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Abstract

Background: Staphylococcus aureus gene expression has been sparsely studied in deep-sited infections in humans.
Here, we characterized the staphylococcal transcriptome in vivo and the joint fluid metabolome in a prosthetic joint
infection with an acute presentation using deep RNA sequencing and nuclear magnetic resonance spectroscopy,
respectively. We compared our findings with the genome, transcriptome and metabolome of the S. aureus joint fluid

isolate grown in vitro.

Result: From the transcriptome analysis we found increased expression of siderophore synthesis genes and multiple
known virulence genes. The regulatory pattern of catabolic pathway genes indicated that the bacterial infection was
sustained on amino acids, glycans and nucleosides. Upregulation of fermentation genes and the presence of ethanol

in joint fluid indicated severe oxygen limitation in vivo.

Conclusion: This single case study highlights the capacity of combined transcriptome and metabolome analyses for
elucidating the pathogenesis of prosthetic infections of major clinical importance.

Keywords: Staphylococcus aureus, Joint infection, Prosthesis, In vivo gene expression, Virulence, Metabolism,

Siderophore, RNA-seq, NMR, Metabolomics

Background

Staphylococcus aureus is one of the leading causes of
community- and hospital-acquired infections worldwide.
The clinical spectrum ranges from superficial skin le-
sions to deep-sited or generalized infections. Besides
acute infections, S. aureus can adapt to a biofilm mode
of growth in response to certain environmental cues and
thereby infections become persistent and recurrent, par-
ticularly in association with prosthetic implants [1].
Moreover, the emergence and spread of resistance to
many classes of antibiotics pose an increasing threat to
public health. Consequently, staphylococci have been
studied extensively both in vitro and in vivo with special
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focus on resistance and virulence. An arsenal of virulence
factors has been identified including toxins, cell surfaces
proteins that facilitate attachment and colonization, and
factors that contribute to immune evasion and tissue
damage [2]. However, few studies have investigated nutri-
ent acquisition and metabolism of S. aureus in vivo during
infection, which is an important aspect of S. aureus
pathophysiology.

Recently, the increasing number of genome sequences
of S. aureus have provided deeper insights into its viru-
lence, antibiotic resistance and physiology in general [3].
It is recognized that the success of S. aureus depends
not only on its virulence genes and development of anti-
biotic resistance, but also on a coordinated and timely
expression of genes upon infection of its host. To eluci-
date this complicated orchestration of gene expression,
the transcriptome has been studied in vitro and in vivo

© 2016 Xu et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12866-016-0695-6&domain=pdf
mailto:kln@bio.aau.dk
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Xu et al. BMC Microbiology (2016) 16:80

using rabbit [4] and mouse [5, 6] infection models. How-
ever, pathogens are likely to make host-specific adaptions
by altering gene expression, which necessitates studies in
humans. To our knowledge, Date et al. [6] is the only
published investigation of the transcriptome of S. aureus
in humans with cutaneous infections caused by the
methicillin-resistant USA300 strain.

The aim of this study was to compare the in vivo ex-
pression of virulence and metabolic genes of S. aureus
in a prosthetic joint infection in a human subject with
growth in vitro as reference using RNA sequencing
(RNA-seq). Moreover, using nuclear magnetic resonance
(NMR) spectroscopy we analyzed the metabolites in the
joint fluid and in culture supernatants in order to deter-
mine the biochemical composition of the environments.

Results and discussion

S. aureus infection: culture, genome and transcriptome
Standard culture of joint fluid, tissue biopsies, and pros-
thesis components revealed a pure growth of S. aureus
with a pansusceptible antibiogram (see case history in
Methods). Amplicon sequencing was used for detection
of bacteria in fluid obtained by sonication of prosthesis
components (all joint fluid was used for RNA-seq).
Approximately 44000 reads were obtained, all of which
were clustered into operational taxonomic units (OTUs)
identified as S. aureus (data not shown).

The joint infection had an acute presentation although
a previous indolent period cannot be precluded (see case
history). Assuming an acute infection [7], we chose to
compare gene expression of the in vivo sample with the
isolate in an exponential growth phase. Additionally, we
sequenced the genome of the isolate (SAU060112) to
gain insight into the virulence and antibiotic resistance
capacity and to facilitate high fidelity RNA-seq read
mapping.

