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FVC as an adaptive and accurate method for
filtering variants from popular NGS analysis
pipelines
Yongyong Ren 1,2,6, Yan Kong 1,2,6, Xiaocheng Zhou 1, Georgi Z. Genchev 3,4,5, Chao Zhou 1,2,

Hongyu Zhao 4,7✉ & Hui Lu 1,2,5,7✉

The quality control of variants from whole-genome sequencing data is vital in clinical diag-

nosis and human genetics research. However, current filtering methods (Frequency, Hard-

Filter, VQSR, GARFIELD, and VEF) were developed to be utilized on particular variant callers

and have certain limitations. Especially, the number of eliminated true variants far exceeds

the number of removed false variants using these methods. Here, we present an adaptive

method for quality control on genetic variants from different analysis pipelines, and validate it

on the variants generated from four popular variant callers (GATK HaplotypeCaller, Mutect2,

Varscan2, and DeepVariant). FVC consistently exhibited the best performance. It removed

far more false variants than the current state-of-the-art filtering methods and recalled ~51-

99% true variants filtered out by the other methods. Once trained, FVC can be conveniently

integrated into a user-specific variant calling pipeline.
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Whole-genome sequencing (WGS) has been widely used in
diagnosing genetic disorders in the pediatrics1–4, explor-
ing causative relations with tumor progression5–7, study-

ing genetic variation underlying pharmaceutical response8–10,
performing genome-level comparative analysis11,12, assessing gene
expression13–15, and providing clinical insights and instructions16–18.
One prominent application with clinical relevance is the utilization of
WGS data and bioinformatics tools to identify single nucleotide
variants (SNV) and insertion and deletion (INDEL) variants in a
single individual genome. The procedure includes at least two main
software elements: the variant caller and the variant filter. Variant
callers, such as GATKHaplotypeCaller19,20, Mutect221, Varscan222,23,
and DeepVariant24, are utilized to identify the positions and the
genotypes of the genomic variants. Variant filters are then applied to
eliminate false variants made by the variant caller. This filtering step is
necessary due to the fact that there may be tens of thousands of false
variants present in the variant call sets.

Current state-of-the-art filtering methods include Frequency25,
Hard-Filter20, VQSR26, GARFIELD27, VEF28, ForestQC29 and so
on, which employ different strategies in addressing the filtering
task. The Frequency model defines variant calls with the variant
allelic frequency (VAF) less than 20% or the allelic depth (AD)
less than 5 as false variants. The Hard-Filter model applies more
user-selected filter conditions to determine the true and false
variants30. VQSR uses a Gaussian mixture machine learning
algorithm to model the technical profile of variants with high
quality and low quality and filter out probable false variants30,31.
GARFIELD uses a deep learning method to learn the different
characteristics of true and false variants from a standard cross-
validated data set (NA1287832). VEF provides a supervised
learning method to build a filtering model and predict the
probability of the variants to be true. ForestQC filters variants by
combining a traditional filtering method and a machine learning
approach.

Although these methods address the problem rigorously and
are of great utility, some aspects of the available filtering tools and
their performance still merit further improvement. For example,
the source code of the Frequency method must be modified to
adapt to different variant callers. The Hard-Filter, VQSR, and
GARFIELD are developed to quality control variant calls identi-
fied by GATK. The VEF constructs a filtering model by selecting a
subset of features from the existing features in variant calling
results. However, in some cases, such as variants identified by
Varscan2 and DeepVariant, no feature could be selected from the
variant calling results. Thus, these state-of-the-art methods are
limited to particular variant callers.

Furthermore, the Frequency method removes all true variants
with low variant allelic frequency (VAF < 20%) based on its
definition criteria. Hard-Filter removes true variants even when
they are very close to the threshold33. VQSR is recommended to
be used with at least 30 samples29, which may not perform well in
a single sample. GARFIELD is explicitly designed for whole-
exome data27. VEF only uses the integer or float format features
when constructing the filtering model, but the features in char-
acter format are also informative. ForestQC cannot be utilized on
single-sample sequencing data. Five of these filtering methods
(Frequency, VQSR, Hard-Filter, GARFIELD, and VEF) are
available for quality control of variants from single-sample
sequencing data and showed high performance in F1-major and
accuracy28. However, these state-of-the-art methods were unsa-
tisfactory when measured with the Matthews correlation coeffi-
cient (MCC) metric27, which is a highly suggested measurement
for imbalanced data34, i.e., the WGS variant calls. Moreover, these
five filtering methods had a poor performance in balancing
minimizing the filtering of true variants and maximizing the
removal of false variants. As a result, the number of eliminated

true variants far exceeds the number of removed false variants by
using these methods. Therefore, an improved filtering method is
required to provide accurate variant call sets derived from a single
WGS sample and broaden the scope of the application.

