separate maps were obtained by
processing either CD_UP (genes upregulated in CD) or CD_DN (genes downregulated in
CD) profiles. We found maximum AUC values for CD_UP and CD_DN profiles in areas in
the left upper and right lower corner of the map, respectively, as expected. The AUCs are
slightly asymmetrical enabling ‘perfect’ discrimination (AUC = 1) for CD_UP and slightly
worse classification (AUC = 0.96) for CD_DN, meaning that activated genes slightly better
classify CD than deactivated ones. Note also, that also that no of the CD_UP genes alone
classifies perfectly (AUC = 0.95–0.98) as their mean metagene value does (AUC = 1) owing
to noise compensation.

Genes from metagenes with maximum AUC values were further processed using
differential expression analysis (t-test) and Volcano plot visualization (Figure 6B). Top
upregulated genes refer to functions cell division (KNTC1), inflammation (MICB, CCL23),
signal transduction and membrane channels (CLIC6, PLSCR1, PTPR) and hexokinases (HK1
and HK2) while top downregulated assign to copper uptake (SLC31A2), vitamin B12 (TCN2)
and lipid metabolism (CROT) and signal transduction (EFNA1) in agreement with the gene
set analysis presented above. In summary, biopsies from patients with diagnosed CD can
be separated from non-CD patients with high predictive power based on expression data
of groups of genes and of single genes as well. IFN-gamma signaling is one characteristics
of CD compared with disease controls.

2.6. Noncoding RNAs and Epigenetics

Epigenetics comprises three main factors, DNA methylation, chromatin organization
governed by histones and a large battery of enzymes and non-coding RNAs (ncRNAs),
which all together have important regulatory functions in gene expression. Generally,
ncRNAs regulate gene expression at the transcriptional and post-transcriptional levels.
The transcriptomes studied comprise protein coding mRNA and also non-coding RNA
such as miRNA (miRs) and long noncoding intergenic RNA (LINs). The 360 MIRs and
180 LINs available on the microarrays used in this study were mapped into the SOM
in order to evaluate their co-expression patterns (Figure 6C). The miRs accumulate in
distinct spot areas (spots D, E, E’, B’ and A’, see red frames in Figure 6C) which represent
clusters of co-expressed mRNA in first instance. miRs are short (17–25 nucleotides), single
stranded, highly conserved RNAs that regulate gene expression mostly by inhibiting
mRNA translation or by degrading mRNA via specific, sequence-mediated binding [53].
Such repressive interactions between miRs and their mRNA targets imply anti-correlated
expression profiles, which appear in the SOM predominantly between transcripts located
in opposite corners of the map (see the correlation map in Figure 6C) [54]. Anti-correlative
relations suggest that, e.g., miRs located in spots D, E and E’ potentially repress certain
mRNA located in or near spots A and A’ and vice versa. Under functional aspects this
means that miRs in the former spots are potential repressors of functions associated with
the latter spots and vice versa. Previous studies suggested miRs as an importing regulatory
layer in CD especially affecting functions such as proliferation, WnT-signaling and cell
differentiation associating with spots E, E’ and A, A’, respectively ([55] and references cited
therein). miRs found in these spot areas were listed in Table A1 (full lists of ncRNAs in the
spots are given in the Supplementary Material, Table S2.).

Surprisingly, the LINs deplete in the spot areas of the SOM. This contrasting distri-
bution compared with that of the miRs (and mRNA) reflects a smaller variance (in units
of microarray signal intensities), which prevents localization of the LINs in the highly
variant spot areas (see the variance map in Figure 6C). The reason for this difference is not
clear. LncRNAs are transcribed from all over the genome acting often as co-factors forming
complexes with chromatin modifying proteins and recruiting them to specific sites in the
genome, thereby modifying chromatin states and influencing gene expression [56]. Hence,
one possible interpretation of the asymmetry between miRs and LINs could be that LINs
predominantly act as mediators for subtle adjustments of the transcription under control
of epigenetic mechanisms where small changes of abundance can have large effects on
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mRNA expression. In contrast, miRs act more directly as co-factors mRNA translation and
degradation, which requires higher abundances roughly equal to that of mRNA giving rise
to higher variability of miR expression.

