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Abstract: The microstructure, dielectric response, and nonlinear current-voltage properties of Sr2+-
doped CaCu3Ti4O12/CaTiO3 (CCTO/CTO) ceramic composites, which were prepared by a solid-state
reaction method using a single step from the starting nominal composition of CCTO/CTO/xSrO,
were investigated. The CCTO and CTO phases were detected in the X-ray diffraction patterns. The
lattice parameter increased with increasing Sr2+ doping concentration. The phase compositions of
CCTO and CTO were confirmed by energy-dispersive X-ray spectroscopy with elemental mapping
in the sintered ceramics. It can be confirmed that most of the Sr2+ ions substituted into the CTO
phase, while some minor portion substituted into the CCTO phase. Furthermore, small segregation
of Cu-rich was observed along the grain boundaries. The dielectric permittivity of the CCTO/CTO
composite slightly decreased by doping with Sr2+, while the loss tangent was greatly reduced.
Furthermore, the dielectric properties in a high-temperature range of the Sr2+-doped CCTO/CTO
ceramic composites can be improved. Interestingly, the nonlinear electrical properties of the Sr2+-
doped CCTO/CTO ceramic composites were significantly enhanced. The improved dielectric and
nonlinear electrical properties of the Sr2+-doped CCTO/CTO ceramic composites were explained by
the enhancement of the electrical properties of the internal interfaces.

Keywords: ceramic composite; CaCu3Ti4O12/CaTiO3; dielectric permittivity; non-Ohmic properties;
loss tangent

1. Introduction

Over the last decades, giant dielectric materials with high dielectric permittivity
(ε′ > 103) have been continuously investigated to develop ceramic capacitors and high
energy density storage applications. This is due to a growing demand for miniaturization
in microelectronics with the emergence of portable electronic device industry applications
(e.g., smartphones and tablets), including applications in the automotive and aerospace in-
dustries. CaCu3Ti4O12 (CCTO) has been extensively studied in the field of high-permittivity
dielectric materials. CCTO is one of the most of dielectric oxides in the ACu3Ti4O12 family,
which can exhibit very high ε′ over a wide range from 100 K to 400 K [1–11]. Unfortunately,
the dielectric loss tangent of ACu3Ti4O12 ceramics (tanδ > 0.1) is usually higher than the
standard tanδ value.

Besides the giant dielectric properties, CCTO and related ACu3Ti4O12 ceramics ex-
hibited attractive nonlinear current density-electric field (J-E) properties or non-Ohmic
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properties [3,4,9,12,13]. Thus, CCTO and related ACu3Ti4O12 ceramics can be used in
varistor devices when the non-Ohmic parameters can be enhanced.

Although the exact origin of giant ε′ for the CCTO is still unclear, it has been widely
accepted that the extrinsic effect of internal interfaces is the primary cause of the giant dielec-
tric response and non-Ohmic properties in polycrystalline CCTO-based ceramics [14–16].
For the CCTO-based ceramics, the observed heterogeneous electrical microstructure, con-
sisting of insulating grain boundaries (GBs) sandwiched by semiconducting grains, are
supported the internal (GB) barrier layer capacitor (IBLC) effect [1,5,7,12]. However, the
intrinsic effect of the grains cannot be ignored or illogically excluded [17]. The dielectric
response and related nonlinear electrical behavior result from the Schottky potential barrier
at the interface between adjacent semiconducting grains [18–21].

