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Summary

Interferon a (IFN-a) induces significant antiretroviral activities that affect the ability of human
immunodeficiency virus (HIV) to infect and replicate in its principal target cells, CD4+ T cells
and macrophages. A major endogenous source of IFN-a during any infection is the macrophage.
Thus, macrophages have the potential to produce both IFN-a and HIV In this study, we examined
the production of IFN-a and other cytokines by macrophage colony-stimulating factor (M-CSF)-
treated cultured monorytes during HIV infection . Tumor necrosis factor a (TNF-a), interleukin
1(3 (11,10), IIT6, IFN-w, or IFN-(3 were not detected nor was the mRNA expressed in either
uninfected or HIVinfected monorytes. However, both uninfected and HIVinfected monorytes
produced high levels of each of these cytokines after treatment with synthetic double-stranded
RNA [poly(I)-poly(C)] . Uninfected monorytes also produced high levels ofIFN-a after treatment
with poly(I)-poly(C), Newcastle disease virus, or herpes simplex virus . In marked contrast to
the preceding observations, HIVinfected monorytes produced little or no IFN-a before or after
treatment with any of these agents . The absence of detectable IFN-a activity and mRNA in
poly(I).poly(C)-treated HIV-infected monorytes was coincident with high levels of 2',5'
oligoadenylate synthetase and complete ablation of HIV gene expression . The antiviral activity
induced by poly(I)-poly(C) may be a direct effect of this synthetic doubled-stranded RNA or
secondary to the low levels of IFN-J3 and IFN-w produced by infected cells. The markedly diminished
capacity of HIV-infected monorytes to produce IFN-oc may reflect a specific adaptive mechanism
ofvirus to alter basic microbicidal functions of this cell . The inevitable result of this HIV-induced
cytokine dysregulation is virus replication and persistence in mononuclear phagocytes.

Macrophages play a central role in maintenance of the
steady state, in body defense against infectious or neo-

plastic challenge, and in control of inflammation largely
through the secretion of soluble factors or cytokines (1, 2) .
Paradoxically, these scavenger cells also represent a major cel-
lular reservoir for many microbial pathogens, including HIV
(3) . The HIV-infected macrophage continuously produces
progeny virus through both subclinical infection and overt
disease, often in the face of a vigorous, virus-induced, host im-
mune response. There is strong evidence that resident tissue
macrophages of the central nervous system (4-6), lung (7),
lymph nodes (8), and blood monorytes (9-11) each harbor
HIV, and support its replication . How HIV infects macro-
phages and contributes to clinical disease is mediated in part
by the complex interactions between the mononuclear phago-
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cyte of each tissue and the other cell types which result in
the production of injurious secretory products or cytokines .
114, TNF-a, and 11,6 have each been implicated in the patho-
genesis of disease symptoms during HIV infection (12) . HIV
can also directly induce cell dysfunction and alter host im-
mune responses to affect the virus-target cell interaction and
disease pathogenesis (13-15) .
The mechanisms for persistence by HIV in mononuclear

phagocytes, cells whose prime function evoked for destruc-
tion of foreign pathogens, are poorly understood . One pos-
sibility involves the dysregulation of normal cell differentia-
tion and microbicidal function induced by virus . Many of
these macrophage functions are mediated by autocrine and
paracrine cytokines . One such cytokine, IFN-a, is particu-
larly important as it is involved in both cell differentiation
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and in defense against viral and nonviral infectious pathogens.
Indeed, IFN-a can significantly suppress or prevent the repli-
cation of many animal lentiviruses including HIV (16) . In
a recent placebo-controlled clinical trial, IFN-a showed
signficant antiviral activity in HIVinfected patients treated
early in the course of disease (17) . The replication of visna-
maedi virus in sheep macrophages is also restricted in vivo
by IFN (18) . Restricted lentivirus replication induced by IFN
in macrophages and/or CD4' lymphocytes is a consequence
of specific and selective transcriptional blocks in expression
ofviral genes and also interference with the mechanisms for
viral assembly and maturation during the virus life cycle
(19-21) . Characterization of IFN regulation in the HIV
infected macrophagesmay permit insight into the virus-host
cell adaptive mechanisms that result in HIV survival and per-
sistent replication in cells of macrophage lineage.

Materials and Methods
Isolation and Culture ofMonocyte Target Cells.

	

Monocytes were
recovered from PBMC of HIV and hepatitis B-seronegative donors
after leukapheresis and purified by countercurrent centrifugal elutri-
ation of mononuclear leukocyte-rich fractions of blood cells . Cell
suspensions were >98% monocytes by criteria of cell morphology
on Wright-stained cytosmears, by granular peroxidase, and by
nonspecific esterase . Monocytes were cultured as adherent cell
monolayers (7 .5 x 105 cells/24 mm plastic culture well) in 0.5 ml
DMEM (formula 78-176AJ ; Gibco Laboratories, Grand Island, NY)
with 10% heat-inactivated A+ human serum, 50 wg/ml gentamicin,
and 1,000 U/ml highly purified (<0.01 ng/ml endotoxin) recom-
binant human macrophage CSF (M-CSF)' (FAP-809, a generous
gift from the Cetus Corp., Emeryville, CA) (22) . All culture re-
agents were screened and found negative for endotoxin contami-
nation .
HIV Infection of Monocyte Targets.

