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Abstract

The regulation of gene expression is essential for eukaryotes, as it drives the processes of cellular differentiation and
morphogenesis, leading to the creation of different cell types in multicellular organisms. RNA-Sequencing (RNA-Seq)
provides researchers with a powerful toolbox for characterization and quantification of transcriptome. Many different
human tissue/cell transcriptome datasets coming from RNA-Seq technology are available on public data resource. The
fundamental issue here is how to develop an effective analysis method to estimate expression pattern similarities between
different tumor tissues and their corresponding normal tissues. We define the gene expression pattern from three
directions: 1) expression breadth, which reflects gene expression on/off status, and mainly concerns ubiquitously expressed
genes; 2) low/high or constant/variable expression genes, based on gene expression level and variation; and 3) the
regulation of gene expression at the gene structure level. The cluster analysis indicates that gene expression pattern is
higher related to physiological condition rather than tissue spatial distance. Two sets of human housekeeping (HK) genes
are defined according to cell/tissue types, respectively. To characterize the gene expression pattern in gene expression level
and variation, we firstly apply improved K-means algorithm and a gene expression variance model. We find that cancer-
associated HK genes (a HK gene is specific in cancer group, while not in normal group) are expressed higher and more
variable in cancer condition than in normal condition. Cancer-associated HK genes prefer to AT-rich genes, and they are
enriched in cell cycle regulation related functions and constitute some cancer signatures. The expression of large genes is
also avoided in cancer group. These studies will help us understand which cell type-specific patterns of gene expression
differ among different cell types, and particularly for cancer.
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Introduction

Gene expression regulation contains the process that cells and

viruses use to regulate the way that the information in genes is

turned into gene products, most of which are protein coding genes

[1–3]. Gene expression regulation is essential for eukaryotes [4]

because it drives the processes of cellular differentiation and

morphogenesis [5]. This leads to the creation of different cell types

in multicellular organisms, where different cell types may possess

different gene expression profiles, though they all possess the same

genome sequence [6]. A major challenge in current research is

how to define the mode of gene expression regulation. Based on

gene expression breadth [7–9], genes can be divided into

ubiquitously expressed genes [6–10], near universal HK genes,

and tissue-specific/cell-specific genes. Based on the gene expres-

sion level, the gene can be determined as a low/high expression

gene [11], and as a constant/variable expression gene [12–13].

Gene structure is one important regulation factor for gene

expression. It is comprised mainly of gene structure composition,

gene structure organization, gene variation, protein classes,

cellular structure, cellular processes, and molecular mechanisms

[10,14–25].

RNA-Seq is becoming a more and more popular biotechnology

because of its transcription measurement at predominant precision

and high-throughput to detect weakly expressed genes [10–

11,15,26]. Due to the dramatic advances in RNA-Seq, transcrip-

tome data increase rapidly [25–27] in SRA database. In previous

cancer progression and gene expression regulation mechanisms

studies based on microarray data [28–30], researchers mainly

compared gene expression in cancer condition vs. normal

condition with the same originals. This method could miss many

truly up-regulated different expression (DE) genes by the

normalization process [31], disregarding the based mechanism

in cancer. In this study, we select 12 normal samples and 9 cancer

samples to explore the general mechanism of cancer gene

expression regulation from RNA-Seq transcriptome data. We

define the gene expression pattern from three directions and

characterize cancer HK genes to observe gene expression
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regulation in cancer cells. This research will help us understand

the key regulatory genes and the pathogenesis of cancer.

Materials and Methods

RNA-Seq transcriptome dataset
RNA-Seq samples under normal and cancer condition are

selected to identifying HK genes. Two major elements are

considered for the selection, the amount and saturation of the

selected samples. Although RNA-Seq samples are voluminous in

the public data resource, the useful samples for normal vs cancer

comparative analysis are limited. If we had included more

unsaturated samples, it would have lead to a higher false negative

rate mainly caused by low abundance genes. We totally obtain 37

different human tissue/cell line transcriptomics data from public

SRA database (Table S1), 22 normal samples and 15 cancer

samples. Then we select samples with criterions as follows: 1)

removing all mixed cell lines samples, because pooling method will

cover differential gene expression abundance; 2) removing cell

lines samples with special treatment, because regulation mecha-

nisms are different under diverse physiological conditions; 3)

filtering severe unsaturated datasets; 4) selecting the most saturated

sample if replicates existed, we do not prefer integration which

would induce higher false negative rate; 5) selecting samples

coming from Illumina Genome Analyzer, the most popular

sequencing instrument, here we try to reduce the original

difference between various sequencing platforms. Finally, we get

12 normal tissues and 9 cancer cell lines for further analysis. The

normal tissues in our analysis include adipose, brain, cerebral

cortex, colon, breast, kidney, liver, lung, lymph node, heart, testes,

and skeletal muscles. And cancer cell lines include K562, DLD-1,

HepG2, GM12878, Lymphoma, BT474, MCF7, MB435, and

T47D in current RNA-Seq datasets (Table S1). K562 is an

immortalized cell line produced from a female patient with

chronic myelogenous leukemia (CML). DLD-1 is a colon

adenocarcinoma cell line cultured under 21% oxygen with non-

targeting siRNA transfected. HepG2 is a cell line derived from a

male patient with liver carcinoma. GM12878 is a lymphoblastoid

cell line produced from the blood of a female donor by EBV

transformation. Lymphoma is a Ramos B cell. The other cell lines

are all breast cancer cell lines derived from invasive ductal

carcinomas (ATCC). MCF-7, BT474 and T47D are oestrogen-

receptor-positive and progesterone-receptor-positive; MD435 is

negative for both. High quality CEL files of human microarray

data on HG-U133A are selected from AffayExpress (E-MTAB-27)

[32] (Table S2) for the comparison.

