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Immune checkpoint therapy has been shown to be an effective
therapy for many types of tumors. Much attention has been paid
to the development of an effector target would be helpful for
immune checkpoint therapy. Genistein has been shown to have
an anti-tumor effect both in vitro and in vivo. In this study, we
examined the effect of genistein on immune checkpoint blockade
therapy against B16F1 melanoma tumors. Mice treated with
genistein or anti-programmed death (PD)-1 antibody showed a
significant decrease in tumor growth. However, treatment with
genistein had no effect on or attenuated the efficacy of immune
checkpoint therapy. The percentages of T cell receptor (TCR)β+CD4+

and TCRβ+CD8+ cells and the concentrations of interferon-γ and
tumor necrosis factor-α in tumor tissue were not different among
the experimental groups. A significant difference was also not
found in microbe composition. Interestingly, a high expression
level of PD-ligand (L)1 closely reflected the outcome of therapy
by genistein or anti-PD-1 antibody. The study showed that a
combination of genistein treatment does not improve the effect
of immune blockade therapy. It also showed that a high PD-L1
expression level in tumors is a good prediction maker for the
outcome of tumor therapy.

Key Words: genistein, tumor, immune checkpoint therapy, PD-1,
PD-L1

T he first reported case of immunotherapy against cancer was
inoculation of erysipelas toxin into sarcoma in 1891.(1)

Many types of cancer immunotherapy have been developed in
the past century. BCG, cytokine therapy, tumor antigen (Ag)-
based vaccination, and transplantation of activated autoimmune
cells have been developed and conducted in a clinical trial.(2)

However, satisfactory results have not been obtained. Immune
therapy for cancer was dramatically changed by the finding that
binding of programmed death (PD)-1 to PD-ligand (L)1 molecule
suppresses T cell activation.(3,4) Immunotherapy by immune
checkpoint inhibitors such as anti-PD-1, PD-L1 and cytotoxic T
lymphocyte-associated protein 4 (CTLA-4) monoclonal anti‐
bodies (mAbs) has emerged as a promising treatment for cancer
patients in recent years.(5) However, the current checkpoint
blockade therapy has limited success in certain types of cancers
with no more than 40% success rates overall.(6)

Soy intake has been shown to prevent hormone-related cancers
such as breast cancer and prostate cancer in humans.(7,8) Soy
isoflavones are candidates for the preventive components. It has

been shown that the soy isoflavone genistein inhibits in vitro
proliferation of tumor cells.(9) Treatment with genistein in mice
that had been inoculated with B16F1 melanoma enhanced NK
and cytotoxic cell activity and then suppressed tumor growth.(10)

Much attention has be paid to augmentation of the effect of
immune checkpoint therapy. Many approaches have been tried
including combinations of chemotherapy, cytokines, inhibitors,
and radiotherapy.(11–15) It has been shown that food-derived
components are a useful agent in human health and safety rather
than medical drugs. Natural compounds have low toxicity and
exert anti-tumor and immunomodulatory effects. The combina‐
tion of immune checkpoint inhibitors with natural products may
provide a novel strategy for treatment of tumors. In this study, we
investigated the effect of the soy isoflavone genistein on immune
checkpoint therapy and explored the underlying mechanism.

Materials and Methods

Mice and diets. Six-week-old female C57BL/6 mice (Japan
SLC, Shizuoka, Japan) were maintained under specific pathogen-
free conditions with a 12-h light:dark cycle at 25 ± 2°C and 55 ±
10% relative humidity. The mice were given free access to water
and food throughout the experiment. The mice were maintained
on a control diet (No. D10012G; Research Diets Inc., New
Brunswick, NJ). All studies were performed in accordance with
the ethical guidelines for animal experimentation by the Institute
of Biomedical Sciences, Tokushima University, Japan and were
approved by the institution review board of the animal ethics
committee.