To reconstruct the genome 17.8 million reads were gen-
erated. The assembly resulted in 17 contigs with an aver-
age coverage of 729 and N50 of 601492 bp. The total
length of contigs was 2.68 Mb which is close to the aver-
age (2.86 Mb) gapless chromosome length of S. aureus
(currently 66 strains in total available at NCBI, May 2015).
No plasmids were found. The genome assembly is
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predicted to contain 2562 protein-coding genes. Details of
the assembly and analysis of the COG classification distri-
bution of the protein-coding sequences can be found in
Additional file 1: Tables S1, Additional file 2: Table S2 and
Additional file 3: Figure S1. The isolate was spa type t908
and belonging to Clonal Complex 45. Interestingly, ac-
cording to Driebe et al. [8] CC45 show less homoplasy
density than other S. aureus clades indicating little re-
combination with other clonal complexes. Furthermore,
in contrast to other CC45 strains included in the study,
but similar to USA600-BAA1754 (spa type t671), the
entererotoxin genes entC, sel and sen is present in
SAU060112. We thus believe that within the CC45
complex, SAU060112 is relative closely related to
USA600-BAA1754 despite the different spa type. Approxi-
mately 25 and 350 million RNA-seq reads were obtained
for in vitro cultures and the in vivo sample, respectively
(Table 1). Between 26.8 and 37.8 % of total reads from the
in vitro cultures were mapped to the protein-coding
sequences of the genome with the mapping criteria
employed (95 % similarity, 80 % length fragment). Re-
laxation of the mapping criteria led to increased mapping
efficiency (data not shown), however, this also increased
the risk of erroneous mapping of human host transcripts
to the bacterial genome. Thus, this conservative approach
was chosen for all samples. As expected, the majority of
the sequences from the in vivo sample originated from the
human host, and only 1.2 % (4.1 million) reads were
mapped to the S. aureus genome and 0.086 % (0.3 million)
to the protein-coding sequences. While 0.3 million reads
might be considered a relative low number of reads com-
pared to modern RNA-Seq studies that frequently have
many millions of reads per sample, it is still expected to be
enough to detect reads from about 85 % of bacterial genes
according to [9]. It is possible that other methods of
purification of bacterial RNA from background host RNA
than the one we employed can yield a higher proportion
of bacterial RNA. A total of 430 genes (17 % of total) were
found to be differentially expressed, of which 317 were
upregulated and 113 downregulated in vivo. The
complete list of differentially expressed genes is avail-
able in Additional file 4: Complete list of differentially
expressed genes.

Table 1 Summary of RNA-seq mapping statistics (numbers of reads are in millions)

Sample No of sequences No of aligned reads No of rRNA reads No of aligned mRNA reads R-value (biological
(% of total sequence) (% of aligned reads) (% of aligned reads) replicates)
Joint fluid 3484 4.1 (1.2) 38(927) 0.3 (73)
LB culture
1 26.7 18.1 (67.8) 8 (44.2) 10.1 (55.8) >0.95
2 26.5 17.7 (66.8) 10.1 (57.1) 7.1 (40.1)
3 23.1 15.7 (68.0) 7.8 (49.7) 7.5 (47.8)
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Antibiotic resistance genes

SAUO060112 was susceptible to -lactams (including peni-
cillin and methicillin) and 5 additional antibiotic classes.
Analysis of the genome by the Resistance Gene Identifier
(RGI) at the Comprehensive Antibiotic Research Database
[10] predicted absence of resistance genes to [-lactams,
macrolides and aminoglycosides in accordance with the
antibiogram, but identified several efflux pumps related to
other antibiotics (Additional file 5: Figure S2). Some of
the efflux pumps (tet38 40-fold, p-val = 8.2*107*%; mepA
7-fold, p-val = 2.5*107°) and cell wall biosynthesis genes
(mgt 12-fold, p-val = 4.0*107*% pbp2 5-fold, p-val = 0.0027;
murZ 8-fold, p-val = 5.8*107°) had increased expression in
vivo, possibly induced by antibiotic treatment received by
the patient for two days. The peptidoglycan biosynthesis
pathway has been shown to be upregulated in S. aureus
treated with subinhibitory doses of cell wall active antibi-
otics [11, 12]. However, several studies [12—14] have
shown responses in bacteria is a global process not only
involving proteins directly affected by antibiotics, but also
proteins with no apparent relationship to the antibiotics.
Therefore, it is unknown to which extent the differentially
regulated genes found in this study was induced by anti-
biotic treatment or an in vivo response.

Virulence

A total of 131 known or proposed virulence genes were
found in the genome (Table 2, Additional file 6: Table S3),
of which 47 were upregulated in vivo, including many
toxins, several adhesins and immune evasion mole-
cules. The highest upregulated toxin was y-hemolysin
(higA 776-fold, p-val = 1.6*10>%, higB 482-fold, p-val =
1.4*107%°, and higC 701-fold, p-val = 3.5*107>"), which
has previously been found among the most overex-
pressed toxins in S. aureus cultivated in human blood
in vitro [15] and in human cutaneous abscesses [6].
Among the in vivo upregulated extracellular matrix bind-
ing proteins, major histocompatibility complex (MHC)
analogous protein (map) had the highest expression
(458-fold, p-val = 2.7%107%). Map was found significantly
expressed in S. aureus during the acute phase of murine
osteomyelitis [16] and the protein has been linked to
severity of arthritis and osteomyelitis in this animal
model [17].