Gene sets referring to these two different modes of gene regulation, i.e., which more
directly or more indirectly affect transcription (high- and low-expression TFs, [44,57]) show
a similar mutual accumulation-depletion dualism in the areas of spot upregulated in CD
(Figure A5) as the miRs and LINs. Moreover, genes related to low expression TFs are
activated in the R-group while high expression TFs refer more to CD-H biopsies which
suggests switching of genomic regulation from a more epigenetically driven towards a
TF-driven regime (see also [57]). This interpretation is further supported by the expression
of PRC2-targets and H3K27me3-repressed genes in the R-group, which reflects epigenetic
mechanisms via histone modifications and DNA-methylation, while high proliferative
activity associates with the TF-related regime (Figure A5). We also compared the expression
levels of more than 50 epigenetic modifiers (genes coding enzymes which write, read or
erase histone modifications and/or DNA methylation marks, see [58] for an overview) be-
tween the biopsy groups and found considerable deregulation of the epigenetic machinery
in CD compared with the disease controls (Figure A7) presumably affecting chromatin
organization and predicting widespread alterations of DNA methylation in CD. In sup-
port of this expectation we found that CIMP (CpG island methylator phenotype) genes,
which are prone to promoter hypermethylation in colon cancer subtypes [27,59] accumu-
late in and around spot D (Figure A5), which suggests their demethylation in CD due
to anticorrelation between promoter methylation and expression of CIMP genes [27], in
partial agreement with DNA-methylation studies on CD biopsies [60]. In summary, miRs
form a strong regulatory layer associating with highly variant mRNA expression modes
in contrast to LINs showing smaller expression changes between the biopsies, possibly
because of their role in more subtle epigenetic modes of transcriptional regulation. Massive
expression changes of the machinery of chromatin modifiers implies that CD is paralleled
by chromatin remodeling and DNA-methylation changes.

2.7. Browsing the Transcriptome of Coeliac Biopsies

For more detailed interactive discovery of the dataset presented in this publication we
offer the oposSOM-browser platform (https://apps.health-atlas.de/opossom-browser/
?dataset=10 (accessed on 3 March 2021)) [61]. It consists of an overview window and
six ‘sub-’browser functions. The “gene-” and “function-” browsers enable to select single
genes and functional gene sets to display their profiles and gene localization in the SOM
landscape. The “signature” browser shows the same features for single genes or lists of
genes, and, in addition, their classification quality for selected sample strata in terms of
ROC-curve and AUC-value. As an example one finds for the gene IFNG perfect separation
between CD and non-CD cases (AUC = 1), nearly as good separation for ImA-EmA positive
and negative cases (AUC = 0.95) but no differentiation between male and female patients
(AUC = 0.41) as expected. The “spot-” browser allows to discover different segmentations
of the SOM into spot modules of co-regulated genes to list the genes included, their
functional context and the sample groups where they are activated (Figure 7A). The spot
browser also shows age- and sex-maps displaying associations between age or sex with
gene expression levels in the map. For example, the age-map reveals higher prevalence of
spot D and E (up in CD-H) in younger patients compared with the R-group (Figure 7A).
The “pathway-” browser enables us to select one of 55 KEGG-pathways and to visualize its
gene-activation in each of the biopsy groups as estimated using the pathway signal flow
algorithm [62]. For example, the NFκB signaling pathway reveals marked activation in
CD-H compared with the reference group (Figure 7B, see also Figure A8 for the NOTCH
pathway). The “phenotype-” browser allows selection of different biopsy characteristics
such as CD-diagnosis, sample group or IgA-EmA status to inspect the respective sample
similar network and group-averaged SOM-portraits (Figure 7C). One sees, for example,
that CD-diagnosis and IgA-EmA status give rise to nearly identical group portraits (see also
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Figure 1A), while with increasing age CD-related expression in younger patients increases.
Hence, the browser-functionality enables interested scientists to discover details of the
data with higher resolution and/or under special perspectives not explicitly addressed in
this publication.