Here, we present an adaptive filtering method FVC (filtering
for variant calls) for quality control variant calls from different
analysis pipelines. We validated FVC on the genetic variants
identified by GATK HaplotypeCaller (abbreviated as GATK),
Mutect2, Varscan2, and DeepVariant. Compared to the current
state-of-the-art methods, FVC achieved the highest AUC and
MCC scores in most cases when assessing with the leave-one-
individual-out cross-validation method. We further tested FVC
on an additional data set and performed the assessment using the
leave-one-chromosome-out cross-validation method. FVC had a
consistently superior performance, which has the potential to be
used as a general method for quality control variant calls from
different analysis pipelines.

Results
Construction of FVC. As illustrated in Fig. 1, FVC incorporates
four modules: feature construction, data construction, supervised
learning, and filtering module. Taking the VCF and BAM files as
the input, FVC uses feature construction module to build three
types of features related to sequence content, sequencing
experiment, and bioinformatic analysis process. If there is no pre-
trained model that can be utilized to the user-specific pipeline, an
adaptive filtering model is constructed using the data construc-
tion module coupled with the supervised learning module. The
variant calls are finally labeled as true or false using the filtering
module of FVC, and the probability of the variants being true can
be found in the INFO field of the output VCF file.

To assess the classification accuracy of the FVC incorporated
with different features, different methods of constructing training
data, and different machine learning methods, we considered
sixteen evaluation metrics and performed the assessments on the
gold-standard variant calls derived from WGS datasets (HG001,
HG003, HG004, and HG006) at 30× coverage32,35. Considering
different variant callers may give different initial output, we
performed the comparisons on the variant calls identified by
GATK, Mutect2, Varscan2, and DeepVariant, separately. All the
comparisons were implemented using the leave-one-individual-
out cross-validation method. Specifically, sampling was per-
formed four times on the four individuals (HG001, HG003,
HG004, and HG006). Each time, a different individual was left
out, the genetic variants from the withheld individual formed the
test set, and the others formed the training set.

As it can be seen in the Supplementary Tables 1–3
and Supplementary Figs. 1–3, the FVC model containing the
constructed features and trained on the imbalanced training data
and embedding the XGBoost36 as the supervised machine
learning method demonstrated the best filtering performance
and was incorporated in the final FVC modules (Supplementary
Data 1).

Performance comparison of FVC and the current state-of-the-
art methods. After constructing FVC, we performed a head-to-
head comparison of FVC with five other state-of-the-art methods
(VEF, Frequency, Hard-Filter, VQSR, and GARFIELD) in 4
modes. First, we compared filtering performance with a focus on
all SNV or INDEL variants; second, we compared filtering per-
formance with a focus on high-frequency (VAF ≥ 20%) or low-
frequency (VAF < 20%) variants; third, we compared filtering
performance with a focus on hard-to-detect or easy-to-detect
variants; and fourth, we compared filtering performance with a
focus on coding or non-coding variants. The comparisons were
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performed on the variants derived from 4 individuals (HG001,
HG003, HG004, HG006) using the leave-one-individual-out
cross-validation method. To remove possible bias, we per-
formed the comparisons using the leave-one-chromosome-out
cross-validation method and validated the filtering performance
on an additional dataset (HG007).