	

M-CSF-treated monorytes
were exposed at a multiplicity of infection (MOI) of 0.01 infec-
tious virus/target cell to the ADA HIV strain originally isolated
and passaged in monocytes (22) . HTLVIIIB/H9 (contributed by
Dr. R. Gallo) was obtained from the AIDS Research and Refer-
ence Reagent Program, AIDS Progam, National Institute of Al-
lergy and Infectious Diseases, National Institutes of Health,
Bethesda, MD). All viral stocks were tested and found free of
mycoplasma contamination (Gen-probe II ; Gen-probe Inc., San
Diego, CA). M-CSF-treated monorytes were cultured as adherent
monolayers 7-10 d before use as target cells . All cultures were refed
with 50% fresh medium every 2-3 d. Levels of p24 antigen (Ag)
in culture fluids were determined by ELISA (E . I . Dupont de
Nemours&Co., Billerica, MA). For reverse transcriptase (RT) ac-
tivity, replicate samples of culture fluids were added to a reaction
mixture of 0.05% NP-40 (Sigma Chemical Co., St . Louis, MO),
10,ug/ml poly(A), 0.25 U/ml oligo(dT) (Pharmacia Fine Chem-
icals, Piscataway, NJ), 5 mM dithiothreitol (Pharmacia), 150 mM
KCI, 15 MM MgC12, and [3H]dTTP (2 Ci/mmol; Amersham
Corp ., Arlington Heights, IL) in pH 7.9 Tris-HCI buffer for 24 h
at 37°C . Radiolabeled nucleotides wereprecipitated with cold 10%
TCAand washed with 5% TCA and 95% ethanol in an automatic
cell harvester (Skatron Inc., Sterling, VA) on glass filter discs. Ra-

1 Abbreviations used in this paper: Ag, antigen; M-CSF, macrophage colony-
stimulatingfactor; MOI, multiplicity of infection; RT, reverse transcriptase.
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dioactivity was estimated by liquid scintillation spectroscopy (23) .
HTLVIIIB served as positive control for both p24Ag and RT ac-
tivity.

Growth ofMacrophage VariantHIV in Macrophage Targets .

	

Mac-
rophage variant HIV initially isolated onto M-CSF-treated mono-
rytes by cocultivation with PBMC from HIVseropositive patients
was serially passaged on monocyte target cells . Such macrophage
variant HIV infects both monocyte and T cell targets (24) . For
the HIV isolate ADA, infection of monocyte targets at an MOI
of 0.01 infectious virus/target cell induced: (a) typical cytopathic
effects (multinucleated giant cells and lysis), (b) p24 Ag levels ini-
tially detected in culture fluids at 3-5 dwith maximum levels >50
ng/ml, (c) levels of RT activity in culture fluids 360 x 106
cpm/ml, (d) proviral HIV DNA detected 12 h after infection by
PCRamplification with peak levels at 10 d, and (e) infectious titers
for macrophages of 1 x 10 4 TCID5o/ml.

Detection ofHIV-specificc DNA by PCR Amplification and Southern
Blot Hybridization . Cell lysates of HIV-infected monorytes were
extracted twice with phenol and chloroform/isoamyl alcohol and
the DNAwas precipitated with ethanol. PCRamplification ofHIV
specific DNA with nucleotide primers from the LTRand gag genes
and 2.5 U/ml Taq polymerase (Cetus Corp.) was performed with
an automatic cycler (Perkin Elmer-Cetus, Emeryville, CA). The
products of40 cycles (5 min at 90 °C initial denaturation, then 2.5
min at 94°C, 3 min at 55 °C, and 2 min at 72 °C) were analyzed
by Southern blot hybridization after agarose gel electrophoresis with
a radiolabeled DNA probe specific for a gag sequence internal to
the primer pairs (25 and Table 1) . XDNA-negative and HXB2
proviral DNA-positive controls were included with each assay.

In Situ Hybridization with HIV RNA Probes.

	

Single-stranded
HIV [35S]RNA probes were synthesized from recombinant DNA
plasmids containing SP6/T7 promoters (Promega Biotec, Madison,
WI). Cytosmears of cells on silanated glass slides were fixed in 4%
paraformaldehyde. Specimens were prehybridized in 10 mM Tris,
pH 7.4, 0.3 M NaCl-0.03 M sodium citrate, pH 7.4, Denhardt's
solution (0.02% polyvinylpyrrolidone, 0.02% Ficoll, 0.02% BSA),
and 200 jig/ml yeast tRNA at 45°C for 2 h and hybridized in
this solution with 10% dextran sulfate, 5 uM dithiolthreitol and
1 x 106 cpm 35S-labeled HIV RNA (Oncor, Inc., Gaithersburg,
MD). Slides were serially washed in solutions with RNase to re-
duce binding of nonhybridized probe. Autoradiography was per-
formed in absolute darkness (26) .