The extraordinary ability of S. aureus to adapt to differ-
ent physiological niches (e.g. the nares, skin, joints, blood,
etc.) and cause a variety of clinical pictures is partly attrib-
uted to its many virulence determinants, which are tightly
regulated and involve complex networks of regulatory fac-
tors [18]. Knowledge of its regulatory networks during
colonization and infection in vivo remains limited due to
the inherent complexity. Among the many virulence
regulators, only saeRS (saeR 19-fold, p-val =3.0*107'°;
saeS 8-fold, p—val:5.8*10’6) and vraSR (vraS 28-fold,
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p-val =84*10"% vraR 14-fold, p-val=8.5*10""") were
highly induced in vivo (Table 2, Additional file 6: Table S3).
Cell-wall-affecting antibiotics are known to induce vraSR
and saeRS [19]. Thus, expression of both systems could be
partly induced by p-lactams prior to surgery (see case
history). VraSR positively regulates cell-wall peptidogly-
can synthesis in S. aureus [20, 21]. SaeRS has a global
impact on expression of virulence factors [22, 23] and
is important for innate immune evasion by S. aureus
[24]. Several virulence genes controlled by saeRS were
highly upregulated, including map, a-(91-fold, p-val =
7.5*107%), B- (36-fold, p-val =2.1*1077), y-hemolysins
(hlgA 776-fold, p-val = 1.6*1072®, higB 482-fold, p-val =
1.4*1072°, and higC 701-fold, p-val = 3.5*107"), chp (29-
fold, p—va1:9.2*10’17), 2 loci for scn (26-fold, p-val =
3.91071% 3-fold, p-val = 0.004), coagulase (coa) (12-fold,
p-val = 5.1*10'%), sbi (15-fold, p-val = 1.4*107°), extra-
cellular matrix protein-binding protein (emp) (77-fold,
p-val = 8.1*107%¢), and two fibronectin binding proteins
(17-fold, p-val = 3.7%107'%; 5-fold, p-val = 0.00011) [22, 23]
(Table 2). SaeRS was also overexpressed in cutaneous
abscesses in humans [6], murine osteomyelitis [16] as
well as during incubation with human blood or serum [15].
Notably, the expression of 32 virulence genes present
in the genome was negligible (<5 reads/100,000 mapped
mRNA reads) in vivo. Also, 9 virulence genes were found
downregulated including transcription regulator sarS
(13-fold, p-val = 6.1*107°) [25], immunoglobulin G-binding
protein A (spa) (6-fold, p-val=0.005), and six of eight
genes in the putative ESAT-6-secretion system, while ex-
pression of these genes was reported unchanged in [6]
(Table 2). SarS belongs to the SarA protein family, global
regulators of virulence gene expression in S. aureus [26].
SarS, which is controlled by many regulators, activates spa
expression and represses a-hemolysin [18, 27]. This corre-
lates with the finding in this study of expression of spa be-
ing reduced while expression of a-hemolysin is increased
(91-fold) in vivo. ESAT-6 proteins have been reported to
be important for staphylococcal infection in mice, but their
functions during human infection remain unclear [28].

Siderophores

In response to iron limitation, S. aureus has two known
iron acquisition mechanisms: one is the iron-regulated
surface determinant (isd) gene set that mediates heme
acquisition from mammalian heme-containing proteins,
and the other is a Fe(IIl)-siderophore acquisition system,
which is capable of removing iron from human transfer-
rin and lactoferrin. S. aureus produces two distinct side-
rophores: staphyloferrin A and staphyloferrin B [29].
The Ferric Uptake Regulator (Fur) controls expression of
genes encoding all these systems [30], but mechanisms for
fine-tuning of expression of these systems are unknown.
We found 3-fold upregulation of fur (p-val = 0.004) during
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Table 2 Differentially expressed virulence genes in vivo compared to in vitro. The RNA-seq data are compared with the microarray
data of Staphylococcus aureus subsp. aureus USA300_FPR3757 (community-acquired methicillin-resistant) infected cutaneous abscesses in

humans retrieved from Date et al. [6]

SAU060112 USA300 Gene  Product Fold Number/100000 mapped Fold change during human
name change mRNA reads cutaneous abscesses
Infection LB

Toxins

SAUSA300_2365 hlgA  Gamma-hemolysin component A 776 574 1 12.56
SAU060112_40253

SAUSA300_2366 hilgC ~ Gamma-hemolysin component C 701 524 1 5.76
SAU060112_40254

SAUSA300_0396 Superantigen-like protein 503 78 0 148
SAU060112_20343

SAUSA300_2367 higB  Gamma-hemolysin component B 482 531 2 17.65
SAU060112_40255

SAUSA300_1974 Uncharacterized leukocidin-like 376 453 2 9.72
SAU060112_50039 protein 1