Figure 2 summarized the performance of different filtering
methods when applied to all SNV or INDEL variants (30×
sequencing coverage). As it can be seen, when applied to the SNV
variants identified by GATK, FVC scored the highest average
AUC of 0.998, while the rest of the methods scored lower as
follows: 0.989 (VEF), 0.785 (Frequency), 0.870 (Hard-Filter), 0.926
(VQSR), and 0.981 (GARFIELD). Concerning the INDEL
variants, FVC exhibited even more improvements with an average
AUC of 0.984. The rest of the methods scored lower as follows:
0.819 (VEF), 0.853 (Frequency), 0.733 (Hard-Filter), 0.836
(VQSR), and 0.783 (GARFIELD). When running with the default
cut-off value of 0.5, FVC was not the best method of eliminating
the highest number of false INDEL variants, but it exhibited the
best performance in eliminating the total number of false variants
(Table 1). The filtering improvements achieved by FVC were also
observed when applied to the variants identified by Mutect2,
Varscan2, and DeepVariant (Supplementary Tables 4–6). It is
worth noting that FVC removed far more false variants than the
current state-of-the-art methods in most cases, and it recalled
~51–99% true variants filtered out by the others. Moreover, FVC
decreased the ratio of the eliminated true variants versus the
removed false variants (OFO) from 0.05-1661.28 to 0.02-0.57
(Supplementary Table 7).

Figure 3 summarized the performance of different filtering
methods when applied to high-frequency (VAF ≥ 20%) or low-

frequency (VAF < 20%) variants (30× sequencing coverage).
When running FVC with the default cut-off value 0.5 and
running other filtering methods with their suggested criteria, FVC
also exhibited significant improvements than the other five
filtering methods in the two subgroup variants, reflected by the
highest MCC score and the lowest OFO score (p < 0.05, one-sided
paired T-test). All filtering methods except VEF demonstrated
better performance when applied to the low-frequency variants
than high-frequency ones.

Figure 4 summarized the performance of different filtering
methods when applied to easy-to-detect or hard-to-detect
variants (30× sequencing coverage). The easy-to-detect variants
are defined as the variants that are consistently and correctly
classified by the three unsupervised methods (Frequency, Hard-
Filter, VQSR), the others are defined as hard-to-detect variants
that are incorrectly classified by at least one of the three methods.
As can be observed, FVC exhibited superior performance when
applied to the hard-to-detect variants in all cases. With respect to
the easy-to-detect variants identified by Mutect2 and Varscan2,
FVC also achieved significant improvements, reflected by the
highest MCC and the lowest OFO (p < 0.05, one-sided paired T-
test). When assessing on the easy-to-detect variants identified by
DeepVariant, VEF scored the highest MCC but FVC achieved the
lowest OFO. Both FVC and VEF exhibited better performance
than GARFIELD in all cases.

Figure 5 summarized the performance of different filtering
methods when applied to coding or non-coding variants. We
could find that FVC not only achieved the highest MCC score
both in coding and non-coding variants but was also the only
method that consistently obtained OFO < 1 in these two types of
variants.

We then assessed the performance of different filtering
methods on an additional WGS dataset (HG007) which was
not used in the above experiments. In this experiment, the pre-
trained FVC and VEF were built on the training variants derived
from four individuals (HG001, HG003, HG004, and HG006). As
shown in Supplementary Fig 4, FVC consistently achieved the
highest AUC score on SNV and INDEL variants. The improve-
ments can also be observed when assessing with the correspond-
ing area under the precision-recall-gain curves (AUPRG)37, the
MCC score, the accuracy (ACC), the balanced accuracy (BACC),
and the OFO (Supplementary Data 2).

The different filtering methods were also assessed using the
leave-one-chromosome-out cross-validation method to remove
possible bias. Specifically, we used the autosome variants derived
from five human samples (HG001, HG003, HG004, HG006, and
HG007). Sampling was implemented on the 22 chromosomes 22
times. Each time, a different chromosome was left out, the genetic
variants from the left chromosome formed the test data, and the
others formed the training data. There is no duplication between
the training and testing data. Consistent with the leave-one-
individual-out cross-validation measurement results, FVC
achieved the highest AUC scores when applied to SNV and
INDEL variants (Supplementary Fig. 5).

To further validate the classification performance of FVC, the
above comparisons were also performed on the sequencing data
at 50× coverage. In particular, the pre-trained models of FVC and
VEF built on 30× coverage data were applied to the data at 50×
coverage to test their generalization ability. Similar improvements
of FVC were also observed in all cases (Supplementary Data 2–4).