Dot Blot Analysis of mRNA.

	

Total RNA was extracted from
cell lysates with acidic guanidinium isothiocyanate/phenol/chloro-
form and analyzed by Northern blot hybridization on nylon mem-
branes (Nytran; Schleicher &Schuell, Keene, NH) with a radiola-
beled 2,5' oligoadenylate synthetase probe (27) .

Induction ofCytokines in HIVinfected Cells.

	

At various times after
HIV infection, monocytes were treated with 100 ug/ml poly(I) .
poly(C) (Sigma Chemical Co.) for 4 h. Cultures were washed free
of poly(I).poly(C) and refed with fresh medium . Newcastle dis-
ease virus was prepared in hen's eggs (20) and used at a MOI of
1 infectious virus/target cell to infect HIV-infected and control
monocytes. HSVtype-1 was prepared from stock in Vero cells and
provided as a generous gift from Dr. D. Gangemi, Columbia, SC .
HSV was used at a MOI of 1 infectious virus/target cell to infect
monocyte cultures .

Quantitation of Cytokine Activity.

	

Culture fluids from control
and HIV-infected monocytes were analyzed by ELISA for the human
cytokines TNF-a, IIT1J3, 11,6, and IIL4 (Quantikine Immunoassay;
Research and Diagnostics Systems, Minneapolis, MI). IFN activity
in culture fluids was assayed by inhibition of cytopathic effects in-
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duced by murine encephalomyocarditis virus in FS-4 human fore-
skin fibroblasts (28) .

Coupled Reverse Transcription/PCR Detection ofCytokine andHIV
specific RNA. Levels of cytokine or viral RNA were estimated
after reverse transcription with antisense primers and PCR
amplification of the cDNAs. The mRNA for the cellular enzyme,
glyceraldehyde 3-phosphate dehydrogenase (GAPDH), served as an
internal control to allow analysis and comparison ofRNA species
between different samples. Briefly, 2.0 hg total cellular RNA in
0.025 ml was mixed with 0.3 wg of the antisense primers for
GAPDH(29), TNF-a (30), ILI# (31), IIJ6 (32), IFN-a (33), IFN-w
(34), IFN-0 (35), and HIV LTR/gag (25) . Table 1 lists the primer
sequences used. The mixture was heated at 70°C for 5 min, cooled
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on ice, and treated with 500 U Moloney murine leukemia virus
RT (Bethesda Research Laboratories, Bethesda, MD) and0.5 mM
each of all four deoxynucleotide triphosphates. Reverse transcrip-
tion reactions were at 37°C for 15 min then stopped by heating
at 95°C for 10 min. For PCR amplification of the cDNA prod-
ucts, reaction mixtures were divided into equal aliquots and mixed
with 0.5 I~g sense and antisense primers, 0.5 mM deoxynucleotide
triphosphates, and 2 UAmplitaq (Cetus Corp.) . The products of
25 cycles (1 .5 min at 94°C, 1.5 min at 50°C, and 2.0 min at 72°C)
were analyzed by Southern blot hybridization (36) . The oligo-
nucleotides were synthesized on a DNA synthesizer (Applied
Biosystems, Inc., Foster City, CA) and checked for purity by
polynucleotide kinase labeling and sequence gel analysis. Oligonu-

Table 1 . Nucleotide Primers

Amplification
product size

in Detection of

Nucleotide
position

Cytokines and HIV Gene Products

Primer Sequence

TNF-a
237 by 503-527 Sense GAGCTGAGAGATAACCAGCTGGTG

740-716 Antisense CAGATAGATGGGCTCATACCAGGG
588-608 Probe CCCTCCACCCATGTGCTCCTC

IL-lei
179 by 480-500 Sense AAAAGCTTGGTGATGTCTGG

659-638 Antisense TTTCAACACGCAGGACAGG
549-567 Probe ATGGAGCAACAAGTGGTG

IL-6
159 by 317-337 Sense GTGTGAAGCAGCAAAGAAGC

476-455 Antisense CTGGAGGTACTCTAGGTATAC
399-420 Probe GGATTCAATGAGGAGACTTGC

IFN-a
274 by 240-259 Sense TCCATGAGATGATCCAGCAG

514-492 Antisense ATTTCTCGCTCTGACAACCTCCC
433-454 Probe AAATACTTCCAAAGAATCACT

IFN
186 by 343-364 Sense GATTCATCTAGCACTGGCTGG

529-509 Antisense CTTCAGGTAATGCAGAATCC
379-400 Probe GAGAACCTCCTGGCTAATGTC

IFN-w
147 by 238-258 Sense AACATGAACCTCCTAGACCA

385-366 Antisense TCCCTGGAAGTACCTCCTCA
341-360 Probe GCAATTAGCAGCCCTGCACT

GAPDH
195 by 199-217 Sense CCATGGAGAAGCTGGGGG

394-374 Antisense CAAAGTTGTCATGGATGACC
280-299 Probe CTAAGCATGTGGTGGTGCA

HIV LTR/gag
370 by 435-455 Sense AGCTGCTTTTTGCCTGTACT

805-782 Antisense GACGCTCTCGCACCCATCTCTCTC
551-570 Probe GACCTGAAAGCGAAAGGGAA



cleotides were typically 95% pure. Hybridization analyses of HIV
LTR/gag amplified cDNAs were also performed with random
primer-labeled 370-bp HIV DNA internal to the primer pairs .