After random transcripts filtering, we select 28,778 human

RefSeq protein coding transcripts (RefGene of UCSC annotation

database, Jan 4, 2010 update), and cluster them into 18,874

Figure 1. Gene expression profiles hierarchical cluster analysis based on Spearman correlation. Spearman correlation of gene
expression profiles is used to define the gene expression profiles similarity of 21 different tissues/cells. A hierarchical cluster analysis with correlation
information shows 2 clusters: 12 normal tissues and 9 cancer cell lines.
doi:10.1371/journal.pone.0054082.g001
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human loci as described previously [9]. 13,038 (69.08%) genes

with multi-isoforms and 5,836 (30.92%) genes with single-isoform

are used for further analysis. To map transcriptional data sets onto

their reference genomic sequence GRCH37 (hg19), we use MAQ

mapping software [33] downloaded from UCSC. Then annotation

of the mapping results is compared to RefGene.

The transcriptome data analysis model
Gene expression abundance is normalized as read density, i.e.,

reads per kilobase (KB) of coding sequence (CDS) per million

reads (RPKM), in RNA-seq data that one million mappable reads

in one experiment [34]. And the expression of one gene is defined

as the sum of expressions of all isoforms that belong to that gene

[11]. To compute a gene expression level accurately, we cite a

Poisson distribution model to estimate isoforms expression [11].

Considering time cost, we strictly require a read falls into an exon

with neglecting exon-junction information.

To determine whether a gene is expressed or not, the

background threshold value of gene expression is performed using

a previous method that coordinated false positive rate (FPR) and

false negative rate (FNR) [10]. In this paper, we define positive set

as genes with reads fall into its exons, and negative set as genes

with reads fall into intergenic regions. An observed expression

value, which is larger than the background threshold is marked as

positive, and the opposite is marked as negative. Then, we get

these two definitions, FPR~
FP count

FP countzTN count
,

FNR~
FN count

FN countzTP count
(FP_count means the summary of

intergenic region counts for expression value larger than

background, contrarily as TN_count. FN_count means the summary

of gene count as gene expresses, but expression value smaller than

background, conversely as TP_count).

Identification of low and high expression genes can depict gene

expression pattern in a sample, and dynamical alteration of gene

expression level among tissues/cell lines reflect the inner reaction

of gene expression regulation. Previous studies usually divided

gene expression level into several intervals, and marked two

extreme genes as low and high, respectively [11]. This definition is

somehow arbitrary, because it measured gene expression level

regardless of gene expression pattern. Meanwhile, expression level

discrepancy of adjacent expression level genes in two sequential

subgroups might be weakly. Driven by this motivation, we firstly

apply the improved K-means algorithm to identify low and high

expression thresholds dynamically, which divide expressed genes

into three categories: low expression genes (LEG), moderate

expression genes (MEG), and high expression genes (HEG). As to

one sample, low expression threshold is defined as the average

value of maximum gene expression value in LEG and minimum

gene expression value in MEG. In order to analysis the gene

expression pattern variation among different samples, we define a

unified low expression threshold as the median value of all

samples’ low expression thresholds. High expression threshold for

one sample is defined as the average value of maximum gene

expression value in MEG and minimum gene expression values in

HEG. And the unified high expression threshold is the median

value of all samples. The method is based on individual gene

expression distribution pattern of a sample to identify low and high

expression genes with dynamical measurement. And it guarantees

the maximum distance of gene expression level of two sequential

subgroups.

The improved K-means algorithm assigns each expressed genes

to the cluster whose centroid is nearest as K-means algorithm do.

Table 1. RNA-Seq sample source.

Sample Physiological Source Reads number Read length

Adipose Normal Wang et al. 2008 22,623,849 32

Brain Normal Wang et al. 2008 8,168,675 32

Breast Normal Wang et al. 2008 13,605,904 32

Colon Normal Wang et al. 2008 22,696,019 32

Heart Normal Wang et al. 2008 17,057,207 32

Liver Normal Wang et al. 2008 30,654,338 32

Lymph Node Normal Wang et al. 2008 23,063,505 32

Muscle Normal Wang et al. 2008 132,812,008 32

Testis Normal Wang et al. 2008 24,157,076 32

BT474 Cancer Wang et al. 2008 15,406,197 32

T47D Cancer Wang et al. 2008 13,871,105 32

MB435 Cancer Wang et al. 2008 16,301,833 32

MCF7 Cancer Wang et al. 2008 13,963,854 32

Cerebral Cortex Normal Pan et al. 2008 26,327,918 32

Lung Normal Pan et al. 2008 21,650,253 32

Kidney Normal Marioni et al. 2008 14,568,451 36

Lymphoma Cancer Sultan et al.2008 2,493,234 27

DLD-1 Cancer Tsuchihara et al. 2009 4,542,765 36

HepG2 Cancer ENCODE project 2008 13,646,471 33

K562 Cancer ENCODE project 2008 21,778,871 33

GM12878 Cancer ENCODE project2008 16,451,652 33

doi:10.1371/journal.pone.0054082.t001
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But distance of two elements is defined as absolute value of

difference of two gene expression values. Centroid is defined as

expression value of the middle gene in the cluster of sorting genes

according to gene expression value. That is different from K-

means algorithm defined as arithmetic mean. We initialize gene

expression dataset into a point format (x, y), where x is gene

expression value and y is its corresponding gene count. The

algorithm is roughly described as follows:

1) Transform x value by the formula (log10x)n, where n is

transform factor and its default value is 1.

2) Set the number of cluster K ( = 3).

3) Randomly select K elements from point set as centroids of

clusters.