Discussion
Herein, with the goal to adapt different variant callers and address
the fact that a large number of variant calls are misclassified by
current filtering methods, especially in the case of low-frequency

Fig. 1 Workflow of FVC. Taking the VCF and BAM files as input, FVC uses
the feature construction module to build three types of features related to
sequence content, sequencing experiment, and bioinformatic analysis
process. If a pre-trained model is already built for the specific pipeline, the
variants can be immediately classified as true or false using the filtering
module. Otherwise, the pre-trained model can be built using the data
construction and supervised learning modules of FVC.
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or hard-to-detect SNV and INDEL variants, we presented FVC—
an adaptive method for quality control of variant calls, and
demonstrated the improved performance both in minimizing the
eliminating of true variants and maximizing the removal of false
variants.

In most cases, the filtering method developed for a specific
variant caller cannot be applied to other variant callers. It is partly
because the development of filtering methods relies on the fea-
tures generated by a specific variant caller. However, for the same
variation, different variant callers will generate different numbers
and types of features, making the filtering method unable to be
used in different variant callers. To solve this problem, we
developed a data construction module to build consistent features
for the variants from different variant callers. Ideally, it can be

immediately integrated into any variant calling pipeline. How-
ever, though we have tested its ability on four widely used variant
calling pipelines, limitations still exist when the specific pipeline
doesn’t provide the variants in VCF format.

Additionally, we found that the FVC models using the
imbalanced training data outperformed those using balanced
ones, which is different from the previous work38. This aspect is
partly due to the fact that the ratio of the two classes in our study
is up to 2204:1, which is much higher than the imbalance ratio of
10:1 in the previous study, and the number of samples (millions)
used in this study is far more than the number of samples
(thousands) in the study mentioned above.

Concerning the adaptive ability, we have provided four pre-
trained models for filtering variants detected by GATK, Mutect2,
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Fig. 2 The performance of different filtering methods when applied to SNV or INDEL variants. The SNV and INDEL variants used as testing data are
derived from whole-genome sequencing datasets (HG001, HG003, HG004, and HG006) at 30× coverage. The performance of different methods is
assessed on the SNV and INDEL variants identified by a GATK HaplotypeCaller; b Mutect2; c Varscan2; and d DeepVariant. The performance is assessed
by using the leave-one-individual-out cross-validation method. The shaded area indicates the 95% confidence intervals (n= 4 biologically independent
samples). FVC consistently achieves the highest AUC score when applied to both SNV and INDEL variants.

Table 1 The average performance of filtering methods when applied to the whole-genome sequencing datasets (HG001, HG003,
HG004, and HG006) at 30× coverage and identified by GATK HaplotypeCaller.

Variant Filter AUC AUPRG MCC OFO F1-minor BACC NPV TN FN

SNV FVC 0.998 0.92 0.89 0.08 0.89 0.93 0.93 5,869 425
Frequency 0.785 0.33 0.50 1.54 0.49 0.79 0.45 3,902 5,046
GARFIELD 0.981 0.35 0.28 10.49 0.19 0.86 0.11 5,119 42,888
Hard-Filter 0.870 0.14 0.37 6.29 0.31 0.87 0.21 5,123 25,187
VEF 0.989 0.87 0.84 0.17 0.84 0.91 0.86 5,627 894
VQSR 0.926 0.05 0.18 24.96 0.09 0.86 0.05 5,121 112,859

INDEL FVC 0.984 0.68 0.70 0.16 0.68 0.79 0.87 543 86
Frequency 0.853 0.04 0.21 19.13 0.12 0.85 0.07 668 10,855
GARFIELD 0.783 0.13 0.09 69.39 0.03 0.79 0.01 642 46,167
Hard-Filter 0.733 0.02 0.14 22.98 0.08 0.73 0.04 477 10,636
VEF 0.819 0.05 0.07 8.67 0.06 0.52 0.11 37 306
VQSR 0.836 0.08 0.15 13.66 0.13 0.62 0.09 246 2,464

TN is the number of false variants that are filtered; FN is the number of true variants that are filtered. OFO equivalents to the ratio of the number of true variants that are eliminated (FN) versus the
number of false variants that are removed (TN).
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Varscan2, and DeepVariant. However, the needs of users are not
limited to the four variant callers. In case the user’s goal is to filter
variants identified by a different pipeline, such as Pindel39 or
Strelka240, an adaptive filtering model could be built by providing
three or four gold standard samples’ variants identified by the
variant caller. It should be noted that the same model features,
such as the median base quality (MBQ) or the variant allelic
frequency (AF), showed different rankings of feature importance
in different pre-trained models (Supplementary Fig 6). Hence, we
suggest that the pre-trained model should be used on the variants
derived from the same caller.