Figure 7. The interactive data-browser enables detailed study of different aspects of the CD-transcriptome dataset [61]
(https://www.izbi.uni-leipzig.de/opossom-browser/?dataset=10 (accessed on 3 March 2021)). (A) The map browser
(shown as screenshot) provides feature (genes, gene sets) lists and profiles of selected spot-areas of the SOM. The age
phenotype map colors metagene expression as a function of the underlying patients’ age. Blue indicates younger and
maroon elderly patients. (B) The pathway browser provides activity patterns for each of the biopsy groups. The screenshot
shows the NFκB pathway for CD-H and R groups. (C) The phenotype browser visualized the sample similarity net and
mean SOM-portraits according to different stratification criteria.

https://www.izbi.uni-leipzig.de/opossom-browser/?dataset=10
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3. Discussion

We find considerable heterogeneity of the transcriptomes obtained from biopsies of
the duodenum, which were collected from 24 young (age 3–18 years) CD patients, from
21 non-CD patients with different gastrointestinal complaints serving as disease controls,
and one 10 years old male patient with unclear diagnosis. Their whole transcriptome
expression landscapes were stratified into four groups using unsupervised clustering,
namely a reference group (no CD cases), a mixed group (about 50% CD) and two groups
comprising only CD cases assigned as CD-L (low) and CD-H (high). An important factor
of variation between the groups associates with the relative amounts of lower crypt and
consistent villous (upper crypt) epithelial tissue in the biopsies, each having its specific
transcriptomic characteristics dominated by signatures reflecting either high levels of cell
proliferation or digestive (e.g., lipid and xenobiotic metabolism) functions (see Figure 8 for
illustration). In agreement with previous studies [11–16], we find the progressive increase
in lower crypt and the decrease in upper crypt characteristics in direction from R, via M
towards CD-L and CD-H groups as an indication of villous atrophy and crypt hyperplasia
representing a measure of CD severity. Moreover, the pro-inflammatory character of CD is
demonstrated by increasing gene expression of a large battery of inflammation signatures
along this severity axis in correspondence with standard serum markers, which were
measured independently.

Figure 8. Transcriptomic heterogeneity of coeliac biopsies from the duodenum. See text.

Some of these signatures alter rather smoothly in this way, forming a continuum of ac-
tivated states (e.g., xenobiotic metabolism), while others change more discontinuously with
clear-cut borderlines between the biopsy groups. For example, proliferative characteristics
(e.g., cell cycle activity) markedly increase in CD-H in comparison with CD-L possibly as
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an indication of virtually complete villous atrophy, giving rise to the drop of upper crypt
and, in parallel, the steep increase in the lower crypt proliferative expression signature.
On the other hand, both ‘intermediate’ groups show specific signatures in addition to
the intermediate levels of inflammation and villous atrophy observed in these groups.
Particularly, group M is characterized by the upregulation of mitochondrial and ribosomal
transcriptional programs possibly in response to unspecific gastrointestinal complaints.
Group CD-L, on the other hand, specifically activates gene signatures of the healthy duode-
num [35] and of the lymphatic system [24] possibly reflecting contaminations of lamina
propria, vascular and other tissues in the biopsies (Figure A3B).

We found that about 50% of all miRNA expression values available in the transcrip-
tome are highly variant between the groups thus providing an interesting reservoir of
potential markers for the different biopsy groups. For the expression levels of long non-
coding intergenic RNA we found a completely different, less-variant picture, possibly
because LINs predominantly fulfill functions in epigenetic regulation of transcription
governed by low-expression transcription factors, in contrast to miRNA which regulates
post-transcriptional mRNA levels via direct binding. Further studies are required to better
understand this asymmetry of transcriptional variation and also to specify mRNA targets
of the miRNA identified here. Note that the microarrays used focus on mRNA while only
a selection of non-coding RNA is available for analysis. We found indications of epigenetic
mechanisms accompanying pathogenesis of CD such as transcriptional de-regulation of a
large battery of epigenetic modifiers and expression changes of genes prone to methylation
in the diseased colon.