4) Assign each point to the nearest cluster centroid.

5) Re-compute K new cluster centroids.

6) Go to 4) until the assignment has not changed any more.

As a result, expressed genes are divided into 3 categories: LEG,

MEG, and HEG. We set normal group results as the control

standard. The median values of low thresholds and high thresholds

in 12 normal tissues are set as finally low threshold and high

threshold for all tissues/cell lines.

We use the variance of gene expression level to depict gene

expression variation, as previous studies did [35–37]. High

expression values, which may amplify variation, contribute to

variance more directly, while small values of gene expression affect

variance weaker, which may conceal real variation. Thus, gene

expression values are ranked as 1, 2, or 3, to represent the gene

expression level as low, moderate, or high, respectively. We use

these representations instead of gene raw expression value to

estimate the gene expression variation pattern. For any gene, we

calculate coefficient of variation value (CV) based on gene

expression rank, CV~
s

m
, where m is arithmetic average of gene

expression ranks of all tissue/cell line samples in a gene; s is

standard deviation of gene expression rank in a gene, which is the

Figure 2. (A) Comparison of normal and cancer HK genes definition. HK genes are defined separately from two physiological groups: 12
normal tissues and 9 cancer cell lines. (B) Different HK gene types functional enrichment. ‘‘Cancer’’ means cancer HK genes, abbreviated as
suffix ‘‘C’’ follows function term illustration; ‘‘Cancer-associated’’ means specific HK genes in cancer condition, abbreviated as suffix ‘‘CA’’ follows
function term illustration; ‘‘Shared’’ means overlapped HK genes in normal and cancer conditions, abbreviated as suffix ‘‘S’’ follows function term
illustration; ‘‘Normal-unique’’ means specific HK genes in normal condition, abbreviated as suffix ‘‘NU’’ follows function term illustration; ‘‘Normal’’
means normal HK genes, abbreviated as suffix ‘‘N’’ follows function term illustration.
doi:10.1371/journal.pone.0054082.g002
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arithmetic mean of the squared deviation of gene expression rank

from its arithmetic mean. We also set normal group as the control.

We propose an MDAD plot to characterize the discrepancy of

gene expression pattern in cancer condition vs. normal condition,

based on the widely used MA plot. M Distance (MD) and A

distance (AD) of any gene in MDAD plot are defined as

MD~(log10max{log10min)normal{(log10max{log10min)cancer

and AD~( logmax
10 z logmin

10 )normal{( logmax
10 z logmin

10 )cancer, re-

spectively, where max value in (log10max+log10min)normal is the

maximum gene expression value within all normal tissue/cell line

samples, and min value in (log10max+log10min)normal is the

minimum gene expression (but .0) within all normal tissue/cell

line samples; max value in (log10max+log10min)cancer is the

maximum gene expression value within all cancer tissue/cell line

samples, and min value in (log10max+log10min)cancer is the

minimum gene expression value (but .0) within all cancer tissue/

cell line samples. MD reflects the difference of gene expression

distribution between cancer condition and normal condition, and

AD reflects the difference of relative average level between cancer

condition and normal condition. We use MDAD plot, with a

paired Wilcoxon signed-rank test [38], to compare the difference

of shared or cancer-associated HK gene expression level between

Table 2. Functional enrichment analysis of normal and cancer HK genes.

Gene Type KEGG pathway Benjamini1 Percent(%)2 Gene count

Normal HK Genes Adherens junction 7.61E-5 0.68 60

Pyruvate metabolism 4.06E-3 0.37 32

Propanoate metabolism 9.67E-3 0.30 26

Cancer HK genes Cell cycle 1.96E-17 1.42 100

Pyrimidine metabolism 8.34E-14 1.10 77

Alzheimer’s disease 1.21E-10 1.56 110

Parkinson’s disease 3.99E-10 1.28 90

DNA replication 3.31E-8 0.47 33

Oocyte meiosis 1.90E-5 1.00 70

Neurotrophin signaling pathway 2.00E-5 1.10 77

Mismatch repair 5.56E-5 0.30 21

Apoptosis 2.95E-4 0.78 55

SNARE interactions in vesicular transport 9.52E-4 0.40 28

Pancreatic cancer 9.52E-4 0.65 46

Homologoesus recombination 1.50E-3 0.31 22

Acute myeloid leukemia 1.80E-3 0.54 38

Vibrio cholerae infection 3.94E-3 0.51 36

1. Benjamini value is a globally correct enrichment p-values to control family-wide false discovery rate under certain rate (e.g., #0.05). It is one of the multiple testing
correction techniques (Bonferroni, Benjamini, and FDR) provided by DAVID.
2. The percentage of normal or cancer HK genes participate in a pathway.
doi:10.1371/journal.pone.0054082.t002

Table 3. Low and high gene expression thresholds calculated by the improved K-means algorithm.

Sample Low expression High expression Total gene

Gene count Threshold Moderate Gene count Threshold

Adipose 3,101 1.20 8,505 1,313 19.99 12,919

Brain 2,949 1.22 8,903 1,553 13.14 13,405

Breast 3,311 1.18 8,985 1,289 17.66 13,585

Cerebral Cortex 3,385 0.66 9,094 1,522 9.47 14,001

Colon 3,402 1.18 8,570 1,300 18.00 13,272

Heart 2,855 0.88 7,950 1,386 9.99 12,191

Kidney 2,868 0.80 8,991 1,710 8.58 13,695

Liver 2,895 0.85 7,679 1,509 12.30 12,083

Lung 3,399 0.71 9,111 1,482 9.99 13,992

Lymph Node 3,229 1.19 8,994 1,656 14.43 13,879

Muscle 4,769 1.18 5,872 1,072 18.69 11,713

Testis 2,538 0.93 10,425 3,004 11.75 15,967

doi:10.1371/journal.pone.0054082.t003

Identification of Human HK Genes in Cancer

PLOS ONE | www.plosone.org 5 January 2013 | Volume 8 | Issue 1 | e54082



normal and cancer condition. MD,0 means the gene expression

distribution in cancer condition is wider than that in normal

condition, and AD,0 means the gene expression relative average

level in cancer condition is higher than that in normal condition.