Results
Cytokine Activities in Culture Fluids of HIVinfected Mono-

cytes. No IFN activity (inhibition of murine encephalo-
myocarditis virus-induced cytopathic effects in human fore-
skin fibroblasts) was detected in culture fluids of uninfected
or HIVinfected monorytes with any of 15 different HIV iso-
lates at any time through 3 wk of culture . Similarly, levels
of TNF-a, lL1(3, or IL-6 in culture fluids of uninfected and
HIV-infected monorytes as quantified by ELISA were 4_1
pg/ml for all times examined through 2 wk. Fluids from
monocyte cultures were examined for cytokine activities every
2 d .

Induction ofIFNActivity in Culture Fluids of Uninfected and
HIVinfected Monocytes by poly(I}poly(C) or NDV.
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Time course for IFN production by HIVinfected monocytes
treated with poly(I)-poly(C) and NDV Monocytes cultured 7 d as ad-
herent monolayers were exposed to HIV at an MOI of 0 .01 infectious
virus/ target cell . 2 wk after infection, 100,ug/ml poly(I)-poly(C) (circles)
or NDV (squares) at an MOI of 1 infectious virus/target cell was added
to HIVinfected (open symbols) and uninfected control (closed symbols) cul-

tures for 4 h . All cultures were washed free of poly(I)-poly(C) and NDV
and refed with fresh medium . IFN activity in culture fluids was assayed
at 3-h intervals by inhibition ofmurine encephalomyocarditisvirus-induced
cytopathic effects in human fibroblasts. Each data point represents the mean
of duplicate determinations in one of four replicate experiments.

fluids from uninfected control monorytes treated with
poly(I)-poly(C) or NDV contained high levels of IFN ac-
tivity (Fig. 1) . Analysis of the time course for production
of IFN activity at 3 h intervals revealed maximum levels
(>1,000 U/ml) 20-24 h after treatment . Neutralization
studies with class-specific anti-IFN antibodies showed that
>98% of antiviral activity was IFN-a . By 43 h, all IFN ac-
tivity in these culture fluids returned to baseline levels . In
striking contrast, culture fluids from HIVinfected monorytes
treated with these identical agents had little IFN activity at
any time through 54 h. HIV-infected monocytes were treated
with poly(I)-poly(C) or NDV 2 wk after virus inoculation :
-45-60% of monorytes in these cultures were positive for
HIV mRNA by in situ hybridization ; levels of p24 Ag in
culture fluids were >50 ng/ml. In more than 10 replicate ex-
periments with 3 different HIV isolates (strains ADA, 24,
and 36), little IFN activity (S 10 U/ml) was detected in cul-
ture fluids of HIVinfected monorytes treated with 10-500
itg/ml poly(I)-poly(C), NDV, or HSV type-112-18 days after
HIV inoculation .
The preceding data documents a profound defect in the

production ofIFN-ci by monorytes infected with HIV after
treatment with any of several different IFN inducers . Fur-
ther experiments explored the relationship between time after
HIV infection and the onset of this functional defect . Mono-
cytes cultured 7 d as adherent monolayers were exposed to
the HIV isolate ADA at an MOI of0.01 infectious virus/target
cell . At 1, 3, 5, 7, and 14 d after virus infection, HIVinfected
monorytes were treated with 100 hg/ml poly(I)-poly(C) for
4 h . ON activity in culture fluids of HIVinfected and matched
uninfected control monorytes was measured 24 h after
poly(l)-poly(C) treatment . IFN activity in culture fluids of
uninfected poly(I).poly(C)-treated monorytes was 1250
IU/ml . HIV infection had no effect on poly(I)-poly(C)-in-
duced IFN levels in monoryte culture 1 d after virus infec-
tion . By 3 d after HIV infection, the levels of IFN activity
in these monoryte cultures were reduced by 50%. The reduc-
tion in poly(I)-poly(C)-induced ON activity in culture fluids
of HIVinfected monocytes increased with time with infec-
tion : 80% by day 5, 90% by day 7, and >,98% by day 14 .