FVC was developed and assessed on the sequencing data
consisting of 150bp and 250bp paired-end reads, and exhibited
excellent performance on the variant calls derived from sequen-
cing data at 30× coverage and 50× coverage. However, other
usage scenarios of FVC, such as on data produced by utilizing
different sequencing libraries (such as 2 × 300bp pair-end
sequencing), different sequencing machines (such as Hiseq X),
or different sequencing coverages (such as 10×), are feasible. In
such cases, an adaptive pre-trained model could also be built by
providing the gold standard samples’ variants derived from a
public database or private sequencing data. The main limitation
of FVC is that it focuses on the application in a single sample, and
the information from other samples is not incorporated into
FVC. For this case, other methods such as VQSR and ForestQC
may be preferred, but FVC also supports users splitting the VCF
file with multiple samples into multiple VCF files with a single
sample and then performing quality control independently.

Considering that the comparisons in this study are all mea-
sured on the germline variants, the analytical performance may
differ in tumor samples as somatic variants are often at lower

than 20% variant allele frequency41. However, we find that FVC
achieved similar performance when applied to the low-frequency
variants and the high-frequency variants in some circumstances.
For example, when applied to the variants detected by GATK
HaplotypeCaller, FVC achieved similar MCC scores between
high-frequency variants (0.841) and low-frequency variants
(0.844). When applied to the low-frequency variants detected by
Mutect2 and Varscan2, FVC exhibited slightly lower MCC scores
within 0.06 on average. Thus, it may imply that FVC could
perform well for somatic variant filtration when enough gold-
standard somatic variant calls become available for building a
pre-trained model.

Furthermore, FVC could also be helpful for post-filtering of
RNA-sequencing mutation detection pipelines as they are similar
with the DNA-sequencing mutation detection pipelines20,42, such
as performing read alignment by using the BWA or other
alignment tools and detecting variations by using GATK,
SNPiR43 or other variant callers44,45.

Users should comprehensively consider the evaluation results
of multiple metrics when deciding which software to use. In this
study, we performed the comparisons by using sixteen metrics.
FVC does not perform well on all evaluation metrics (Supple-
mentary Data 3 and 4). Actually, these filtering methods exhibited
little difference in the F1-major score, sensitivity, and specificity.
For example, we can find that all filtering methods scored F1-
major score > 0.96, sensitivity > 0.93, and specificity > 0.998 when
applied to GATK detected variants in HG001 sample, the recall
was decreased and the precision was improved after filtering by
any one of the filtering methods (Supplementary Data 3).

However, when assessing with the newly defined metric OFO,
the filtering methods exhibited extremely different performance.
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coverage and identified by GATK, Varscan2, Mutect2, and DeepVariant, separately. Variant calls with variant allelic frequency (VAF) of more than 20%
are defined as high-frequency variants. The other variant calls are defined as low-frequency variant calls. The performance of the filtering methods is
assessed on the a high frequency variants using MCC; b high frequency variants using OFO; c low frequency variants using MCC; and d low frequency
variants using OFO. The circle indicates the metric score achieved by FVC when applied to each specified testing data. The error bar indicates the 95%
confidence intervals (n= 4 biologically independent samples). Asterisk denotes the significance of the comparison using a one-sided paired T-test
(*p < 0.05, **p < 0.001), where the null hypothesis is that the FVC performs no better than the compared method. FVC consistently shows log OFO < 0
when applied to high-frequency and low-frequency variants.
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For example, when applied to the GATK detected variants from
WGS Human sample HG001 (Supplementary Table 8), the Hard-
Filter eliminated 24.06 true INDELs and 9.83 true SNVs per
removing one false variant correspondingly. FVC exhibited not
extremely different with the Hard-Filter in recall, precision, and
F1-major score. But it decreased the loss of true variants to 0.16
and 0.08 per filtering one false INDEL and one false SNV,
respectively. Though the Hard-Filter achieved similar F1-major
score with FVC, the presented FVC method demonstrated more
suitable in the filtering of GATK detected variants. Therefore, in
the choosing of which filter to use, users should make further
decisions based on OFO and other comprehensive metrics, such
as AUC and MCC, when the objective metrics achieved similar
scores.