To compare their original maximum and minimum expression

levels under cancer and normal condition, we also calculate maxR

and minR as the ratio of maximum and minimum expression value

in normal vs cancer codintion

(maxR~
max imum expression value in normal condition

max imum expression value in cancer condition
,

minR~
minimum expression value in normal condition

minimum expression value in cancer condition
). If a

ratio value is 0, a gene only turn on in cancer condition; if a

ratio value locates at [0, 1], extreme expression value in normal

condition is smaller than that in cancer condition, if a ratio value

locates at [1, ‘], extreme expression value in normal tissues is

larger than that in cancer condition.

The Spearman correlation of gene expression profile is used to

define the expression pattern similarity of different tissues/cells.

Based on their degree of similarity, a hierarchical cluster with

correlation information is conducted using R software. Normal-

ization of microarray data use MAS5.0 [39] algorithm with

Expression ConsoleTM software (detection p-value as 0.05).

Function enrichment analysis of different HK genes types is

performed with David (Database for Annotation, Visualization,

and Integrated Discovery) [40].

Results

Analysis model for RNA-Seq transcriptome data
RNA-Seq has powerful ability to detect low abundance

transcripts with unprecedented accuracy and high-throughput at

Figure 3. (A) Shared HK genes expression variation distribution in normal and cancer condition. (B) Gene expression variation
adjustment in shared HK genes between normal and cancer condition. There are three gene expression variation statuses, Constant,
abbreviated as suffix ‘‘C’’ in (B), and Moderate variable, abbreviated as Moderate in (A) and suffix ‘‘M’’ in (B), and Variable, abbreviated as suffix ‘‘V’’ in
(B).
doi:10.1371/journal.pone.0054082.g003
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a much lower cost comprising with other methods. Now it has

become the most widely used transcriptomics sequencing technol-

ogy [11,41]. A common query in RNA-Seq data analysis is how to

define the number of expressed genes in one sample. To eliminate

contamination and error caused by experiments and instruments,

etc., we detect the expression level between exons and intergenic

regions to coordinate FPR and FNR (see Materials and Methods

section) using the method generated in a previous study [10]. The

background thresholds of gene expression for individual samples

are falling in 0.13–0.41 RPKM. We set a median value of 0.25

RPKM (Figure S1) as the background threshold of gene expres-

sion for further analysis. Then we use a Poisson model to deal with

isoform expression estimation and refine the gene expression value

by accumulating all isoforms expression values in one gene [11].

Figure 4. MDAD plots of shared HK genes. MD,0 means the gene expression span width in cancer condition is larger than that in normal
condition, and AD,0 means the gene expression relative average level in cancer condition is higher than that in normal condition. According to
shared-normal HK genes expression variation statuses, shared HK genes are divided into three subtypes, constant, moderate variable, and variable
expressed shared HK genes. Paired Wilcoxon signed rank test is used here to measure gene expression regulation and gene expression variation
status regulation. (A) All shared HK genes. (B) Shared constant expressed HK genes. (C) Shared moderate variable expressed HK genes. (D) Shared
variable expressed HK genes.
doi:10.1371/journal.pone.0054082.g004

Table 4. Comparison of paired Wilcoxon signed-rank test results of MDAD values for shared HK genes in normal and cancer
condition.

Type1 Gene count
Paired Wilcoxon signed rank test
result of null hypothesis2 P-value

Paired Wilcoxon signed rank
test statistical Z value

MD 6,237 1 4.34E-33 211.98

AD 6,237 1 0 245.58

MD_constant 2,417 1 4.24E-67 217.31

AD_constant 2,417 1 3.15E-160 226.97

MD_moderate 2,464 0 0.11 21.62

AD_moderate 2,464 1 2.62E-126 223.91

MD_variable 1,356 0 0.59 20.54

AD_variable 1,356 1 3.65E-183 228.86

1. To characterize the discrepancy of gene expression pattern in cancer condition vs. normal condition. MD, M Distance, is defined as
MD~(log10max{log10min)normal{(log10max{log10min)cancer ; AD, A Distance, is defined as AD~(log10maxzlog10min)normal{(log10maxzlog10min)cancer . All shared
HK genes are divided into three subtypes, constant, moderate variable (Moderate), and variable.
2. Null hypothesis is the dataset coming from a distribution whose median (and mean) is zero.
doi:10.1371/journal.pone.0054082.t004
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Definition of HK genes
Our samples are separated into two physiological groups: 12

normal tissues and 9 cancer cell lines, details are shown in Table 1.

The cluster analysis indicates that gene expression patterns are

highly related to physiological condition rather than tissue spatial

distance (Figure 1). We predict that there are some common

regulation patterns in cancer cells, such as turn on/off regulation

and low/high or constant/variable adjustment, which maintain

their limitless proliferation ability. Here, we define HK genes in

two separate groups, normal HK genes and cancer HK genes, to

reflect gene expression on/off status in different physiological

condition. Previous study on hierarchical clustering of nine lung

SAGE libraries also showed a clear separation of tumor and

normal samples [42].