Various approaches for improving the dielectric properties, i.e., reducing the low-
frequency tanδ value and optimizing the non-Ohmic characteristics of CCTO ceramics,
have been widely proposed, such as doping and co-doping with various metal ions into
Ca2+, Cu2+, and Ti4+ sites in the CCTO structure [6–9,22,23]; fabrication a dense, fine grain-
sized microstructure using a chemical synthesis [24,25]; or fabrication of the composite
ceramics [4,18,20,21,26]. The CCTO-based composites, incorporating a highly insulating
phase such as CaTiO3 (CTO), have been widely fabricated to optimize the dielectric and
nonlinear electrical properties [18,19,26]. Using a one-step process from the ceramic powder
with a nominal chemical formula of CCTO/CTO, the ceramic composite consisting of
66.7 mol% of CCTO and 33.3 mol% of CTO can be obtained. The CCTO/CTO composites
show a decreased tanδ value (~0.02), with ε′ about of 1800 at 1 kHz and room temperature
(RT) [19,21,27,28]. Moreover, the breakdown electric field (Eb) and nonlinear coefficient (α)
of the CCTO/CTO composite ceramics are also enhanced compared to the single-phase
CCTO ceramics. It was reported that low tanδ and giant ε′ in CCTO/CTO composite could
be achieved by doping Mg2+ [29], Zn2+ [18], and Sn4+ [20,26]. Substitution of Sr2+ into the
CCTO ceramics has been widely studied due to the impressive dielectric results [2,8,9]. A
significantly decreased tanδ with retaining a high ε′ was obtained in the Sr2+-doped CCTO
ceramics [8]. For capacitor applications, tanδ of a dielectric material should be reduced as
low as possible to prevent the dissipation of energy, while Eb must be increased as high as
possible for application in a high voltage level. Sr2+ doping ions can improve the electrical
properties of the internal interface (i.e., GBs) of CCTO ceramics, giving rise to the enhanced
dielectric and nonlinear electrical properties [8,23,30,31]. Thus, using this concept, the
objective of this work is to reduce tanδ of the CCTO/CTO composites with enhancing the
nonlinear electrical properties by doping with Sr2+ ions. To the best of our knowledge, the
influences of Sr2+ doping on microstructure, dielectric response, and non-Ohmic properties
in CCTO/CTO composite systems have never been reported.

In this work, the Sr2+-doped CCTO/CTO ceramic composites are prepared using a
nominal chemical formula of CCTO/CTO/xSrO. The phase formation and compositions are
systematically investigated. The electrical and dielectric properties are studied and discussed
in detail. The expected results of Sr2+-doped CCTO/CTO composite systems may satisfy a
promise for practical ceramic capacitors and high energy density storage applications.

2. Results and Discussion

The phase compositions of Sr2+-doped CCTO/CTO ceramic composites sintered at
1100 ◦C for 5 h were investigated using the X-ray diffraction (XRD) technique, as illustrated
in Figure 1. Two primary phases of CCTO (JCPDS 75-2188) and CTO (JCPDS 82-0231)
were detected in the XRD patterns of all the composites. No possible impurity phase,
e.g., CuO or SrTiO3, was observed. This observation is similar to those reported in the
literature for the CCTO/CTO composites [20,21,26,28,32], which comprised of ~66.7 mol%
CCTO and ~33.3 mol% CTO [18,28,29]. The nominal composition of CCTO/CTO can be
written as Ca(Cu2Ca)Ti4O12, which is similar to that of CCTO. However, the creation of
the CCTO/CTO composite occurred due to a very larger ionic radius of Ca2+ (>1.00 Å)
compared to that of the Cu2+ (0.57 Å) [33]. Excess Ca2+ ions could not occupy the Cu2+
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sites. The calculated lattice parameter (a) values of the CCTO phase in all the composites
are in the range of 7.391–7.392 Å. As illustrated in the inset of Figure 1, the main peak
of the CTO phase in the Sr2+-doped CCTO/CTO ceramic composites shifted to a low
2θ angle with increasing Sr2+ content, indicating the increase in cell parameters of the CTO
phase. This result was due to the larger ionic radius of Sr2+ (r12 = 1.44 Å) compared to Ca2+

(r12 = 1.34 Å) ions [33]. Therefore, Sr2+ doping ions were likely to prefer substitution into
the CTO structure.
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Figure 1. X-ray diffraction (XRD) patterns of all composite samples; inset shows shifting XRD peak
~33.0◦ for the CaTiO3 (CTO) phase.

Figure 2 shows the surface morphologies of the CCTO/CTO and Sr2+-doped CCTO/CTO
ceramic composites. Two sets of grain shapes were observed, i.e., large grains with a smooth
surface and small grains with a rough surface. According to the previous reports [21,28],
the smooth and rough grains are suggested to be the CCTO and CTO phases, respectively.
It was observed that the grain size of the smooth grains of the CCTO/CTO composites
tended to become enlarged by doping with Sr2+ ions, corresponding to that observed in
the Sr2+-doped CCTO ceramics [8].
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Figure 2. Scanning electron microscopy (SEM) images of Sr2+-doped CaCu3Ti4O12 (CCTO)/CTO composites:
(a) CCTO/CTO, (b) Sr05, (c) Sr10, and (d) Sr30 composite samples.