Treatment with genistein and/or anti-PD-1 monoclonal
antibody (mAb). Genistein was obtained from Tokyo Chem‐
ical Ltd (Tokyo, Japan). A hybridoma, RMP1-14, producing
anti-PD-1 mAb was injected into BALA/c nu/nu mice. The anti-
PD-1 mAb was purified from ascites fluids by the caplic acid
method.(16) Mice were treated with genistein at a dose 50 mg/kg
weight by gavage from 7 days before to the end of the experi‐
ment. Administration of anti-PD-1 mAb (0.5 mg/mouse) was
done on days 17, 20, and 23.

Flow cytometric analysis. Tumor tissue was chopped and
incubated for 60 min and then shaken continuously at 37°C in a
dissociation cocktail: 0.1% collagenase (Wako, Osaka, Japan)
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and 10 U/ml DNase (Wako) in serum-free medium. The disso‐
ciated cell suspension was centrifuged on a discontinuous 44–
70% Percoll gradient. Cells in the interphase were collected.
The cells were stained with fluorescein isothiocyanate-
conjugated anti-CD8 mAb, phycoerythrin-conjugated anti-CD4
mAb, peridinin-chlorophyll-protein-conjugated anti-CD45 mAb
and allophycocyanin-conjugated anti-T cell receptor (TCR)β
mAb. All of the Abs were purchased from eBioscience. Flow
cytometric analysis was performed on Guava easyCyte using
Guava Incyte software (Merck Millipore, Darmstadt, Germany).

Cytokine measurement. Tumor tissue was homogenated
with phosphate-buffered saline and debris was removed by
centrifuging at 10,000 g. Interferon (IFN)-γ and tumor necrosis
factor (TNF)-α in the supernatants were quantified using a mouse
IFN-γ (eBioscience, SanDiego, CA) and TNF-α (eBioscience)
enzyme-linked immunosorbent assay (ELISA) kit according to
the manufacturer’s instructions.

Microbiota composition. Fresh fecal samples were collected
from the cecum at the end of the experiment. DNA was extracted
using a NucleoSpin DNA Stool (MACHEREY-NAGEL, GmbH
Co., KG, Germany). Isolated DNA was analyzed using 16S
rRNA sequences to investigate the microbial composition. The
16S RNA genes were amplified by PCR using composite-
specific bacterial primers for the V3–V4 region and sequenced
by a next-generation sequencer (Genome Lead Co., Takamatsu,
Japan)

Western blot analysis. Tumor tissue was lysed with lysate
buffer. Proteins were loaded on SDS-PAGE and then transferred
onto polyvinylidene fluoride membranes. The membranes
blocked with 5% nonfat milk were probed with primary Abs at
4°C overnight and then incubated with a horseradish peroxidase-
conjugated secondary Ab. Rabbit anti-PD-L1 (cat. #2177812)
and mouse anti-β actin (cat. #66009) were purchased from Bioss
(Woburn, MA) and Proteintech (Chicago, IL), respectively.

Statistics. Data are shown as means ± SD. The results were
analyzed by the t test between control and experimental groups.
When the p value was less than 0.05, we defined the difference as
significant.

Results

Treatment with genistein or anti-PD-1 mAb suppresses
the growth of B16F1 tumors, but their combination does not
improve their effects. C57BL/6 mice were inoculated with
B16F1 melanoma cells and treated with genistein and/or anti-
PD1 mAb. Mice that were treated with genistein or anti-PD-1
mAb showed a reduced tumor volume and significant differences
in tumor volume were observed at days 21 and 24 compared to
those in the control group. A combination of genistein and anti-
PD-1 mAb treatment did not suppress tumor growth more than a
single treatment. Notably, a significant reduction in tumor
volume was observed at day 21 in mice with both genistein and
anti-PD-1 mAb treatment, but the significant difference was lost
at day 24 by the combination treatment (Fig. 1 A and B).

Immune cell characterizations in mice treated with
genistein and/or anti-PD-1 mAb. We first investigated the
T cell subsets that had infiltrated into the tumor to explore the
protective mechanism for tumor growth. The percentage of
TCRβ+CD4+ and TCRβ+CD8+ cells was not different between the
control and treated groups (Fig. 2). Although we further deter‐
mined the effector cytokines, IFN-γ and TNF-α, a significant
difference in the concentrations of these cytokines was not
observed (Fig. 3).