Taking it all together, FVC presented a superior performance
in the accuracy, generalization ability, application scope, which
could potentially be used to integrate variant calls detected by
multiple variant callers.

Methods
Data preparation. Whole-genome sequencing data from five individuals were used
in this study: one pilot genome HG001/NA12878 from the HapMap project46; two
Ashkenazim individuals—HG003/NA24149 and HG004/NA24143; and two Chi-
nese individuals—HG006/NA24694 and HG007/NA24695. There is no con-
sanguinity between these five samples and all these sequencing data were released
by NIST’s GIAB consortium32,35. The downloaded whole-genome sequencing
datasets were generated on Illumina HiSeq 2500 platform (Illumina Inc, San Diego,
USA) with 2 × 148bp (HG001, HG006, HG007) or 2 × 250bp (HG003 and HG004)
paired-end reads. The mean coverage of the sequencing data ranged from 50× to
300×. The source of the dataset is listed in the Supplementary Method.

Firstly, the downloaded sequencing data was realigned to human genome build
GRCh37 with the same pipeline. The sequencing reads were firstly randomly
downsampled to ~30× and ~50× coverage by using Samtools47. Such levels are

commonly used in WGS studies48–50, and few uncovered or uncalled bases above
these depths51. Then, the reads in FASTQ format were realigned and converted to
BAM format by performing sequencing realignment, marking duplicates, and local
realignment using the BWA-MEM, Dedup, and Realigner software which were
integrated into Sentieon's DNASeq52 pipeline.

Then, the genetic variants were derived by GATK HaplotypeCaller (version
4.0.11, with default parameters), Mutect2 (integrated in GATK version 4.1.9 with
default parameters), Varscan2 (version 2.3.9 with default parameters, except where
parameters–min-coverage 3,–p-value 0.10,–min-var-freq 0.01 were used), and
DeepVariant (version 1.2, with default parameters). All variants were stored in
variant call format (VCF) files.

Finally, true variants and false variants in the VCF files were labeled based on
whether the variants were contained in the GIAB’s gold-standard variants or not
with the help of RTG-vcfeval53 software (version 3.10 with parameters ‘squash-
ploidy’ to ignore the zygosity differences). The resultant ‘true’ and ’false’ label-
containing genetic variants from the four individuals (HG001, HG003, HG004, and
HG006) were then utilized downstream in the leave-one-individual-out cross-
validation assessment. The remainder variants from the HG007 sample were used
as independent testing data. The true and false variants distributions in different
subgroups are listed in Supplementary Table 9 and Supplementary Data 5.

FVC feature construction module. A total of 20 features associated with each
variant are selected or constructed by the FVC feature construction module. Firstly,
FVC adds features for each genetic variant in the raw input VCF file by using
GATK VariantAnnotator (version 4.1.9). Then, FVC selects and constructs features
based on the variant position, variant types (SNV or INDEL), INFO column, and
FORMAT column in the aforementioned processed VCF file. All the constructed
features can be classified into three categories: sequence-related features (n= 4),
experiment-related features (n= 8), and analysis-related features (n= 8). The
definitions of each feature can be found in the Supplementary Method. The fea-
tures in raw VCF and the features built by the FVC feature construction module
are listed in Supplementary Table 10.