Induction ofCytokine Gene Expression in HIVinfected Mono-
cytes by poly(I}poly(C}. To further quantitate the extent and
specificity of the HIV-induced defect in IFN production by
poly(I)-poly(C)-treated, HIVinfected monocyte cultures, we
examined ON-u-specific mRNA using coupled reverse tran-
scription/PCR analysis . Levels of mRNA for the constitu-
tive cellular enzyme GAPDH were also examined as a refer-
ence transcript to confirm the presence of cellular RNA and
the efficiency of PCR amplification for all samples (Fig . 2) .
GAPDH mRNA amplification products were present at
equivalent levels with the cell lysates of all cultures exam-
ined . No IFN-u mRNA amplification products were detected
with cell lysates from uninfected or HIV-infected monocyte
cultures not treated with poly(I)-poly(C) (lanes 1 and 2) . The
predicted 274-bp amplification product ofIFN-a mRNA was
evident with cell lysates of uninfected monocyte cultures 8,
12, and 24 h aftei poly(l) -poly(C) treatment (lanes 3, 5, and
7) . In contrast, this IFN-cx mRNA amplification product
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Figure 2.

	

Induction of IFN-a mRNA in HIVinfected monocytes by
poly(I)-poly(C) . Monocytes cultured 7 d as adherent monolayers were ex-
posed to HIV at an MOI of 0.01 infectious virus/target cell. 2 wk after
infection, 100lAg/ml poly(I)-poly(C) was added to HIV-infected and unin-
fected control cultures for 4 h. All cultures were wash and refedwith fresh
medium . RNA from cell lysates was extracted and mixed with antisense
primers. After reverse transcription, cDNA was amplified by PCR and
the products of 25 cycles were analyzed by Southern blot hybridization
with a IFN-a-specific probe. Coupled reverse transcription/PCR
amplification products from cell lysates of monocytes at various times after
poly(I)-poly(C) treatment for uninfected cells are shown in lanes 1 (0 h),
3 (8 h), 5 (12 h), and 7 (24 h), and for HIV-infected cells in lanes 2 (0 h),
4 (8 h), 6 (12 h), and 8 (24 h) .

was not detected with any cell lysate ofHIVinfected mono-
cyte cultures treated with poly(I)-poly(C) under identical con-
ditions and for identical time intervals after induction (lanes
4, 6, and 8) . Replicate experiments with primer pairs specific
for themRNA transcripts of two other members ofthe IFN-a
family ofgenes (IFN-a1 and IFN-ci2) yielded significant levels
of amplification products with cell lysates of uninfected
poly(I)-poly(C)-treated monocytes, but not with the lysates
of similarly treated HIV-infected cells. These results confirm
the near absence of IFN activity in culture fluids of
poly(I)-poly(C)-treated, HIVinfected, monocyte cultures de-
scribed in the preceding experiments and localize this HIV
associated defect to a transcriptional block.
The specificity of this HIV-associated transcriptional block

in the expression of IFN-a genes was explored by quantita-
tion ofmRNA for several other cytokines induced in mono-
cytes by poly(I)-poly(C) (Fig . 3) . Coupled reverse transcrip-
tion/PCR analysis of mRNA for IL1O, IL-6, and TNF-ot
in cell lysates of uninfected and HIV-infected monocyte cul-
tures showed no or little (111(3 in HIV-infected monocytes)
cytokine mRNA amplification products. These results are
consistent with the absence ofthese cytokines as detected by
ELISA in the monocyte culture fluids. After poly(I)-poly(C)
treatment, however, high and indistinguishable levels of
amplification products for mRNA of IL1# (179-bp product),
11,6 (159-bp product), and TNF-a (237-bp product) were
identified with cell lysates from both uninfected and HIV
infected monocyte cultures. These relatively high levels of
mRNA products were associated with similarly high con-
centrations of these same cytokines in monocyte culture fluids
as detected by ELISA (Table 2) . Thus, strong HIV-associated
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Figure 3.

	

Induction of cytokine mRNA in HIV-infected monocytes by
poly(I)-poly(C) . Monocytes cultured 7 d as adherent monolayers were ex-
posed to HIV at an MOI of 0.01 infectious virus/target cell. 2 wk after
infection, 100 ug/ml poly(I)-poly(C) was added to HIV-infected and unin-
fected control cultures for 4 h. All cultures were washed and refed with
fresh medium. RNAfrom cell lysates was extracted and mixed with an-
tisense primers. After reverse transcription, cDNA was amplified by PCR
and the products of 25 cycles were analyzed by Southern blot hybridiza-
tion with cytokine-specific probes . Coupled reverse transcription/PCR
amplification products from cell lysates ofmonocytes at various times after
poly(I)-poly(C) treatment for uninfected cells are shown in lanes 1 (0 h),
3 (8 h), and 5 (12 h) and for HIV-infected cells in lanes 2 (0 h), 4 (8 h),
6 (12 h), 7 (24 h), and 8 (48 h) .

Table 2.

	

Cytokine Levels in Culture Fluids of Control and
HIV-infected Monocytes Treated with po1XI)-poly(C)

Cytokine levels
with time after treatment:

Monocytes cultured 7 d as adherent monolayers were exposed to HIV
at a MOI of 0.01 infectious virus/target cell . 2 wk after infection, 100
Wg/ml poly(I)-poly(C) was added to HIV-infected and uninfected con-
trol cultures for 4 h. All cultures were washed free of poly(I)-poly(C)
and refed with fresh medium . Cytokine levels in culture fluids were de-
termined by ELISA.