We define five types of HK genes according to their gene

expression pattern in normal and/or cancer condition: 1) normal-

unique HK genes, specific HK gene only shown in normal group,

not HK gene in cancer group; 2) cancer-associated HK genes,

specific HK gene only shown in cancer group, not HK gene in

normal group; 3) share HK genes, HK genes expressed in both

normal and cancer group; 4) normal HK genes, HK genes

expressed in the whole normal group, includes normal-unique HK

genes and share HK genes; 5) cancer HK genes, HK genes

expressed in the whole cancer group, includes cancer-associated

HK genes and share HK genes.

As to the normal group, 12 selected normal tissues cover

connective tissue, muscle tissue, body region and 6 human

taxonomy systems, including urogenital system, digestive system,

respiratory system, hemic and immune systems, central nervous

system, and cardiovascular system (Endocrine system was not

covered, Figure S2). Based on these 12 normal tissues, we estimate

that there are 8831 normal HK genes (protein-coding HK

genes).The HK gene fraction is 47%, which is consistent with two

previous reports: 40% [9] and 42% [10]. The latter investigation

was also carried out with RNA-Seq data, but Daniel Ramsköld

and his coworkers defined HK genes without distinguishing

normal or cancer group. 8041 HK genes were identified by 24

human tissues/cell lines (10 normal tissues and 4 cancer cell lines

are also considered in our study), including 7695 protein-coding

Figure 5. MaxR and minR value distributions of shared HK genes. Up y-axis denotes maxR with range [0, 3], and down y-axis denotes minR
with range [0, 3]. For amplifying the figure, we set the ratio value as 3.00 if a ratio value is larger than 2.50. As to the inner insert graph, the blue curve
shows accumulated maxR; and the green curve shows accumulated minR. Both correspond to left y-axis signifying accumulated gene count. Right y-
axis denotes individual gene count (shown as Gene Count Ratio), which corresponds to a red maxR distribution curve and a cyan minR distribution
curve. We quantify the proportion of genes for which cancer cell modulate gene expression level to be higher than that in normal physiological
status. (A) All shared HK genes. (B) Shared constant expressed HK genes. (C) Shared moderate variable expressed HK genes. (D) Shared variable
expressed HK genes.
doi:10.1371/journal.pone.0054082.g005

Table 5. Accumulated shared HK genes ratio when minR and
maxR#1.

Type Gene count minR#11 (%) maxR#12 (%)

All 6,237 73.47 67.79

Constant 1,518 78.24 70.17

Moderate 3,812 65.10 62.30

Variable 907 80.16 73.53

1. Accumulated shared HK genes ratio when minR#1 (see minR definition in
Materials and Methods section).
2. Accumulated shared HK genes ratio when maxR#1 (see maxR definition in
Materials and Methods section).
doi:10.1371/journal.pone.0054082.t005
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genes, 277 lncR, and 69 unknown genes not present in the

reference genomic sequence GRCH37, hg19 [10]. The HK genes

overlap between Daniel Ramsköld et al.’s work and our normal

HK genes are 7004 (Figure S3). And the unique HK gene in our

definition (1827) mainly comes from normal-unique HK gene

(1253), which is only shown as HK genes in normal condition.

Since Daniel Ramsköld and his coworkers used 4 cancer cell lines,

this difference of HK gene identification occurs in our study is

fairly reasonable. Most of our defined 8831 normal HK genes are

ubiquitously expressed in all 19 available normal samples, 12 of

them are selected for normal HK gene definition, 7 of them are

filtered by criterions shown in Materials and Methods (Figur-

e S4A, Table S1). The ‘‘false detection rate’’ is mainly caused by

unsaturation of the filtered samples. It means that the accuracy of

Figure 6. Six types of HK genes Coefficient of Variation (CV) values distributions. The up and down bars signify Q1 (one quarter) and Q3
(three quarters) of CV values, marked as constant and variable expression threshold values. ‘‘Normal’’ CV values distribution for normal HK genes;
‘‘Normal-unique’’ is CV values distribution calculated from specific HK genes in normal condition; ‘‘Shared-normal’’ is CV values distribution in 9 cancer
cell lines calculated from overlapped HK genes in normal and cancer conditions; ‘‘Shared-cancer’’ is CV values distribution in 12 normal tissues
calculated from overlapped HK genes in normal and cancer conditions; ‘‘Cancer-associated’’ is CV values distribution calculated from specific HK
genes in cancer condition; ‘‘Cancer’’ is CV values distribution for cancer HK genes.
doi:10.1371/journal.pone.0054082.g006

Figure 7. MDAD plots of cancer-associated HK genes. MD,0 means the gene expression span width in cancer condition is larger than that in
normal condition, and AD,0 means the gene expression relative average level in cancer condition is higher than that in normal condition. According
to cancer-associated HK genes expression variation statuses, cancer-associated HK genes are divided into three subtypes, constant, moderate
variable, and variable expressed cancer-associated HK genes. Paired Wilcoxon signed-rank test is used here to measure gene expression regulation
and gene expression variation status regulation in cancer. (A) All cancer-associated HK genes. (B) Cancer-associated constant expressed HK genes. (C)
Cancer-associated moderate variable expressed HK genes. (D) Cancer-associated variable expressed HK genes.
doi:10.1371/journal.pone.0054082.g007
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HK genes defined from 12 normal tissues is high enough for

further analysis.

Current cancer samples represent body region and three widely

investigated human taxonomic systems, including: urogenital

system, digestive system, and hemic and immune systems

(Figure S2, Table S1). Our selected 9 cancer cell lines cover most

of them, except the urogenital system sample, which is filtered by

the unsaturation and platform selection criterions. The fraction of

cancer HK gene is 38% in gene expression breadth of 9. We

defined 7084 cancer HK genes and most of them are present in

normal group (Figure 2A), which forms the shared HK group.