SAUSA300_1975 Uncharacterized leukocidin-like 140 198 2 1442
SAU060112_50038 protein 2

SAUSA300_0398 Toxin, beta-grasp domain protein. 128 29 0 1.65
SAU060112_20344 superantigen-like protein

- Toxin, beta-grasp domain protein, 109 41 1
SAU060112_20345 superantigen-like protein

SAUSA300_0399 set Exotoxin 3 104 23 0 1.1
SAU060112_20347

SAUSA300_1058 hly Alpha-hemolysin 91 136 2 2.08
SAU060112_10176

SAUSA300_0401 set Exotoxin 1 80 21 0 133
SAU060112_20348

SAUSA300_0403 ssl7nm  Enterotoxin-like toxin 56 8 0 134
SAU060112_20350

SAUSA300_1918 Truncated beta-hemolysin 36 2 0 7.84
SAU060112_110014

SAUSA300_1061 Superantigen-like protein 21 9 1 493
SAU060112_10172

SAUSA300_1060 Beta-grasp domain toxin protein, 17 9 1 264
SAU060112_10173 superantigen-like protein

- entC  Enterotoxin type C-2 15 72 7
SAU060112_10457

SAUSA300_1059 putative superantigen-like protein 11 10 1 235
SAU060112_10174

SAUSA300_0404 Superantigen-like protein 9 6 1 1.39
SAU060112_20351

SAUSA300_0800 sel Extracellular enterotoxin L 3 5 2 113
SAU060112_10456
Exoenzymes

SAUSA300_0224 coa Staphylocoagulase 12 55 7 1.5
SAU060112_20156

SAUSA300_2603 lip Lipase 1 4 95 32 051
SAU060112_40510
Adhesins

SAUSA300_1917 map  MHC analogous protein 458 2894 10 No data
SAU060112_110015

SAUSA300_0774 emp  Extracellular matrix protein-binding 77 50 1 202

SAU060112_10448

protein emp
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Table 2 Differentially expressed virulence genes in vivo compared to in vitro. The RNA-seq data are compared with the microarray
data of Staphylococcus aureus subsp. aureus USA300_FPR3757 (community-acquired methicillin-resistant) infected cutaneous abscesses in
humans retrieved from Date et al. [6] (Continued)

SAUSA300_2441 fnbA  Fibronectin-binding protein A 17 116 10 1.73
SAU060112_40332

SAUSA300_2440 fnbB  Fibronectin-binding protein B 5 108 31 167
SAU060112_40330

SAUSA300_1055 fib Fibrinogen-binding protein 5 6 2 1.02
SAU060112_10180

SAUSA300_1327 ebh Extracellular matrix-binding 3 28 14 1.08
SAU060112_70131 protein ebh
Immune evasion

SAUSA300_1920 chp Chemotaxis inhibitory protein 29 11 1 6.1
SAU060112_110009

SAUSA300_1056 scn Staphylococcal complement 26 5 0 091
SAU060112_10179 inhibitor

SAUSA300_2364 sbi Immunoglobulin-binding 15 230 22 19
SAU060112_40252 protein sbi

SAUSA300_1919 scn Staphylococcal complement 3 27 15 1.55
SAU060112_110010 inhibitor

SAUSA300_0113 spa Immunoglobulin G-binding -6 63 618 148
SAU060112_20047 protein A

SAUSA300_1053 flIr FPRL1 inhibitory protein 26 2 0 3.16
SAU060112_10182
Exopolysaccharides

- cap8)  Capsular polysaccharide -16 0 8
SAU060112_20094 synthesis enzyme Cap8J
Secretion system

SAUSA300_0285 esxB Virulence factor EsxB -10 1 382 0.85
SAU060112_20221

SAUSA300_0284 esaC Protein EsaC -9 1 9 0.83
SAU060112_20220

SAUSA300_0280 essA Protein EssA -9 1 9 13
SAU060112_20216

SAUSA300_0282 essB Protein EssB -8 1 12 0.86
SAU060112_20218

SAUSA300_0279 esaA Protein EsaA —6 6 56 061
SAU060112_20215

SAUSA300_0283 essC Protein EssC -5 10 81 0.79
SAU060112_20219
I[ron acquisition

SAUSA300_0118 sbnA  putative siderophore biosynthesis 27 14 1 7.02
SAU060112_20052 protein SbnA

SAUSA300_0122 sbnE  lucA/lucC family siderophore 20 34 3 1.99
SAU060112_20056 biosynthesis protein