FVC data construction module. In the data construction module, the RTG vcfeval
software and the imbalanced method are introduced to construct training and
testing data. Firstly, all the variants derived from four individuals (HG001, HG003,
HG004, and HG006) are labeled as true or false genetic variants by using RTG
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Fig. 4 The performance of different filtering methods when applied to hard-to-detect or easy-to-detect variants. The easy-to-detect and hard-to-detect
variant calls used as testing data are derived from the whole-genome sequencing datasets (HG001, HG003, HG004, and HG006) at 30× coverage and
identified by GATK, Varscan2, Mutect2, and DeepVariant, separately. The easy-to-detect variants are defined as the variants that are consistently and
correctly classified by all the unsupervised filtering methods (Frequency, Hard-Filter, and VQSR). The other variants are defined as hard-to-detect variants.
The performance of the filtering methods is assessed on the a hard-to-detect variants using MCC; b hard-to-detect variants using OFO; c easy-to-detect
variants using MCC (Frequency, Hard-Filter, and VQSR consistently scored MCC= 1); and d easy-to-detect variants using OFO (Frequency, Hard-Filter,
and VQSR consistently scored logOFO=−∞). The circle indicates the metric score achieved by the filtering method when applied to each specified testing
data. The error bar indicates the 95% confidence intervals (n= 4 biologically independent samples). Asterisk denotes the significance of the comparison
using a one-sided paired T-test (*p < 0.05, **p < 0.001), where the null hypothesis is that the FVC performs no better than the compared method.
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vcfeval software according to comparison results with the gold standard variants.
Then, the variants from three of four individuals are combined as the training data
without balancing the two categories (true and false variants) in the leave-one-
individual-out cross-validation step, and the variants from the left individual are
regarded as the testing data. The genetic variants with the same chromosome,
genome position, reference allele, alternative allele, features, and categories (true
variant or false variant) are regarded as duplicates and are removed from the
training data if they are also included in the test data in case of data leakage.

FVC supervised learning and filtering module. FVC applies the XGBoost as the
supervised learning algorithm and models the technical profile of true and false
variants based on the features and labels built by the feature construction module
and data construction module. Once trained, the FVC can be utilized to filter the
variants identified from the same pipeline. In the filtering results, FVC provides a
self-defined score in INFO field to indicate the probability of the variant being
correct and specifies ‘Filtered’ in the FILTER field in VCF if the score is less than
0.5. The default parameters settings of XGBoost and the other candidate machine
learning methods are listed in Supplementary Table 11.

Performance analysis and dealing with data leakage. We compared the FVC
with five other methods when applied to the WGS data. FVC used by default a
threshold of 0.5, i.e., the genetic variant is regarded as a false variant if its prob-
ability of being correct is less than 0.5. The false variants defined by the other five
methods were based on their suggested criteria (Supplementary Method).

The filtering methods were assessed in a head-to-head comparison using the
leave-one-individual-out cross-validation method. For the assessment, we used the
variant calls derived from 4 human samples (HG001, HG003, HG004, and HG006)
and performed 4 subgroup analysis, including: 1) Assessing on SNV and INDEL
variants, separately; 2) Assessing on high-frequency (VAF ≥ 20%) and low-
frequency (VAF < 20%) variants, separately; 3) Assessing on hard-to-detect and
easy-to-detect variants separately; 4) Assessing on coding and non-coding variants,
separately.

To deal with the potential data leakage and bias, the same variant calls were
removed from the training data if they also appeared in the testing data. Moreover,
we compared the filtering methods on an additional variant call-set derived from
the human sample HG007 which is not genetically related to the other individuals.
Subsequently, the performance of the different filtering methods was further
assessed using the leave-one-chromosome-out cross-validation method to ensure
that there is no duplicate between the training and testing data. As not all gold-

standard variant call-sets contain sexual chromosomes, the variants located on the
autosomes were used in the cross-validation assessment. Specifically, sampling was
implemented on the dataset 22 times. Each time a different chromosome was left
out, the variant calls from the left chromosome formed the test dataset, and the
others formed the training dataset.

Evaluation metrics. Sixteen evaluation metrics were utilized to assess the per-
formance of these different filtering methods. Three of them were used to assess
the comprehensive performance under different thresholds, including the area
under the receiver characteristic operator curve (AUC), the area under the
precision-recall-gain curve (AUPRG), and the area under the precision-recall
curve (AUPRC). It is worth noting that the outputs of Frequency and Hard-
Filter were dichotomous. Therefore, we calculate these metrics in the two cases
using the curve with three points: (0, y1), (x2, y2), (1, y3), where x and y are the
values corresponding to the axes. For example, in calculating the AUC, y1 is the
value of TPR (i.e., 0) when FPR= 0, x2 and y2 are the values of FPR and TPR
using the suggested thresholds, respectively, y3 is the value of TPR (i.e., 1) when
FPR= 1.