To clearly indicate the CCTO and CTO phases in the microstructure of the ceramic
composites, backscattered SEM images of the polished ceramic composites were revealed,
as shown in Figure 3. As shown in Figure 3a,b, lighter grains with a smooth surface
and darker grains with a rough surface were disclosed in both the CCTO/CTO and Sr2+-
doped CCTO/CTO composites, confirming the existence of two phases as detected in
the XRD patterns. Considering the atomic mass of these two phases, these phases were
suggested to be the CCTO and CTO phases, respectively [18,28]. A small number of pores
was observed in the CCTO/CTO composite. The number of pores tended to decrease in
the Sr2+-doped CCTO/CTO composites. To further confirm the CCTO and CTO phases,
the energy-dispersive X-ray spectroscopy (EDS) was performed in the lighter (point #2)
and darker grains (point #1), as illustrated in Figure 3c,d. For the undoped CCTO/CTO
composite, a Cu element was not detected in the darker grain (spectrum #1), while Ca, Ti,
and O were observed, as shown in Figure 3c. Thus, the darker grain was confirmed to
be the CTO phase. On the other hand, all elements of Ca, Cu, Ti, and O were detected in
the lighter grain (spectrum #2), confirming the presence of the CCTO phase. To further
investigate the substitution sites of Sr2+ doping ions, the EDS spectra of the Sr2+-doped
CCTO/CTO ceramic composites were measured. As shown in spectrum #3 of Figure 3d,
Cu-rich phase was observed as small particles (point #3). Sr2+ doping ions can be detected
in both of the CCTO and CTO grains, as seen in spectra #1 and #2. However, the Sr2+

dopant was more detected in the CTO phase than that of the CCTO phase. We found
that the percentages of Sr incorporated in the CTO and CCTO phases were 9.59 wt% and
0.53 wt%, respectively. As clearly confirmed by the SEM mapping images (Figure 4), an Sr
element was more detected in the small grain’s region for the CTO phase, in which a Cu
element could not be detected.
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Figure 3. Backscattered SEM images of polished Sr2+-doped CCTO/CTO composite samples: (a) CCTO/CTO and (b) Sr03
composite samples. Energy-dispersive X-ray spectrometry (EDS) of (c) CCTO/CTO and (d) Sr30 composite samples detected
at different points on the surface in the backscattered SEM image.

Figure 5 shows the dielectric properties of the CCTO/CTO and Sr2+-doped CCTO/CTO
ceramic composites at 20 ◦C. At 103 Hz, the ε′ values of the CCTO/CTO, Sr05, Sr10, and
Sr30 composite samples were 4247, 3511, 3742, and 3978, respectively. The ε′ of the
CCTO/CTO composites slightly decreased by doping with Sr2+ ions, especially for the Sr30
composite sample. However, as displayed in the inset, tanδ was significantly reduced. The
tanδ values at 103 Hz were 0.049, 0.036, 0.028, and 0.022, respectively. The increased tanδ in
the frequency range of 102–103 Hz was attributed to the effect of DC conduction, which
resulted from a long-range motion of free charge carriers across the GBs [34,35]. On the
other hand, the rapid increase in tanδ in a high-frequency range (>105 Hz) was due to the
dielectric relaxation process of the primary polarization, which may have been due to the
polarization at the interface between the CCTO grains [36,37]. It was observed that another
dielectric relaxation appeared at the middle-frequency range of ~104 Hz, especially for the
undoped CCTO/CTO composite. The relaxation peak of tanδwith a step-like decrease in ε′

was observed. This dielectric relaxation may have been due to the polarization relaxation
at the active interface between the CCTO and CTO grains [28]. This relaxation was reduced
by doping with Sr2+ ions.
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The Sr2+ doping ions were better detected in the CTO grain than that in the CCTO
grain. Thus, the volume fraction of the CCTO phase (fCCTO) in the Sr2+-doped CCTO/CTO
composites slightly changed as the Sr2+ doping concentration increased. Changes in the
ε′ of the Sr2+-doped CCTO/CTO composites were not associated with fCCTO, while the
ε′ of Sr2+-doped CTO ceramics changed slightly. Variations in the ε′ of the Sr2+-doped
CCTO/CTO composites may be attributed to the changes in the ε′ of the CCTO phase
or electrically active internal interfaces. However, it was reported that the substitution
of Sr2+ ions into the CCTO ceramics caused a decrease in ε′ [8,30]. Thus, the decreased
ε′ values of the Sr05 composite sample were likely due to the significantly decreased ε′