Immune cell compositions in the biopsies were deduced by cell type deconvolution
of transcriptome data using “Cibersort” [36]. Currently, this is the first report defining
leukocytes by mRNA expression in biopsies of CD patients without previous cell sorting.
We find increasing amounts of pro-inflammatory T-cells in CD-L and CD-H biopsies paral-
leled by macrophage polarization from M0 and M2 into the inflammatory M1 phenotype.
Some immune cells, such as γδ T-cells, activated mast and dendritic cells (Figure 4B), show
slightly elevated levels in CD-L, which supports the hypothesis that the tissue composition
of this group differs from CD-H. Recent single cell transcriptomic studies reported dra-
matic changes of the immune cell landscape in the CD lesions, where especially T-cells are
transcriptionally different from their control counterparts [63]. In consequence, reference
signatures used for immune cell deconvolution only approximately reflect the true cell type
composition and must be confirmed experimentally, e.g., by single cell transcriptomics, or
improved deconvolution methods.

Thus, CD-biopsies reveal considerable heterogeneity due to different levels of villous
atrophy and crypt dysplasia, inflammation and immune response including immune
cell infiltration and presumably varying amounts of epithelial and lamina propria tissue.
Despite this heterogeneity we find signatures (e.g., interferon gamma signaling) and
single mRNA markers (e.g., IFNG gene) which reliably distinguish CD from non-CD
cases independent of their biopsy-group membership. Larger cohorts and long-term
longitudinal clinical data about treatment, diet, lifestyle, and well-being are necessary
to increase the robustness of these markers for CD-diagnosis. Otherwise, application of
identified CD-specific transcriptional signatures allows clear assignment even of the patient
with unclear diagnosis to the group of CD patients. In our study, clinical diagnosis of CD
for the unclear patient was not made during the ABCD study period despite noticeable
antibody constellation, an HLA-DQ8 haplotype, and severe symptoms. Of 929 patients
recruited in the ABCD study [64], 29 (2.5%) obtained no final diagnosis. This underlines the
requirement of further improved diagnostic tools. Combining single highly specific mRNA
markers for villous atrophy and crypt dysplasia, as well as inflammation or infiltrating
immune cells might be a possible approach to close the diagnostic gap.

From a methodical perspective, we, for the first time, applied SOM machine learning
to this disease. This method delivers “personalized” transcriptome portraits for each of the
biopsy specimens enabling direct comparison and feature extraction by visual perception.
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Our interactive SOM browser complements analyses presented in this publication by a
series of functionalities, which can be selected by interested scientists, e.g., to display
expression profiles of single genes, to evaluate their discriminative power for classifying
different sample strata or to inspect gene activation patterns of a series of pathways.

A limitation of this study is that biopsies were collected in two children’s hospitals by
two different gastroenterologists, respectively. We found that the proportions of patients
recruited in one children’s hospital differed strikingly in Group CD-L and CD-H (45% vs.
25%). Divergent procedures concerning the collection of biopsies during upper gastroin-
testinal endoscopy may result in different transcriptional landscapes of the duodenal tissue
biopsies. In addition, biopsy quality (in terms of villus structures, exclusion of samples
with lymphoid follicles or Brunner’s glands) was not monitored in all cases prior to freez-
ing. Patchiness of inflammation has been reported in biopsy samples of coeliac disease.
Presumably, transcriptional analysis reflects this to a certain degree. Since the routine
biopsies used for the Marsh classification and those used for transcriptional analysis are
different by nature of the analysis, variation between both types cannot be excluded. On
the other hand, the independent type of sampling and the mostly consistent assignment of
biopsies mutually supports diagnosis.

4. Materials and Methods
4.1. Study Design and Patients

Patients were recruited as part of the ABCD (Antibody diagnostics in pediatric Coeliac
Disease) study in two children hospitals in Leipzig (Saxonia, Germany). The trial was
registered in the German Clinical Trials Register (DRKS00003854). The study protocol,
patient information sheets, and informed-consent forms were approved by each site’s ethics
committee. Patients aged between 5 months and 18 years were scheduled for duodenal
biopsy with primary aim to confirm or refuse coeliac disease. Patients were only included if
they had not already been diagnosed with coeliac disease, if they were not on a gluten-free
diet (GFD), and if they had not received immunosuppressive therapy within the last eight
weeks. For a detailed description of the study design, see [64]. Overall, the ABCD subproject
included 46 children and adolescents of whom 24 patients were finally diagnosed with CD
(including 5 patients with type 1 diabetes), 21 patients were considered as control patients
with different gastrointestinal complaints and one case was not clear (Table 1).