Four of these metrics were used to demonstrate the count of variants that were
correctly or incorrectly retained or filtered by using the particular filtering method.
True Positive (TP): the number of true variants that were retained; False Positive
(FP): the number of false variants that were retained; False Negative (FN): The
number of true variants that were eliminated; True Negative (TN): The number of
false variants that were eliminated.

Seven metrics were used to demonstrate the comprehensive performance under
the suggested threshold, including: F1 score for the majority class (F1-major);
F1 score for the minority class (F1-minor); Matthews Correlation Coefficient
(MCC); Accuracy (ACC); Balanced Accuracy (BACC); Precision; Sensitivity or
named as True Positive Rate (TPR); Specificity or named as True Negative
Rate (TNR).

The proportion of the false variants in the filtered variants can be assessed by
Negative Predictive Value (NPV) in Eq. (1). However, one of the motivations in the
filtering task is to minimize the number of true variants and maximize the number
of false variants in the eliminated variant set (the predictive negative class). The
NPV is necessary but cannot be used for this purpose. Therefore, we introduced the
odds of false omission in the predicted negative class to intuitively describe the
proportion of true and false variants in the eliminated variant set, which was
abbreviated to OFO in this study (Eq. (2)). It is equivalent to the ratio of the
number of eliminated true variants (FN) versus the number of eliminated false
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Fig. 5 The performance of different filtering methods when applied to coding or non-coding variants. The coding and non-coding variant calls used as
testing data are derived from whole-genome sequencing data (HG001, HG003, HG004, and HG006) at 30× coverage and identified by GATK, Varscan2,
Mutect2, and DeepVariant, separately. The different filtering methods are separately assessed on the a coding variants using MCC; b coding variants
measured using OFO; c non-coding variants measured using MCC; and d non-coding variants using OFO. FVC achieves the highest MCC and the lowest
log OFO when applied to both types of variants identified by GATK HaplotypeCaller, Varscan2, Mutect2, and DeepVariant. The circle indicates the metric
score achieved by the filtering method when applied to each specified testing data. The error bar indicates the 95% confidence intervals (n= 4 biologically
independent samples). Asterisk denotes the significance of the comparison using a one-sided paired T-test (*p < 0.05, **p < 0.001), where the null
hypothesis is that the FVC performs no better than the compared method.
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variants (TN).

NPV ¼ TN
TNþ FN

ð1Þ

OFO ¼ FOR
1� FOR

¼ FOR
NPV

¼ FN
TN

ð2Þ

Here, the false omission rate (FOR) = FN
TNþ FN. OFO ranges from 0 to +∞. When

OFO= 1, the number of eliminated false variants is equal to the number of
eliminated true variants. When OFO= 0, it means that there is no true variant in
the eliminated variants, which seems perfect. +∞ occurs when FN>>TN, i.e., the
number of true variants far exceeds the number of false variants in the filtered
variant sets, which indicates the worst performance. In some circumstances, the
filtering performance may be overestimated with OFO= 0. For example, if the
filtering method eliminates only one genetic variant, and it is the false variant, i.e.,
the FN= 0, and the TN= 1, the filtering method will be overestimated with
OFO= 0. Therefore, similar to sensitivity and specificity, OFO cannot be used
alone to measure the model's comprehensive performance.

Statistics and reproducibility. One-sided paired T-test was applied for pairwise
group comparisons where the null hypothesis was that FVC performed no better
than the compared filtering method. A p < 0.05 was considered statistically sig-
nificant. *p < 0.05, **p < 0.001. All replicate experiments were performed using the
leave-one-out cross-validation method. The statistical analysis and plotting were
completed using the scikit-learn library in Python (version 3.6).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The raw data that support the findings of this study are publicly available in NIST’s GIAB
repository (https://github.com/genome-in-a-bottle/giab_data_indexes/tree/master)54.
The processed data that support the findings of this study are committed on the Dryad
Digital Repository (https://doi.org/10.5061/dryad.hdr7sqvkm)55. The source data
underlying the graphs are provided within Supplementary Data files 1–5 (excel).

Code availability
FVC is implemented in Perl (version 5.0) and Python (version 3.6), and the source code
is publicly available at https://github.com/yyren/FVC and Zenodo (https://doi.org/10.
5281/zenodo.6379296)56.
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