value of the CCTO phase, which was substituted by Sr2+ ions. With increasing the Sr2+

doping concentration, the ε′ at 1 kHz slightly increased from 3511 to 3978. In this case, the
effects of fCCTO, Sr2+-doped CCTO, and Sr2+-doped CTO phases were unlikely the origin
of the observed increase in the ε′. This suggests but does not prove that slightly increased
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ε′ values of the Sr10 and Sr30 composite samples might have been due to the enhanced
electrically active CCTO-CTO interface.
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The effects of Sr2+ doping ions on the temperature dependence of the dielectric
properties of the CCTO/CTO ceramic composites are shown in Figure 6 and its inset.
Notably, the Sr2+ doping ions can enhance the temperature stability of ε′. Furthermore, the
Sr2+ doping ions can also suppress the increased tanδ in a high-temperature range, which
is usually resulted from the increased DC conduction [35]. Thus, the substitution of the
Sr2+ doping ions reduced the long-range motion of free charge carriers, which may be due
to the increase in the GB resistance.
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To study the electrical properties of the grains and GBs in the CCTO/CTO and
Sr2+-doped CCTO/CTO ceramic composites, impedance spectroscopy was performed.
Accordingly, we can estimate the capacitance (C) and resistance (R) values of electrically
active grain boundaries and grain regions. M.A. Ramirez et al. [38] demonstrated that
the CCTO-CTO and CCTO-CCTO interfaces were electrically active. In contrast, the
CTO-CTO interface was inactive. Thus, the results were modeled on an ideal equivalent
circuit comprising two parallel RC elements connected in series. The first RC element
was assigned as the electrical response of semiconducting grains in the CCTO phase. The
second was assigned as the responses of the electrically active interfaces between the
CCTO-CTO and CCTO-CCTO phases. Figure 7a and its inset show the impedance complex
plane plots (Z*) at 80 ◦C and nonzero intercept at high frequencies at −60 ◦C, respectively.
Generally, the resistance of the grain (Rg) and GB (Rgb) at any temperature for CCTO-based
polycrystalline ceramics can be calculated from the diameters of small semicircular arc
(or the nonzero intercept) and large semicircular arc in Z* plots, respectively [36]. Thus,
the Rg and Rgb values at any temperature can be obtained. As clearly seen, Rgb of the
CCTO/CTO ceramic composites was significantly increased by doping with Sr2+ ions,
while Rg decreased slightly. This result is consistent with the reduction of tanδ in a low-
frequency range. Furthermore, the suppressed long-range motion of free charge carriers in
a high-temperature range was confirmed to originate from the significant increase in Rgb.

The CCTO–CCTO and CCTO–CTO interfaces were found to be electrically active, giv-
ing rise to the formation of potential barriers at these interfaces [38]. A CTO–CTO interface
was electrically inactive due to the insulative nature of the CTO grains [38]. Therefore, the
improved electrical responses of internal interfaces in the Sr2+-doped CCTO/CTO ceramic
composites are likely caused by the enhanced electrical responses of the CCTO–CTO and
CCTO–CCTO interfaces. Variations of Rgb with Sr2+ concentrations are consistent with the
observed decrease in tanδ, as illustrated in the insets of Figures 6 and 7. Considering the
increase in Rgb observed in the substituted Sr2+ ions, the primary factor may be due to the
increase in the potential barrier height at the internal interfaces.

According to the calculated Rg and Rgb values, the conductivities of the grain (σg) and
GB (σgb) can be calculated. As illustrated in the Figure 7b and its inset, the temperature
dependence of σgb and σg follows the Arrhenius law:

σg/gb = σ0 exp(
−Eg/gb

kBT ) (1)