4.2. RNA Extraction and Microarray Measurements

For study purpose, one biopsy (15–20 mg) was taken from the descending duodenum
of each patient. Fresh tissue samples were snap frozen and stored in liquid nitrogen
until preparation. Frozen biopsies were disrupted and homogenized by TissueLyzer from
Quiagen (Hilden, Germany). Total RNA was isolated using AllPrep® DNA/RNA Micro
kit (QIAGEN, Hilden, Germany) and stored at −70 ◦C.

Before microarray analysis RNA integrity and concentration was examined on an
Agilent 2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA, USA) using the RNA
6.000 LabChip Kit (Agilent Technologies) according to manufacturer’s instructions. Then,
250 ng RNA per sample was ethanol precipitated with GlycoBlue (Invitrogen) as carrier
and dissolved at a concentration of 100–150 ng/µL prior to probe synthesis using the
TargetAmp™- Nano Labeling Kit for Illumina Expression BeadChip (Epicentre Biotech-
nologies, Madison, WI, USA). From each probe, 750 ng of cRNA were hybridized to
Human HT-12 v4 Expression BeadChips (Illumina, San Diego, CA, USA) and scanned on
the Illumina HiScan instrument according to the manufacturer’s specifications.

4.3. Antibody Assays and HLA-Typing

Blood samples were collected around the time of the diagnostic duodenal biopsies
and used for HLA-typing. IgA-antibodies against tissue transglutaminase (IgA-TTG),
IgG-antibodies against deamidated gliadin peptides (IgG-DGP) and IgA-endomysium
antibodies (IgA-EmA) were measured in sera with test kits from EUROIMMUN (Luebeck,
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Germany; cut-offs ≥20 U/mL, ≥25 U/mL, ≥1:10, respectively). If antibody concentrations
were above the measurement range, sera were serially diluted and values corrected by the
dilution factor. For HLA-typing, genomic DNA was isolated by QIAamp® DSP DNA Blood
Mini Kit (QIAGEN, Hilden, Germany). HLA-DQ2.2, -DQ2.5 and -DQ8 was determined
applying the EUROArray HLA-DQ2/DQ8 kit (EUROIMMUN, Luebeck, Germany).

4.4. Expression Analysis and SOM Portrayal

Raw probe data were quantile normalized, centralized, and then clustered using
self-organizing map (SOM) machine learning utilizing the oposSOM package [65]. This
method translates the gene expression values of over 47,000 transcripts into 2500 meta-gene
expression values. They were visualized in terms of two-dimensional 50 × 50 mosaic
images of each sample using a maroon-to-blue color code for high-to-low meta-gene
expression values, respectively. Size and topology of the SOM-portraits were chosen to
allow robust identification of expression-modules, called ‘spots’, representing clusters of
co-expressed meta-genes in the samples studied [66]. Mean group SOM portraits were
calculated by averaging the meta-gene expression values of all cases of the respective
group. Difference portraits between groups were calculated as the differences between the
meta-gene values of the respective mean group portraits.

4.5. Identification of Transcriptional Subclasses

Sample diversity analysis and class discovery were performed as described previ-
ously [67]. It includes so-called sample-SOM, which visualizes similarity relations between
the samples instead of similarity relations between gene-profiles. Subclasses of samples
were obtained by hierarchical clustering in Euclidian distance space between the meta-
genes state of different samples in combination with silhouette score verification [68]. The
silhouette score is defined as the difference between the intra-class and the best inter-class
similarity of each sample using Pearson’s correlation coefficient between their meta-gene
expression landscapes as measure [68]. The silhouette score is positive for samples which
fit well into the cluster chosen, whereas the score is negative for samples which better fit to
other clusters.