SAUSA300_0121 sbnD  Transporter, major facilitator family 15 20 2 5.02
SAU060112_20055 protein

SAUSA300_0123 sbnF  Siderophore biosynthesis protein 14 44 5 29
SAU060112_20057

SAUSA300_0119 sbnB  Ornithine cyclodeaminase 13 15 2 6.35
SAU060112_20053

SAUSA300_0120 sbnC  Siderophore biosynthesis protein, 11 24 3 517
SAU060112_20054 lucA/lucC family

SAUSA300_0126 sbnl conserved protein of unknown 9 22 4 425

SAU060112_20060 function
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Table 2 Differentially expressed virulence genes in vivo compared to in vitro. The RNA-seq data are compared with the microarray
data of Staphylococcus aureus subsp. aureus USA300_FPR3757 (community-acquired methicillin-resistant) infected cutaneous abscesses in

humans retrieved from Date et al. [6] (Continued)

SAUSA300_0125 sbnH  Conserved protein of unknown 7 33 8 433
SAU060112_20059 function

SAUSA300_0124 sbnG  Conserved protein of unknown 4 14 5 4
SAU060112_20058 function
Virulence regulators

SAUSA300_1866 vraS Sensor protein VraS 28 275 15 1.14
SAU060112_110071

SAUSA300_0691 saeR  Response regulator SaeR 19 309 24 3.72
SAU060112_10560

SAUSA300_1865 vraR Response regulator protein VraR 14 141 15 0.63
SAU060112_110072

SAUSA300_0690 saeS Histidine protein kinase Sae$S 8 394 75 253
SAU060112_10561

SAUSA300_0114  sarS HTH-type transcriptional regulator =13 1 18 035

SAU060112_20048 SarS

in vivo infection, but no difference in expression of isd
and staphyloferrin A genes. However, the sbn operon
(locus SAU060112_20052 — 20060) encoding staphylofer-
rin B was upregulated in vivo (3- to 27-fold, p-val =
6.9*107° — 2.3*1077) in this study. The ninth protein
Sbnl encoded by the sbn operon is recently found to
play an important role in transcription control of the
sbn operon [31]. Staphyloferrin B production has been
found to be important for S. aureus growth in iron-limited
medium and for its pathogenicity in a murine kidney ab-
scess model [32]. In human cutaneous abscesses expres-
sion of both isd and sbn operons was elevated as well as
two genes of the staphyloferrin A operon [6].

Metabolism

We observed upregulation of several genes related to
anaerobic/hypoxic conditions, which include the genes
involved in pyruvate to ethanol fermentation (pfIB 23-
fold, p-val = 8.3*107"; aldA 4-fold, p-val =7.9*10"% ADH
25-fold, p-val=29*10""% adhP 16-fold, p-val=1*10"%)
and acetoin reductase (23-fold, p-val = 2.4*1071%) involved
in pyruvate to acetoin fermentation as well as the upregu-
lation of the arginine deiminase (ADI) pathway (arcA 156-
fold, p-val=1.0*10""%; arcB 279-fold, p-val =4.3*107%;
arcC 67-fold, p-val =3.5*107'% arcD-230 fold, p-val =
1.2¢107%% argl 126-fold, p-val = 3.8%1073) (Fig. 1) and
pyruvate formate-lyase-activating enzyme (pfIA) (63-fold,
p-val =7.3*107'°). The anaerobic/hypoxic condition was
further supported by the high concentration of lactate
(~40 mM) and presence of ethanol in the infected joint
fluid (Fig. 2).

The ADI operon was the most upregulated amino acid
catabolic pathway in the current study as well as in human
cutaneous abscesses [6] and chronic human and murine
osteomyelitis [16]. This operon also includes arginine/

ornithine antiporter arcD, which is the only transporter
for free arginine [33]. Arginine is utilized by S. aureus as a
source of energy under anaerobic conditions [34]. We
think that this pathway is essential for the direct produc-
tion of ATP without generating organic acids under anaer-
obic conditions. This hypothesis is indirectly supported
by the overexpression of the ethanol fermentation path-
way. Under microaerophilic or anaerobic conditions, S.
aureus ferments the majority of pyruvate to lactic acid
in vitro [33]. However, lactic acid concentration was
nearly 40 mM in the joint fluid (Fig. 2), which was
higher than average lactate level in septic arthritides
and probably was produced mainly by human host cells
under hypoxic condition [35]. To avoid the unfavorable
production of additional lactic acid while still oxidizing
NADH to NAD" for continuation of glycolysis and ATP
generation, genes promoting pyruvate fermentation to
ethanol were upregulated instead.