Cytokine
Monocyte
culture 0 h 12 h 24 h 48 h 72 h

PS1ml
TNF-a Control 0 600 1,100 800 600

HIV-infected 0 1,150 1,650 1,800 1,000
IL-6 Control 0 380 900 550 1,300

HIV-infected 0 100 300 200 220
IL-1/3 Control 0 10 10 20 10

HIV-infected 0 40 70 40 50



Figure 4.

	

Induction ofIFN-w and IFN-O mRNA in HIV-infected mono-
cytes by poly(I) "poly(C) . Monocytes cultured 7 d as adherent monolayers
were exposed to HIV at an MOI of 0.01 infectious virus/target cell . 2
wk after infection, 100 jtg/ml poly(I)-poly(C) was added to HIV-infected
and uninfected control cultures for 4 h. All cultures were washed and refed
with fresh medium . RNAfrom cell lysates was extracted and mixed with
antisense primers. After reverse transcription, cDNA was amplifiedby PCR
and the products of 25 cycles were analyzed by Southern blot hybridiza-
tion with a IFN-w- and IFN-S-specific probe. Coupled reverse transcrip-
tion/PCR amplification products from cell lysates of monocytes at var-
ious times after poly(I)-poly(C) treatment for uninfected cells are shown
in lanes 1 (0 h), 3 (8 h), 5 (12 h), and for HIV-infected cells in lanes 2
(0 h), 4 (8 h), 6 (12 h), 7 (24 h), and 8 (48 h) .

transcriptional block in the expression of IFN-a genes was
not evident in the expression of several other cytokine genes.
While IFN-oi is the predominant IFN activity produced

by monocytes, it is not the only IFN expressed by these cells.
Quantitation of poly(I).poly(C)-induced IFN-ex (IFN-am1),
and IFN-/3 mRNA by coupled reverse transcription/PCR
analysis in cell lysates of uninfected and HIV-infected mono-
cytes showed that the HIV-associated transcriptional block
in the expression of IFN-ci genes was not extended to the
expression of other IFN genes (Figure 4) . Neither uninfected
nor HIV-infected monocytes expressed IFN-/3 and IFN-w
mRNA without poly(I).poly(C) treatment (lanes 1 and 2) .
Both uninfected and HIV-infected monocyte cultures expressed
these IFN mRNA after poly(I) .poly(C) treatment: no differ-

Figure 5.

	

Detection of gag-
specific RNA in HIVinfected
monocytes treated with poly(I)-
poly(C) . Monocytes cultured 7 d
as adherent monolayers were ex-
posed to HIV at an MOI of 0.01
infectious virus/target cell . 2 wk
afterinfection, 100 t~g/ml poly(I)-
poly(C) was added to HIV-in-
fected cultures for 4 h. All cultures
were washed and refedwith fresh

medium . RNAfrom cell lysates was extracted and mixed with antisense
primers. After reverse transcription, cDNA was amplified by PCR and
the products of 25 cycles were analyzed by Southern blot hybridization
with a HIVgag-specific probe between primer pairs. Coupled reverse tran-
scription/PCR amplification products from cell lysates of HIV-infected
monocytes at various times after poly(I)-poly(C) treatment are shown in
lanes 1 (0 h), 2 (12 h), 3 (24 h), 4 (48 h), and 5 (72 h), and of matched
untreated HIV-infected cells at 72 h shown in lane 6.

ences in the amount or time course for appearance of the
predicted 166- and 147-bp amplification products for IFN-O
and IFN-w mRNA were evident with cell lysates of unin-
fected or HIVinfected monocytes. It is likely that these minor
IFN species represent most if not all of the low level IFN
activity detected in HIV-infected monocyte cultures treated
with poly(I)-poly(C) or NDV(see Fig. 1) . These results, in toto,
document a profound and highly specific transcriptional block
in the expression of IFN-ci in monocytes infected with HIV.
HIVGene Expression in Virus-infected Monocytes Treated with

poIXI}poly(C). Poly(I)-poly(C) induces strong antiviral ac-
tivity in a variety of target cells through at least two different
mechanisms . This synthetic double-stranded RNA induces
endogenous IFN production in several cell types, but it also
directly stimulates antiviral activity in treated cells in the ab-
sence of IFN. The first mechanism is apparently blocked in
the HIV-infected monocyte ; however, the alternative direct
pathway for antiviral activity may be intact . We examined
this possibility by analysis of viral gene expression in HIV
infected monocytes after poly(I)-poly(C)-treatment (Fig . 5) .
HIV gene products (viral mRNA and DNA) were readily
detected in cell lysates of infected monocyte cultures by cou-
pled reverse transcriptase and/or PCR analyses with both
LTR/gag and env primers (lane 1 and not shown) . After

Figure 6.