Analysis of microbiota in mice treated with genistein
and/or anti-PD-1 mAb. Recent evidence suggests that micro‐
biota play an important role in the efficiency of immune check‐
point therapy. We analyzed the composition of microbiota at the
phylum level in mice treated with genistein and/or anti-PD-1

mAb. As shown in Fig. 4A, a significant difference was not
observed in the composition of microbiota between the 4 groups.
In addition to the analysis of phylum level composition, we
determined alfa and beta diversity in microbiota. Although alfa
diversity was not different among the 4 groups (Fig. 4B, p =
0.447), beta diversity in the microbiota of the experimental
groups seems to be different (Supplemental Fig. 1A*, p<0.07).

Expression of PD-L1 in the tumor is correlated with tumor
resistance. PD-L1 in the tumor drives an inhibitory signal to
T cells via PD-1 molecules. We focused on the expression of
PD-L1 molecules and determined their expression levels. The
expression levels of PD-L1 in mice treated with genistein and
mice treated with anti-PD-1 mAb were significantly higher than
the expression level in control mice. Mice that were treated with
both genistein and anti-PD-1 mAb showed reduced PD-L1
expression compared to that in mice treated with genistein or
anti-PD-1 mAb alone. The results suggest that the expression of
PD-L1 in tumors reflects the growth status of the tumor and the
outcome of the therapy.

Discussion

Immune checkpoint therapy against cancer is a novel approach
and has been approved by the FDA. However, current checkpoint
blockade therapy has limited success in certain types of cancers.
Many approaches for improving therapy outcomes by immune
checkpoint blockage such as the use of chemotherapy, radio‐
therapy, and tyrosine kinase inhibitors have been attempted.(11–15)

In this study, we chose the food-derived compound genistein and
examined the effect of genistein on immune checkpoint therapy.
We found that treatment with genistein or anti-PD-1 mAb
suppresses the growth of B16F1 melanoma but that a combina‐
tion of these two treatments cannot improve the protective
activity (Fig. 1). It has been shown that inhibition of tumor
growth by immune checkpoint therapy is correlated with activa‐
tion of CD4+ and CD8+ T cells.(17,18) To elucidate the mechanism,
levels of infiltrated lymphocyte subset and cytotoxic cytokines
were determined. Unexpectedly, percentages of TCRβ+CD4+ and
TCRβ+CD8+ cells and concentrations of IFN-γ and TNF-α were
not different between the control and treatment groups (Fig. 2
and 3).
Recent studies have highlighted key roles of gut microbiota in

mediating tumor responses to chemotherapeutic agents and in
immunotherapies targeting PD-L1 or CTLA-4.(19–21) Since we
could not find a relationship between tumor resistance and T-cell
activation, we next analyzed microbiota compositions in the
four groups. A significant difference in beta-diversity was not
observed but it tended to show different patterns in the four
groups (Supplemental Fig. 1A*). Although we compared micro‐
biota compositions at the phylum, class, order, family and genus
levels (Fig. 4A and Supplemental Fig. 1B and C*), no difference
was found. In a mouse model, Bifidobacterium fragilis and
Akkermansia muciniphila have been shown to improve the
efficacy of checkpoint blockade immunotherapy.(20–22) We could
not find a difference in these bacteria among the experimental
groups (data not shown).

It has been shown that several food-derived components
enhance therapeutic efficacy through immune checkpoint treat‐
ment. Leteolin and its derivative apigenin improve anti-tumor
immunity in KRAS-mutant lung cancer.(23) The mechanism of
improvement of anti-tumor immunity is thought to be down-
regulation of PD-L1 expression in the tumor. In another study,
caffeine was shown to be effective in anit-PD-1 mAb therapy in
B16F10 melanoma-inoculated mice.(17) In those two studies,
inhibition of tumor growth was associated with an increment of T
cell functions. Independent of immune check point therapy, the
dietary phytochemicals apigenin and omega-3 exert anti-tumor
effects and the actions of their effects are mediated by a decre‐
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ment of PD-L1 expression.(24–26) In the case of omega-3, it has
been shown that treatment of tumor cells with omega-3 induced
ubiquitination of PD-L1 molecules and then degraded them.(26)