Those shared 6237 HK genes could be essential genes for a cell,

Figure 8. MaxR and minR value distributions of cancer-associated HK genes. Up y-axis denotes maxR with range [0, 3], and down y-axis
denotes minR with range [0, 3]. For amplifying the figure, we set the ratio value as 3.00 if a ratio value is larger than 2.50. As to the inner insert graph,
the blue curve shows accumulated maxR; and the green curve shows accumulated minR. Both correspond to left y-axis signifying accumulated gene
count. Right y-axis denotes individual gene count (shown as Gene Count), which corresponds to a red maxR distribution curve and a cyan minR
distribution curve. We quantify the proportion of genes for which cancer cell modulate gene expression level to be higher than that in normal
physiological status. (A) All cancer-associated HK genes. (B) Cancer-associated constant expressed HK genes. (C) Cancer-associated moderate variable
expressed HK genes. (D) Cancer-associated variable expressed HK genes.
doi:10.1371/journal.pone.0054082.g008

Table 6. Comparison of paired Wilcoxon signed-rank test results of MDAD values for cancer-associated HK genes in normal and
cancer condition.

Type1 Gene count
Paired Wilcoxon signed rank test
result of null hypothesis2 P-value

Paired Wilcoxon signed rank test
statistical Z value

MD 847 1 4.59E-15 27.84

AD 847 1 0 246.72

MD_constant 105 1 1.54E-6 24.81

AD_constant 105 1 2.96E-18 28.71

MD_moderate 361 1 1.61E-4 23.77

AD_moderate 361 1 8.98E-56 215.73

MD_variable 381 1 2.74E-25 210.39

AD_variable 381 1 2.08E-48 214.62

1. To characterize the discrepancy of gene expression pattern in cancer condition vs. normal condition. MD, M Distance, is defined as
MD~(log10max{log10min)normal{(log10max{log10min)cancer ; AD, A Distance, is defined as AD~(log10maxz log 10min)normal{(log10maxzlog10min)cancer . All cancer-
associated HK genes are divided into three subtypes, constant, moderate variable (Moderate), and variable.
2. Null hypothesis is the dataset coming from a distribution whose median (and mean) is zero.
doi:10.1371/journal.pone.0054082.t006
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which maintain basic functions in different physiological condi-

tion. Cancer HK genes are less than normal HK genes because

cancer required less turned on genes (Table S1). But cancer

required a higher fraction of mRNA pool [10,26] to reduce cancer

cell transcriptome specialization [26]. This allows a focus on

completion of simple cell proliferation. About 88.65% of cancer

HK genes are ubiquitously expressed in all 13 cancer samples,

including 4 filtered samples (Table S1, Figure S4B). The ‘‘false

detection rate’’ of cancer HK genes is mainly caused by the

unsaturation of the filtered samples. This result indicates that

although the current 9 cancer samples can’t represent various

cancer types, the identification of cancer HK genes can be used in

gene expression pattern study of cancer cell.

An HK gene is typically a constitutive gene that is required for

the maintenance of basic cellular function, and it is found in nearly

all human cells [7,43]. To characterize normal and cancer HK

gene functions, we compare cell gene function enrichment and

signal pathways. As Figure 2B shows, cancer HK genes are

enriched in molecular function and biological processes. Cancer

HK genes participate in cell cycle, DNA replication, mismatch

repair, and apoptosis pathway, etc., to reply to tumor occurrence.

Normal HK genes tend to join in basic pathways (Table 2).

Characterization of shared HK genes expression patterns
To characterize gene expression level and variation leading to

gene expression patterns definition, we firstly apply improved K-

means algorithm and adopt improved gene expression coefficients

of variance (CV, see Materials and Methods for details) model.

Previous studies usually defined 100 RPKM genes as high

expression threshold values and the 1 RPKM for low expression

based on eight log-scale bins [11]. The improved K-means

algorithm identifies thresholds from an individual gene expression

distribution pattern. Based on the calculation of this algorithm,

low expression threshold values are 0.66–1.22 RPKM, and high

expression threshold values are 8.58–19.99 RPKM (Table 3). We

set a median value of 1.06 RPKM for low threshold and a median

value of 12.72 RPKM for high threshold in normal condition as a

standard for further analysis (Figure S5). To discriminate a gene

Table 7. Accumulated cancer-associated HK genes ratio
when minR and maxR#1.

Type Gene count minR#11 (%) maxR#12 (%)

All 847 87.25 78.51

Constant 105 75.24 74.29

Moderate 361 93.63 78.39

Variable 381 84.51 79.79

1. Accumulated cancer-associated HK genes ratio when minR#1 (see minR
definition in Materials and Methods section).
2. Accumulated cancer-associated HK genes ratio when maxR#1 (see maxR
definition in Materials and Methods section.
doi:10.1371/journal.pone.0054082.t007

Figure 9. Gene structure bias among different HK gene types. Six types of gene structure are focused here, including: gene size, CDS length,
number of exons, number of minimal introns, number of large introns, and GC content. We compare five types of HK genes to the background of
genome (G, black line), including: cancer HK genes (C, red line), normal HK genes (N, blue line), cancer-associated HK genes (CA, purple line), normal-
unique HK genes (NU, cyan line), and shared HK genes (S, green line). This reflects gene structure and sequence content affect transcription in
different physiological conditions. (A) GC content bias among different HK gene types. (B) Gene size bias among different HK gene types. (C) Six types
of gene structure bias in cancer-associated, normal-unique and shared HK genes, compared to the background of genome. (D) Six types of gene
structure bias among five different HK gene types compared to the background of genome.
doi:10.1371/journal.pone.0054082.g009
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expression variation status, we apply an improved gene expression

CV model. The CV values in normal group range from 0 to 0.54.