4.6. Functional Analysis

For functional interpretation of the expression-modules, we applied gene set analysis
using the gene set Z-score (GSZ) which estimates the activity of a gene set in each sam-
ple [69]. Enrichment of gene sets in the modules was calculated applying Fisher’s exact
test. We considered gene sets related to biological processes (BP) of the gene ontology
(GO) classification, standard literature sets [29], and also literature sets curated by us. To
estimate pathway activity, we used pathway signal flow (PSF) analysis as implemented in
oposSOM [62]. PSF estimates the signal flow propagation based on gene expression data
and the pathway topology. Immune cell deconvolution was performed by means of Ciber-
sort [36]. It provides the relative amount of 22 immune cell types based on transcriptomic
data in each of the biopsies.

4.7. OposSOM Browser

The results of transcriptome analyses presented in this publication can be interactively
discovered regarding further details using the oposSOM browser [61] available on the
Internet under https://apps.health-atlas.de/opossom-browser/?dataset=10 (accessed on
3 March 2021). Functionalities include browsing (i) single gene profiles across the biopsy
samples and the expression landscape, (ii) gene set profiles, (iii) different types of expression
and phenotype maps, (iv) sample and subtype diversity, (v) marker signatures, and (vi)
KEGG-pathway activation in the different groups.

Supplementary Materials: The following are available online at https://www.mdpi.com/1422-006
7/22/5/2551/s1, Table S1: List of genes included in the spots of co-expressed genes; Table S2: Lists
of ncRNA included in the spots.
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Appendix A

Additional expression characteristics.

Figure A1. Independent component analysis (ICA) plot of biopsy groups. Component 1 distinguishes
virtually the CD-H and R groups while component distinguishes mainly CD-L and M groups. ICA is
implemented in oposSOM. Sample SOM plot combines component 1 to component 3 features.
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Figure A2. Gene set expression signatures of the gene ontology categories GO (gene ontology) (A) CC
(cellular complement) and (B) GO MF (molecular function) complement functional characterization
of CD-types (Figure 2). Expression profiles and gene maps of selected gene sets are shown in the
right part. Accumulation of genes in and around spot D associates with high expression in group
CD-H (e.g., sets extracellular matrix and collagen trimer). Accumulation in/around spots E’ and B’
increased expression in group M and decays it in CD-L (sets mitochondrion and ribosome) while spot
C associates with an antagonistic patterns (set plasma membrane). Gene sets were taken from [29]
and implemented in oposSOM [65].
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Figure A3. Gene set expression signatures of (A), the category hallmarks of cancer (HM, [70]), which reflect general disease-
related functionalities activated either in groups R and M (blue background) or CD-L and/or CD-H (red background).
Inspection of profiles and spot enrichment of selected gene sets reveals differences between spot D and E: In the former case
(set IFN gamma response) one finds activation of CD-cases in groups M, CH-L and CH-H while in the latter case (set G2M
checkpoint) only samples from CD-H show activated expression. (B) Gene sets taken from colon and lymphoma studies
reveal characteristics of colon tissue specimen. Signature genes of the upper and lower crypt [32] accumulate in/near
spot A/A’ and E (also reflecting high cell cycle activity), respectively. Colonic inflammation (derived from Ulcerative
Colitis versus not-inflamed colon) activates genes in/near spot D and preferentially in CD-L and CD-H samples [27,28].
Interestingly, expression signatures from the healthy colon [35] partly show specific activation in CD-L and deactivation
in M-samples. A similar profile is obtained from B-cell lymphoma specimen characterizing a weakly cancerogenic B-
cell phenotype presumably due to contaminations of lymph-vessel tissue in the lymph node biopsies [24]. The specific
upregulation of the signature KEGG vascular smooth muscle together with the other signatures let us conclude that CD-L
biopsies are contaminated by tissue components such as lymph-vessels of lamina propria and eventually mucosa muscularis
and submucosal components also present in the colon.
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Figure A4. Heatmap of CD-expression signatures taken from previous publications. The signatures were developed for
Marsh-score discrimination [13], to characterize villous atrophy [14], epithelial destruction [17], upregulation of immunity
via the NFκB pathway [18] and of genes mutated in CD [21]. Overall we observed marked expression differences of cases
with diagnosed CD especially in our CD-L and –H groups on one hand and the cases without diagnosed CD on the other
hand where most signatures show increasing expression with CD severity (red marked) while one shows the opposite trend
(blue background) due to the different selection of genes. Overall, the mapping of literature signatures to our data confirms
mutual correspondence.