Independent of PD-L1 mechanism, lipid-soluble polyphenols
from potato has been shown to suppress tumor growth in vitro
and enhance chemosensitivity in vivo.(27)

Human clinical studies have shown that expression of PD-L1
in the tumor is a promising biomarker for prognosis of patients
with breast cancer, non-small-cell cancer and gastric cancer.(28–30)

The expression level of PD-L1 is associated with overall
survival. Although we did not find differences in a T cell subset,
cytokine production and microbiota between the control and
treatment groups, we found a significant association in the
expression of PD-L1 (Fig. 5). However, it is not clear whether

the regulation of PD-L1 is a direct effect of genistein and/or
anti-PD-1 mAb treatment or an indirect effect. There have been
interesting results of studies showing that the expression of
PD-L1 in tumor-infiltrating lymphocytes is related to better
survival of patients with cancer.(31,32) We cannot distinguish the
expression of PD-L1 among tumors and tumor-infiltrating
lymphocytes. Further studies were needed to explore this point,
and elucidation of the mechanism by which a high expression
level of PD-L1 confers anti-tumor immunity could provide a
new insight for immune check blockade.
We did not observe an additional effect of genistein on the

outcome of immune checkpoint therapy (Fig. 1). Equol is one of
soy isoflavones and is structurally similar to genistein. Equol
does not show anti-tumor action but exerts anti-tumor action
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Fig. 1. Treatment with genistein or anti-PD-1 mAb suppresses the growth of B16F1 tumors, but the combination of genistein and anti-PD-1 mAb
does not improve the effects. C57BL/6 mice were treated with 50 mg/kg body weight of genistein 7 days before inoculation with 105 B16F1
melanoma cells. Anti-PD-1 mAb was administered at day 17, 20, and 23 after tumor inoculation. The volume of tumors each mouse from day 13 to
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are shown as means ± SD (B). A statistical difference was analyzed between the control and treated groups. *p<0.05. **p<0.01.
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when used in combination with anti-PD1 mAb treatment.(33) In
this mechanism, equol might enhance T cell receptor activation
in CD8+ T cells via estrogen receptor (ER)β. ERs α and β, which
are encoded by different genes, mediate the diverse physiological
effects of estrogens. Soy isoflavones have been shown to prefer‐

entially bind to the ERβ rather than tothe ERα.(34) The differential
effects of genistein and equol on immune checkpoint therapy is
not clear. Although the binding affinity of genistein and that of
equol to ERβ is the same, transcription ability as assessed by the
proliferation response in ER-positive MCF-7 cells by equol is
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stronger than that by genistein.(35)

An attenuation of immune blockade therapy has been reported
in isothiocyanates, which are found in cruciferous vegetables.(36)

Combination treatment of isothiocyanates and anti-PD-1 mAb
weakened the sensitivity of tumor cells to anti-PD-1 therapy. The
mechanism for reducing the effect of immune blockade inhibitors
is mediated by TP63 inducing up-regulation of PD-L1 in tumors.
Although treatment with genistein partially abolished the effect
of immune blockade inhibitors (Fig. 1), up-regulation of PD-L1
was not observed (Fig. 5). Therefore, the suppressive effects of
genistein and isothiocyanates on immune blockade inhibitors

might be different.
In conclusion, the soy isoflavone genistein does not improve

the efficacy of immune checkpoint blockage. We found that a
high expression level of PD-L1 in tumors is a useful clinical
prognostic maker for cancer therapy.
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Abbreviations

Ab antibody
CTLA-4 cytotoxic T lymphocyte-associated protein 4
ELISA enzyme-linked immunosorbent assay
L ligand
IFN interferon
m monoclonal

PD programmed death
TCR T cell receptor
TNF tumor necrosis factor
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