	

Detection of 2',5' oligo-
adenylate synthetase mRNA in HIV
infected macrophages treated with
poly(I)-poly(C) . Monocytes cultured
7 d as adherent monolayers were ex-
posed to HIV at an MOI of0.01 infec-
tious virus/target cell. 2 wk after in-
fection, 1001eg/ml poly(I)-poly(C) was
added to HIV-infected cultures for 4 h.

All cultures were washed and refed with fresh medium . Cell lysates of HIV-infected monocytes were extracted with acidic guanidinium isothiocyanate/
phenol/chloroform and the RNA was precipitated with isopropanol. RNA was analyzed by Northern blot hybridization with a radiolabeled 2, 5'
oligoadenylate synthetase-DNA probe . Autoradiographs show samples from poly(I)-poly(C)-treated uninfected monocytes in lanes 1 (0 h), 3 (8 h),
5 (12 h), and 7 (24 h) or HIV-infected monocytes in lanes 2 (0 h), 4 (8 h), 6 (12 h), and 8 (24 h) .
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poly(I) .poly(C) treatment, levels of HIV mRNA decreased
to baseline by 72 h (lanes 2-5) . This reduction in viral mRNA
was coincident with an equivalent reduction in p24 Ag and
RT activity levels in the same cultures . In contrast, levels
of HIV mRNA in infected monocyte cultures not treated
with poly(I).poly(C) increased over the same time interval
(lane 6) .

It is possible that this antiviral activity was mediated by
the low levels of IFN-0 and IFN-co (<10 U/ml antiviral ac-
tivity) produced by infected cells. However, poly(I).poly(C)
also induces 2,5' oligoadenylate synthetase in several different
cells independently of IFN-ci This induced enzyme binds
to dsRNA and catalyzes the conversion of ATP to 2,5'
oligoadenylate, the activator of 2,5' oligoadenylate-dependent
RNase L . The RNase, in turn, cleaves and inactivates single-
stranded viral RNAs. Treatment of uninfected and HIV
infected monorytes with poly(I).poly(C) induced a potent
and indistinguishable transcriptional amplification of 2,5'
oligoadenylate synthetase as detected by dot blot analysis of
mRNA for this enzyme (Fig. 6) . Thus, in the face ofa strin-
gent, HIV-associated, transcriptional block in the expression
ofIFN-at in the infected monocyte, poly(I)-poly(C) increased
2,5' oligoadenylate synthetase mRNA and elicited an effec-
tive antiviral reaction .

Discussion
The role ofIFN in HIV disease is both complex and seem-

ingly paradoxical. In vitro, IFN-cx, IFN-/3, and IFN-y each
have potent antiretroviral activity (16) . While IFN-ci does
not prevent infection of HIV in CD4+ T cells, this cytokine
significantly restricts virus replication in infected cells (20,
21, 25) . The mechanism for this antiviral effect is through
induction of a partial and reversible block in the assembly
and/or release of progeny virions (19, 25) . In macrophages,
the antiviral action of IFN-ci is more effective than that in
T cells and operates through different mechanisms. Mono-
cytes treated with IFN-ci at the time ofvirus challenge show
no evidence ofHIV infection . IFN-ci interrupts one or more
early events in the virus replication cycle before formation
of proviral DNA. Monocyte cultures infected with HIV be-
fore IFN-ot treatment show a gradual decrease in levels of
p24 Ag and RT activity to baseline. HIV-induced cytopathic
changes are markedly reduced, as is HIV-specific mRNA, and
the frequency of productively infected cells is <1%. Virus
particles released 24 h after IFN-at treatment are 1,000-fold
less infectious than equal numbers of control virions . But,
levels ofproviral DNA in the IFN-a-treated and control HIV
infected cells are indistinguishable. Large quantities of proviral
DNA in cells with little or no evidence for active transcrip-
tion documents a situation approaching true microbiolog-
ical latency (25) .

In HIV-infected patients, administration of IFN-ci alone
for 12 wk to asymptomatic subjects decreases ability to iso-
late virus from blood leukocytes and reduces p24 antigenemia.
In follow-up studies, none of the IFN-ot-treated patients de-
veloped AIDS-associated opportunistic infection compared
with 30% of the placebo-treated group (17) .
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In contrast to these promising therapeutic interventions
with exogenous IFN-a, the appearance of endogenous IFN
in blood during the natural history ofHIV disease is perhaps
more ominous . Even though there is no evidence for direct
induction of IFN by HIV itself, serum of patients with late
stage HIV disease has high levels of an acid-labile IFN-Cl,
a poor prognostic index that predicts onset of opportunistic
infection (37, 38) . The cell source for this acid-labile IFN-a
is not known . Indeed, production of all IFN types during
HIV infection is suppressed. Production of IFN-y by PBMC
of HIVinfected patients is significantly reduced (39) . Tran-
scription of the IFN-,y gene, but not the ILr2 gene, is im-
paired in HIV-infected T cells (40) . Similarly, monocytes and
PBMC from HIV-infected patients show a markedly reduced
ability to secrete IFN-ci or express IFN-a mRNA after ex-
posure to vesicular stomatitis virus, influenza A virus, or HSV
type 1 infected fibroblasts (41-43) . What is most remarkable
about these latter observations, is that they occur coincident
with a frequency of HIV-infected cells in patient blood that
is exceedingly low. About 1% of blood leukocytes harbor
HIV DNA (44-46) . Of the total number of infected cells,
<0.01% show active expression of HIV genes (47) . Yet
production of IFN-ot in PBMC ofHIV-infected patients, cells
that are at least 99% virus-free, is 1,000-fold less than that
in PBMC of controls (43) .
We document in this report a profound and highly selec-