Figure A5. Heatmap of gene expression signatures which associate with transcription factor (TF)-activity and chromatin
state [44], type of the epithelial-mesenchymal transition [34], different cellular programs [71] and colonic inflammation [27,28].
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Selected signatures were characterized by profiles and gene maps. Gene signature characterizing type 2. epithelial-mesenchymal
transition (type 2 EMT) associate with chronically inflamed tissue [34]. Indeed, we find high activity of the type 2 EMT signature
in the CD-H subgroup, which associates with inflammation and possibly leads to fibrosis. The high/low expression TF
signatures refer to two different modes of genomic regulation which are governed either by TF-binding/debinding in regions
of open, actively transcribed chromatin or by epigenetic mechanisms which act via chromatin re-modelling, DNA-methylation
and/or histone modifications. Genes related to low expression TFs are activated in the R-group while high expression TFs refer
more to CD-H biopsies which suggests a switching of genomic regulation from a more epigenetically driven towards a TF-driven
regime (see also [57]). This interpretation is further supported by the expression of PRC2-targets and H3K27me3-repressed
genes in the R-group, which reflects epigenetic mechanisms, while high proliferative activity associates with the TF-related
regime. Note that expression of cancer-related DNA-methylation CIMP (CpG island methylation phenotype)-signatures suggest
loss of DNA-methylation in CD. Affected genes depend to a high degree on the tissue type and thus they presumably apply
also to non-neoplastic colonic tissues. Note also that high-TF genes accumulate in regions of spots upregulated in CD-cases,
which is not observed for low-TF genes

Figure A6. KEGG-pathway activation in the different CD-groups was estimated using pathway-signal-flow (PSF) method [62].
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Figure A7. Expression heatmap of chromatin modifying enzymes in the four biopsy groups: The gene expression data
of methyltransferases (MTs) and demethylases (DMs) of DNA cytosines, histone lysine (H3K) and arginine (H3R) side
chains (see the vertical color bar at the left edge of the heatmap) split into several clusters due to concerted activation and
de-activation patterns in the different groups. Clusters upregulated in CD-H and/or CD-L are indicated in brown/dark
brown and clusters upregulated in the R-group in blue. Selected expression profiles were shown with single-sample
resolution in the right part.
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Figure A8. Pathway activation patterns of the NOTCH pathway in the different CD-groups. In healthy tissue, genes for
transmembrane receptor protein Notch 1, 2 and 3 are highly expressed at the basal crypts of morphologically normal
colon mucosae [32]. NOTCH1 interacts with the Wnt-pathway and activates cell proliferation. We find elevated mRNA
expression of NOTCH1 in subgroups CD-H and CD-L (FC 1.38, p < 0.01) compared to Reference samples. Interestingly,
the activation patterns of the NOTCH-pathway varies in a group-specific fashion. The genes PSENEN, PSEN1 and AP1A
activate specifically in CD-H (and to a less degree in M) while DTX2, RBPJL and PRCRA were found activated in CD-L.

Table A1. miRNA (miRNA) and long intergenic RNA (LIN) located in different spots of the SOM.(a).

Spot miRNA LIN

A miR-34AHG, -555, -4260, -7114, -6778, -4469,
-22, -6084, -37146125, -1248

LINC00324
LINC00479 down in CD

A’
miR-614, -6887, -6778, -6887, -6872, -6791,

-6778, -1199, -7846, -4651, -6729, -4640, -6787,
-6836, -4329, -6734, -6721, -4687, -6833

LINC-PINT
LINC01547
LINC00319
LINC00909
LINC00852

down in CD

D miR-4435-2HG, -3606, -198, -5195, -1287, -4649,
-5047, -1182, -568, -4720, -7704 Up in CD

E miR-6732, -7108, -3917, -147B, -25, -664B,
-4722, -147B, -636, -7107 Up in CD

(a) miRNAs in spots A and A’ are assumed to repress mRNA and associated functions in spots D and E while
miRNA in spots D and E are assumed target mRNA in spots A and A’. In other words, miRNA in spots D and E
potentially facilitates development of CD while miRNA in A and A’ acts in the opposite direction.
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