Besides ADI, high expression of catabolic threonine
dehydratase tdcB (52-fold, p-val = 2.5*1071°), alanine de-
hydrogenase ald (24-fold, p-val =1.3*107'*) and several
additional amino acids catabolic enzymes were observed
(Fig. 1), while several genes involved in amino acid syn-
thesis including tryptophan, arginine, cysteine and histi-
dine were among the 113 downregulated genes in vivo.
Moreover, NMR data showed high concentration of free
amino acids in the infected joint fluid compared to LB
culture (Fig. 2). Taken together, our data suggest that
free amino acids were a major source of carbon and en-
ergy for S. aureus in vivo.

Besides amino acids, several genes involved in carbo-
hydrate catabolism had increased expression in vivo, in-
cluding N-acetylneuraminate lyase nanA (9-fold, p-val =
8.9*1077) and the lac operon (125- to 464-fold, p-val =
2.4*107*%-2.7#10"%). The enzyme NanA catalyzes the
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in the current study are listed in the second column while fold change of these enzymes in the human cutaneous abscesses study [6] are in
the third column
J

cleavage of N-acetylneuraminic acid (Neu5Ac), which is  glycolipids. Host glycoproteins can be used as nutrient
the predominant sialic acid in humans and is present as  for bacteria [36], for example, Streptococcus pneumoniae
a terminal sugar on a wide range of glycoproteins and can utilize human glycoconjugates as the sole source of
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Fig. 2 Concentration of metabolites determined by NMR analysis. In vitro (ODgo = 0) (blue) and joint fluid (green) were analyzed in technical
triplicates while in vitro (ODgoo = 0.5) (red) was done in biological replicates. The detection limit of NMR is ~ 2 uM. a: amino acids. b: nucleobases.

carbon for growth [37]. The increased expression of
nanA is consistent with the higher concentration of
Neu5Ac in the joint fluid than the in vitro supernatant
where it was undetectable (Fig. 2). The S. aureus lac op-
eron is inducible by galactose and suppressed by glucose
[38]. The concentration of galactose in vivo was at the
baseline level in the NMR spectra, hence, it is unknown
to which extent galactose is used as a nutrient.

The increased expression of purine and pyrimidine
deoxyribonucleoside degradation pathways (deoA 5-fold,
p-val = 0.0001; deoB 4-fold, p-val =0.001; deoC 9-fold,
p-val =5.810™® and deoD 81-fold, p-val =8.3*107'°)
indicated that the pathogen probably also acquired
nucleosides as nutrients. The end products of these
pathways are acetyl-CoA, a central metabolic inter-
mediate, and D-glyceraldehyde-3-phosphate, an inter-
mediate of glycolysis (Fig. 1). The metabolite measurement

shows increased levels of nucleosides, particularly ura-
cil, in vivo (Fig. 2). Uracil has been found elevated in
joint fluid from rheumatoid arthritis patients [39];
however, the mechanism behind this is unknown.
Although the concentration of free amino acids, some
glycans and nucleosides were higher in the joint fluid,
the expression level of all hydrolytic exoenzymes but li-
pases remained low in vivo (Additional file 6: Table S3).
This is in contrast to findings reported by Szafranska
et al., who observed upregulation of many genes encoding
secreted proteolytic enzymes in S. aureus during acute
and chronic murine osteomyelitis [16]. A possible explan-
ation for the low expression of hydrolytic exoenzymes in
the current study is that hydrolysis of proteins and glycans
might have been done by host enzymes as part of the in-
flammatory response. Neutrophils both release proteases
themselves and activate proteases expressed by cells
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resident in tissues. Thus, the host response could provide
S. aureus with the free amino acids, the glycans and other
nutrients needed for growth in vivo.

Among the transport systems, oligopeptide permease
(opp) transporters encoded by the opp-1 operon (locus
SAU060112_40296 — 40300) were the most overexpressed
transporter system (up to 101-fold, p-val=2.2*10"*')
along with the genes surrounding the operon (locus
SAU060112_40295 — 40303). This operon was also highly
overexpressed in cutaneous abscesses in humans [6]. The
exact role of opp-1 remains unknown, although it was
found to impact in vivo growth of S. aureus in mouse and
rabbit infection models [40].