tive defect in the expression of IFN-ci genes by HIV-infected
monorytes that was evident under a wide range of experimental
conditions and inducing agents. The expression of other
cytokine genes (TNF-(x, ILr10, ILr6) was apparently not
affected . Indeed, expression of other IFN genes (IFN-w,
IFN-0) was also unaffected by HIV-infection . The inability
of HIV-infected monocytes to express IFN-a may represent
an adaptive response by this virus to ensure its survival and
unimpeded replication in monocyte target cells . It is notable
that at least some antiviral mechanisms normally induced by
IFN-(x can be induced in the HIV-infected monocyte by
poly(I).poly(C) . This synthetic double-stranded RNA induced
equivalent levels of 2,5' oligoadenylate synthetase mRNA
in both control and HIV-infected monocytes. More signi-
ficantly, HIV-infected monocytes treated with poly(I)-poly(C)
showed a dramatic decrease in both p24 Ag and RT activity
levels and HIV-specific mRNA. The activation of antiviral
pathways in poly(I)-poly(C)-treated, HIV-infected monocytes
may be mediated by a direct effect of this synthetic double-
stranded RNA or by the low levels of IFN-/3 or IFN-w pro-
duced by infected cells . Indeed, other cytokines induced by
poly(I) .poly(C), such as TNF-ot, may interact with these
minor species of interferons to achieve an effective antiviral
reaction . Thus, even though HIV-induces a selective block
in the expression of IFN-ci genes, the pathways induced by
this cytokine can still be exploited for antiviral therapy. Such
pathways of antiviral activity may be important not only for
HIV, but also for the many other viral infections (herpes sim-
plex, herpes zoster, cytomegalovirus) coincident with HIV
disease. For example, patients infected with HIV develop per-
sistent, localized, and slowly progressive herpes zoster infec-
tions refractory to acyclovir therapy (48) . The HIV-associated



transcriptional block in IFN-ci gene expression in the mac-
rophages of these lesions may underlie the basic pathophysi-
ology of this disease manifestation .
The mechanism for the transcriptional block in IFN-ci gene

expression in HIVinfected, M-CSF-treated, cultured mono-
cytes is not yet known. Remarkably, HIV-infected monocyte
cultures that exhibited this near absolute IFN-ci defect showed
a frequency for productively infected cells of 30-60% . If the
IFN-ci defect is a direct sequela of infection, then all cells
must harbor the HIV provirus, which in turn is expressed
in only half of the monocyyes. Alternatively, the IFN-a de-
fect may be mediated by a soluble factor released by HIV
infected cells that affects the entire cell population . This latter
hypothesis is consistent with observations on PBMC ofHIV
infected patients in which a cell population that is 99% virus-
free shows a 1,000-fold decrease in ability to produce IFN-a
(43) . The experimental system described in this report should
allow molecule identification of this putative soluble factor.
The dissociation between the expression of IFN-ci and

IFN-w in HIV-infected monocyyes is of special interest . The
human IFN-oi gene family consists of at least 20 nonallelic
members, among which are the IFN-aII genes (49, 53) . In
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cows, the more than 30 IFN-aII genes represent the major
source of IFN-ac and encode proteins that are acid-labile (50) .
In man, the IFN-aII gene subfamily has a single functional
gene that encodes IFN-w, and three or four other pseudogenes
(49-53) . Very little is known about the regulation ofhuman
IFN-aII genes or its encoded protein . IFN-w is six amino
acids longer at the COOH terminus than other IFN-a. Ex-
cluding these additional amino acids, IFN-w shares a 60%
homology with IFN-a proteins (homologies between other
IFN-ci proteins exceed 80%) and a 30% homology with
IFN-(3 (51) . Certain investigators suggest ON-aII is a dis-
tinct IFN species, perhaps a vestigial link between IFN-ci
and IFN-/3 (50) . Since the bovine IFN-aII proteins are acid-
labile, it is tempting to speculate that IFN-w is the entity
responsible for the acid-labile IFN-ci in late-stage HIV dis-
ease. That expression of all IFN-ci genes is blocked at the
transcriptional level in our in vitro system, and in cells from
patients infected with HIV, and expression of IFN-w in HIV
infected monocyyes is intact supports this speculation. How-
ever, definite proof of IFN-w as the acid-labile IFN-ot in HIV
disease, must await sequence data for the circulating activity.

Immunodeficiency Virus-infected Monocytes
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