where σ0 is a constant value and Eg and Egb are the conduction activation energies inside
the grains and internal interfaces (GBs), respectively. The Eg and Egb values were calculated
from the slopes. The Egb values, which are associated with the potential barrier height of
the GBs [39] of the CCTO/CTO, Sr05, Sr10, and Sr30 composite samples, were found to be
0.661 eV, 0.636 eV, 0.688 eV, and 0.693 eV, respectively, while Eg values were 0.102, 0.086,
0.085, and 0.084, respectively. The significant increase in Rgb value of the Sr30 composite
sample was attributed to the increased potential barrier height at the GBs, which was likely
due to the segregation of the Cu-rich phase at the GBs [40]. Furthermore, the substitution of
Sr2+ doping ions may reduce the oxygen loss during the sintering process. This is one of the
most important causes for the increase in the potential barrier height at the GBs [4,28,41].
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Besides the improved dielectric properties, the nonlinear J-E properties of the Sr2+-
doped CCTO/CTO ceramic composites can also be enhanced, as shown in Figure 8. The
nonlinear coefficient (α) of the CCTO/CTO, Sr05, Sr10, and Sr30 composite samples were
calculated in the range of 1–10 mA/cm2 and found to be 5.52, 6.50, 6.86, and 7.50, respec-
tively. Furthermore, the breakdown electric field (Eb) values can be significantly enhanced
to be 2.8 × 103 V/cm, 4.2 × 103 V/cm, 4.5 × 103 V/cm, and 5.98 × 103 V/cm, respec-
tively. Obviously, the increased α and Eb values of the Sr2+-doped CCTO/CTO ceramic
composites are consistent with an increase in Rgb and potential barrier height at the GBs.
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3. Materials and Methods
3.1. Sample Preparation

A conventional solid-state reaction method was employed for the preparation of a Sr2+-
doped CCTO/CTO powders with a nominal chemical composition of CCTO/CTO/xSrO
powders (x = 0, 0.05, 0.1, and 0.3%). These ceramic compositions were referred to as the
CCTO/CTO, Sr05, Sr10, Sr20, and Sr30, respectively. TiO2 (99.9%), CuO (99.9%), CaCO3
(99.9%), and SrCO3 (99.9%) were selected as raw materials. Initially, stoichiometric amounts
of the raw materials were mixed homogeneously by ball milling in ethanol for 12 h using
zirconia balls. Then, each mixed slurry was dried and then calcined in air at 900 ◦C for
15 h. The calcined powders were ground and pressed into disc pellets with a diameter of
9.5 mm and thickness of ~1.0 mm. To obtain the ceramic composite samples for studying
properties and characterizations, the pellets were sintered at 1100 ◦C for 5 h.

3.2. Characterization

Structures and phase compositions of the sintered ceramics were studied using X–
ray diffraction (XRD; PANalytical, EMPYREAN). Scanning electron microscopes (SEM;
SEC, SNE-4500M) were used to reveal the microstructure and distribution of the CCTO
and CTO phases. The elemental distribution of elements, i.e., Ca, Cu, Ti, O, and Sr, and
backscattered electron (BSE) in the sintered ceramic were investigated using a field-emission
scanning electron microscopy (FE-SEM, HITACHI SU8030) with energy-dispersive X-
ray spectroscopy (EDS). Before characterization by the FE-SEM and EDS techniques, the
surface of composite samples was polished and thermally etched at 1,090 ◦C for 1 h. The
dielectric properties of the sintered ceramics were measured using a KEYSIGHT E4990A
Impedance Analyzer over a frequency range of 102–107 Hz using an oscillation voltage of
0.5 V. The dielectric properties were measured over the range of −60–200 ◦C. Each step
increase in measurement temperature was 10 ◦C with an accuracy of ±1 ◦C. Nonlinear
J–E characteristics were determined using a high voltage measurement unit (Keithley
Model 247) at RT. The Eb value was obtained at J = 1 mA·cm−2. The α values were
calculated over the range of J = 1–10 mA·cm−2. Note that prior to electrical and dielectric
measurements, Au was sputtered on each pellet face at a current of 30 mA for 8 min using
a Polaron SC500 sputter coating unit (Sussex, UK).
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4. Conclusions

The dielectric and nonlinear electrical properties of CCTO/CTO ceramic composites
were successfully improved by doping with Sr2+ ions into the Ca2+ sites of the CCTO
and CTO phases. Most Sr2+ doping ions preferred to substitute in the CTO phase rather
than the CCTO phase. The CTO structure was significantly enlarged by doping with Sr2+

ions. The ε′ of the CCTO/CTO composites was slightly decreased from ~4.25 × 103 to
~3.98 × 103, while tanδwas significantly reduced from 0.05 to 0.02 due to the large decrease
in σgb or increase in Rgb. The significant increased Rgb value of the Sr2+-doped CCTO/CTO
composites was caused by the increase in potential barrier height at the GBs from 0.634 eV
to 0.732 eV. Significantly increased Eb (from 2.81 × 103 to 5.98 × 103 V/cm) and α (from
5.5 to 7.5) were achieved. The improved dielectric and nonlinear electrical properties were
explained by the electrical responses of the active internal interfaces.
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