A major limitation of our study is the lack of biological
replicates, as we did not obtain other samples of S. aur-
eus infected joint fluid during the study period. In an at-
tempt to find similarities of S. aureus gene expression in
infections in human subjects, thus corroborating the
findings in independent experiments, we compared our
RNA-seq data extensively with microarray data from S.
aureus cutaneous abscesses in humans [6]. Although
the two studies differed in type of infections, genetic
background of S. aureus isolates, experimental setups
and analytic methods, they had 113 upregulated and 13
downregulated genes in common, which correspond to
36 % upregulated and 12 % downregulated genes found
in this study. The upregulated virulence genes included
saeRS, a few toxins (particularly y-hemolysin and two
uncharacterized leukocidin-like proteins), and c/p (Table 2).
With regard to nutrient acquisition and metabolism, the el-
evated transcripts were those of the sbn operon, ADI op-
eron, tdcB, ald, and several enzymes involved in nucleoside
catabolism as well as ethanol fermentation (Fig. 1).
Additionally, the opp-1 operon was overexpressed in both
studies. The 13 downregulated genes in both studies in-
cluded the virulence regulator sarS (13-fold, p-val=
6.1*107°), cystathionine y-lyase (mccB 6-fold, p-val=
0.001, glyoxal reductase (yvgN 5-fold, p-val =0.004),
glycosyl-4,4'-diaponeurosporenoate acyltransferase (crtO
668-fold, p-val =0.004), phosphoribosylformylglycinami-
dine synthase 1 (purQ 5 fold, p-val =0.002), and a few
conserved proteins of unknown function. All in all, the
biological function and regulation of these up- and down-
regulated genes need to be investigated by future in vivo
studies.

Conclusions

This single case study highlights the capacity of com-
bined transcriptome and metabolome analyses for elu-
cidating the pathogenesis of deep-sited infections with
and without a foreign body. Future research should ex-
plore the in vivo physiology and virulence of S. aureus,
which may ultimately lead to new strategies to combat
S. aureus infections.
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Methods

Case history

The patient was an adult male with a sero-negative polyar-
thritis since his youth. Debut of psoriasis led to a diagnosis
of psoriatic arthritis after approximately two decades. He
had undergone numerous surgical procedures and had
joint implants in one hip, both knees, one elbow and one
shoulder. Immunomodulatory therapy with adalimumab
(Humira, Abbott US), a tumor necrosis factor (TNF)-«
antibody , was started 26 months before the admission.
The patient was admitted after a fall with subsequent
swelling of the right knee. He was febrile (38.8 °C) and had
marginal leukocytosis (12.0*10°/L) and highly elevated
C-reactive protein (304 pg/mL, reference interval <10 pg/
mL). A joint puncture revealed serous joint fluid (60 %
mononuclear leukocytes) and 10*-10° colony forming
units of S. aureus, susceptible to penicillin, methicillin and
5 antibiotic classes other than p-lactam [41]. Intra-venous
dicloxacillin was commenced on the 2nd day of admis-
sion, but changed to cefuroxim in combination with gen-
tamicin due to spiking fever. S. aureus with the same
antibiogram was obtained from blood culture and biopsies
obtained during revision surgery with removal of the im-
plant on the 4th day of admission. On the same day intra-
venous therapy was switched to penicillin G. The blood
culture isolate was referred to Statens Serum Institut
(Copenhagen, Denmark) for spa-typing as part of national
surveillance (t908, annotated to Clonal Complex 45). Sev-
eral months later the patient underwent surgical revision
and removal of implants from the left elbow and the left
hip. S. aureus infection with the same antibiogram was
confirmed.

Culture and antibiotic resistance test

Joint fluid, biopsies and prosthetic components were cul-
tured according to [42] with an incubation period of
14 days (see Additional file 7). Species identification was
done with a MALDI Biotyper CA System (Bruker
Daltonics, Germany). Antimicrobial susceptibility test-
ing was carried out as above [41]. The S. aureus isolate
from prosthetic components was designated SAU060112.

16S rRNA gene amplicon sequencing and data analysis

DNA extraction was done using MolYsis complete5
(Molzym, Germany) according to the manufacturer’s
instructions. For 16S rRNA amplicon sequencing, the
V1-3 region was PCR amplified with bacterial primers
27 F and 534R in accordance with the protocol used by
the Human Microbiome Project [43] and sequenced on
a MiSeq DNA sequencer (Illumina, CA) [44]. The 16S
rRNA amplicon data were analyzed using QIIME toolkit
[45]. Raw sequences were demultiplexed and quality-
filtered using the default parameters. Sequences were then
clustered into OTUs based on 99 % sequence similarity
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and taxonomy assignment was done using the Greengenes
database [46].

Genome sequencing and annotation

S. aureus SAU060112 was grown overnight in LB
medium. DNA was extracted using UltraClean® Microbial
DNA Isolation kit (MO BIO Laboratories, Inc, CA) ac-
cording to the manufacturer’s instructions. From 1 pg of
DNA, a library for Illumina paired-end (PE) sequencing
was constructed using NEBNext® Ultra™ DNA Library
Prep Kit for Illumina®(New England Biolabs, MA) ac-
cording to the manufacturer’s instructions. Libraries were
sequenced (2 x 150 bp) using Truseq SBS Kit v.3-HS Se-
quencing Kit (Illumina Inc.) on an Illumina HiSeq 2000
(Hlumina Inc). Sequenced PE reads were imported into
CLC genomics workbench v.6.5.1 (CLC Bio, Aarhus,
Denmark) for assembly. Contigs were annotated using
the web interface Magnifying Genomes (MaGe) of the
MicroScope platform from GenoScope [47]. Automatic
annotations provided by MaGe were curated manually
to validate the presence or absence of genes of interest.
Based on the annotations, the protein coding genes
were classified into the Cluster of Orthologous Groups
(COQG) [48] functional categories using COG automatic
classification tool at MaGe. Details of genome sequen-
cing and annotation can be found in Additional file 7.