Q1 (one quarter) and Q3 (three quarters) CV values in normal

group are 0.14 and 0.26, which are marked as constant and

variable expression threshold values, respectively (Figure S6).

Thus, we totally get three statuses of gene expression variation,

constant (0,CV#0.14), moderate variable (0.14,CV#0.26), and

variable (CV.0.26).

It is well known that some genes express constantly among

tissues while others express variably in normal condition. This

phenomenon also exists in HK genes [12–13,35]. Based on gene

expression CV model, we find that more HK genes in cancer tend

to be moderate variable expressed genes (Figure 3A). We attempt

to investigate the ways in which gene expression variation status is

regulated to deal with the emergence of a tumor. Thus, we

compare 6237 shared HK genes to illustrate their adjustment.

More than one half of shared HK genes’ expression variation

status changes between normal and cancer condition. As shown in

Figure 3B, nearly two-thirds of constant shared HK genes under

normal condition change to moderate variable status under cancer

condition. One third of moderate variable shared HK genes in

normal condition become constant shared HK genes in cancer

condition. About one half of variable shared HK genes in normal

condition change their expression variation status to moderate

variable in cancer condition (Figure 3B). A cell is apt to modulate

its gene expression pattern to be mainly moderate variable

expression in tumor physiological condition.

To measure gene expression regulation and gene expression

variation status regulation in cancer condition, we propose an

MDAD (see Materials and Methods section) plot with a paired

Wilcoxon signed-rank test [38] in all shared HK genes (Figure 4A)

and shared HK genes in three variation status subtypes (Figure 4B,

C, D). All paired Wilcoxon signed-rank test detail values are

shown in Table 4. Shared HK genes express higher in cancer than

in normal tissues, based on the effective expression width (MD, p-

value is 4.34E-33) and the intermediate value (AD, p-value is 0).

The previous microarray data indicated that human cancer genes

may be widely up-regulated [31]. Paired Wilcoxon signed-rank

test p-values of MD in the three gene expression variation subtypes

are 4.24E-67, 0.11, and 0.59, respectively. P-values of AD are all

too lower with the values of 3.15E-160, 2.62E-126, and 3.65E-183

(Table 4). As Figure 4 shown, most shared HK genes’ AD and MD

values are smaller than 0 which means genes express higher in

cancer condition than in normal condition. Thus, in cancer

condition, a cell mainly adjusts constant shared HK genes to

express higher to act the emergence of cancer signal.

We quantify the proportion of genes for which cancer cell

modulate gene expression level to be higher than that in normal

physiological status. To do so, we calculate gene counts that have

maximum ratio values (maxR) and minimum ratio values (minR)

#1 (see Materials and Methods section). When minR#1, there are

73.47% of shared HK genes accumulated; when maxR#1, there

are 67.79% of shared HK genes accumulated (Figure 5A, Table 5).

We also consider cells regulate gene expression levels in cancer

condition combining with gene expression variation information.

When minR#1, there are 78.24% of shared HK genes in constant

status, 65.10% of shared HK genes in moderate variable status,

and 80.16% of shared HK genes in variable status are

accumulated. And when maxR#1, those number are 70.17%,

62.30%, and 73.53% in these three expression variation subtypes

(Figure 5B, C, D, Table 5). The data show that most shared HK

genes are up regulated combining with gene expression variation

status in cancer condition.

Characterization of cancer-associated HK genes
expression signatures

There are only 847 cancer-associated HK genes, while there are

2594 normal-unique HK genes (Figure 2A). Normal-unique HK

genes and cancer-associated HK genes undertake the basic

function reacting to physiological condition, which prefer to

express more variable expressed genes in three expression

variation status, compared to normal (the standard control) and

cancer HK genes (Figure 6). Cancer tends to turn off constant

expression genes. We are interested in whether cancer regulates

cancer-associated HK gene expression levels similarly to the way

that shared HK gene expression levels are regulated. We do

another set of MDAD plots (Figure 7) and calculate maxR and

minR (Figure 8) as described above to illustrate how cancer

regulates cancer-associated HK genes in gene expression levels

with variation status.

Shown as Figure 7, we find that cancer-associated HK genes

express higher than these genes do in normal tissues, which can be

certificated by the intermediate value and the effective expression

width. Most genes’ MD values are negative value (p-value is 4.59E-

15), as well as AD values (p-value is nearly 0, Table 6). MD p-values

of the three gene expression variation subtypes are 1.54E-6, 1.61E-

4, and 2.84E-25, respectively. While AD p-values are much lower

with the values of 2.96E-18, 8.98E-56, and 2.08E-48 (Table 6).

The paired Wilcoxon signed-rank test statistical values of MD and

AD show that tumor induces cancer-associated HK genes to

express higher in cancer condition than they do in normal

condition.

By analyzing maxR and minR, we find that most cancer-

associated HK genes are corresponding to the maxR#1 and

minR#1; cancer emergence actives genes express higher than they

do in normal physiological condition. There are 78.51% cancer-

associated HK genes with maxR #1 and 87.25% with minR#1,

which are shown in the accumulated curve and list (Figure 8A,

Table 7). Similarly, for most cancer-associated HK genes in three

expression variation subtypes, maxR (,80%) and minR (,90%) are

#1 (Figure 8B, C, D). This is quite consistent with shared HK

genes. So we can conclude that cancer widely up-regulate gene

expression and turn off constant expression genes, while there is a

bias to turn on moderate variable and variable expression status

genes in cancer physiological condition.