RNA sample collection, extraction and sequencing
Immediately following aspiration the joint fluid was cen-
trifuged at 12100 g for 2 min at room temperature and
the pellet and supernatant were snap-frozen separately in
liquid nitrogen. RNA from in vitro cultures (3 biological
replicates) were isolated from cultures grown to exponen-
tial phase (OD600 ~ 0.5) in LB medium. The cell suspen-
sion was centrifuged and supernatant and pellet were
snap-frozen separately. All samples were stored at —-80 °C
until RNA extraction or NMR analysis.

RNA was extracted using RiboPure™ Bacteria Kit
(Ambion®, Life Technologies) except that the in vivo sam-
ple was homogenized in a mortar (precooled in liquid ni-
trogen) before RNA extraction. The RNA solutions were
purified and concentrated using the MinElute PCR Purifi-
cation Kit (Qiagen).

Twenty micrograms of in vivo-derived RNA was
sequentially treated with the MICROBE#nrich™ and
MICROBExpress™ kits (Ambion®) to deplete mamma-
lian RNA and enrich bacterial mRNA, respectively.
Four to six micrograms of in vitro-derived RNA was
used. Sequencing libraries were prepared with the
enriched microbial RNA using [llumina® TruSeq” RNA
Sample Preparation Kit v2 according to the manufac-
turer’s instructions. Libraries were PE sequenced (2 x
150 bp) using Truseq SBS Kit v.3-HS Sequencing Kit
on an Illumina HiSeq 2000.
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Differential gene expression analysis

Using the RNA-Seq analysis function in CLC Genomics
Workbench, reads were aligned to the annotated
SAU060112 genome allowing a minimum length fraction
of 0.8 and minimum similarity fraction of 0.95. A table
of read counts was used as input for differential gene ex-
pression analysis using edgeR using default settings [49].
Only genes with false discovery rate <0.05 using Benja-
mini and Hochberg’s algorithm [50] were classified as
differentially expressed.

NMR spectroscopy analysis

Prior to NMR measurements, samples were centrifuged
at 4 °C for 5 min at 12100 g and kept on ice thereafter.
Aliquots of 500 pL of supernatants were mixed with
100 pL 0.2 M phosphate buffer (pH 7.4, 99 % *H,O,
0.3 mM DSA-dg (4,4-dimethyl-4-silapentane-1-ammonium
trifluoroacetate)). 600 pL of the mixture was transferred to
a 5-mm NMR tube and analysis was performed immedi-
ately using a Bruker 600-MHz NMR spectrometer (Bruker
BioSpin, Germany) equipped with a TCI (*H, **C, N, and
%H lock) cryogenic probe operating at 600.13 MHz for 'H
at 298.1 K. For the analysis, a T, relaxation-edited
Carr-Purcell-Meiboom-Gill (CPMG) [51] experiment
was used (“cpmgprld” in Bruker library, spectral width
12019.23 Hz, time domain 65 K, relaxation delay 4 s,
acquisition time 2.72 s, total spin-echo time 67.4 ms,
64 scans). Data was exponentially multiplied correspond-
ing to a line broadening of 0.3 Hz, Fourier transformed,
manually phase- and baseline- corrected, and calibrated to
the chemical shift of the methyl signal of L-alanine at
1.48 ppm. Subsequently, spectra were overlapped and nor-
malized to the reference peak of DSA-dg at 0.01 ppm.
Peaks showing differences in intensity were quantified
using TopSpin v3.1 (Bruker BioSpin, Germany). For me-
tabolite identification, we used an in-house metabolite
database, Chenomx NMR library (suite 7.6), Human
Metabolome Database [52], Madison Metabolomics Con-
sortium Database from MetaboHunter [53], AMIX (v.
3.9.10, Bruker BioSpin), BRUKER BBIOREFCODE data-
base (v. 2.7.0), and literature references [54, 55].

Availability of supporting data

The annotated genome sequence data was submitted to
the European Nucleotide Archive (accession nos.
CCXNO01000001-CCXN01000017). The RNA-seq data
discussed in this publication have been deposited in
NCBI's Gene Expression Omnibus [56] and are accessible
through GEO Series accession number GSE62091 (http://
www.ncbinlm.nih.gov/geo/query/acc.cgi?acc=GSE62091).
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