Discussion

Gene expression pattern is higher related to
physiological condition rather than tissue spatial
distance

In this study, the gene expression profiles of heart and muscle

are similar, and cell lines form a cluster (Figure 1), which is

consistent with a previous study [44]. The similar tissue types

under the same physiological condition have a high profile

correlation, like brain and cerebral cortex, and 4 kinds of breast

tumor cell lines (Figure 1). But the same originals in two

physiological conditions belong to different groups (we call them

normal group and cancer group). For example, normal breast

tissue and 4 kinds of corresponding tumor cells belong to normal

and cancer groups, respectively (Figure 1). Due to our profile

cluster result, normal and cancer samples clearly cluster into two

obvious groups (Figure 1). This means gene expression pattern is

higher related to physiological condition rather than tissue spatial

distance. This result is validated by microarray data (Figure S7),

although the array result is not so obvious. This may be caused by

the quantitative normalization algorithm, which forces the probe

intensities into the same distribution across all samples [45–46]. A
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previous hierarchical clustering of nine lungs SAGE libraries result

also showed the same phenomenon with two obviously clusters of

tumor and normal lung samples [42]. Regarding the biological

groups of samples, gene expression pattern could be globally

altered in a complex disease [45,47–49]. Because the numbers of

up- and down- regulated genes are roughly equal, lots of false

down-regulated DE genes are produced and many up-regulated

DE genes are missed [31]. This could greatly distort the biological

differences between normal and cancer samples [31], but there are

not any samples in different physiological condition from the same

original cluster in a subgroup. In most previous studies of cancer

mechanisms or other disease types, researchers often paid more

attention to the differences in an individual organ under normal

and disease condition. They searched for the differential expres-

sion genes to find which part of genes mainly acted to the specific

tumor. Most genes provide general basic mechanisms in cancer

regulation, and only a few genes play specific roles for a given

cancer type. Due to the limited useful datasets our conclusion must

be confirmed by abundant transcriptome sequencing.

Human cancer signatures in gene expression
A tumor is a result of abnormal infinite cell multiplication. The

comparison of normal and cancer HK gene function enrichment

shows that most cancer HK genes are concerned with cell

components required for cell proliferation and their corresponding

biological processes (Table 2). They tend to participate in the

foundational pathways that are constituted to regulate tumor

occurrence, as defined by KEGG: cell cycle, pyrimidine metab-

olism, DNA replication, oocyte meiosis, mismatch repair, apop-

tosis, and so on. Our results reflect that some cancer signatures

include self-sufficiency in growth signals, insensitivity to antigrowth

signals, resistance to cell death, sustained angiogenesis, limitless

replicative potential, instability, mutation of genome, and so on.

For example, GLB1 are abundant in cancer, especially in DLD-1

cells engineered to over-express certain oncogenes [50–51]. TGF-

b is best known for its antiproliferative effects and cancer cell

evasion caused by these effects [52–54]. We find TGFB1 and

TGFB3 gene are shown in normal HK genes group, which do not

express in cancer. Cancer loses TP53 tumor suppressor function

through the loss of Noxa protein expression [25]. Increasing the

expression of antiapoptotic regulator Bcl2l12 in cancer can

achieve similar end [25,55]. And cancer HK genes are enriched

in cell cycle and DNA replication pathways, causing limitless

replicative potential. The well-known prototype of angiogenesis

inhibitor thrombospondin-1 (TSP-1) [25] does not express in

cancer-urged sustained angiogenesis. Cancer HK genes tend to

participate in homologous recombination pathways in cancer to

increase genome instability and mutation, and therefore to induce

tumor emergence.

Gene expression regulation in cancer
In RNA-Seq, there are 847 cancer-associated HK genes, while

there are 2594 normal-unique HK genes. Genes are widely up-

regulated and tend to be variable expression in cancer, which is

confirmed by microarray data from a previous study [31]. This

means a cell turns on fewer genes in cancer, but mainly up-

regulates them to reply to the tumor occurrence. Variable

expression regulation causes diverse cancer cell types to complete

basic regulation within a smaller gene set. However, 1323 cancer-

associated HK genes and 547 normal-unique HK genes were

defined in selective microarray datasets from E-MTAB-27 [32]

(Table S3), which are in inverse proportion to sample sets. It

suffers from microarray’s poor detectability and reproducibility in

low-copy and transiently-expressed genes [56]. And cancer-

associated HK genes’ relative expression level in normal condition

is higher than that in cancer condition (Table S4). This is partially

caused by the normalization algorithm as previously mentioned.

Otherwise, most cancer-associated HK genes in microarray data

originate from shared and normal-unique HK genes defined in

RNA-Seq (Table S3), in which genes tend to express higher in

normal condition than in cancer condition. Microarray’s weak

detection of low-expressed genes may also lead to this bias.

Gene structure and sequence content are considered to affect

the transcriptome level. We mainly focus on gene size, CDS

length, number of exons, number of minimal introns, number of

large introns, and GC content. A small gene size with less large

introns may enhance mRNA export from cell nucleus [14,21],

because small gene size makes gene transcribe easier. It can save

energy, and more transcription can be completed. In our study, we

find that cancer-associated HK genes discard large gene expres-

sion (Figure 9A) and mainly express AT-rich genes, compared to

genome as background. On the other hand, normal-unique HK

genes are GC-rich (Figure 9B). A GC pair is bounded by three

hydrogen bonds, while an AT pair is bounded by two hydrogen

bonds, which undergo breakage more easily [57]. Cancer-

associated HK genes are AT-rich, which makes DNA destabilize

and prone to transcribe using less energy [57]. However, CDS

length, number of exons, number of minimal introns, and number

of large introns weakly affect gene expression regulation

(Figure 9C, D). Although alternative mRNA isoform expression

varies among tissues, there is no obvious bias among alternative

splitting patterns between groups (data not shown). We can infer

that isoform is not a main regulated factor creates differences

between two physiological conditions, normal and cancer.

Conclusions

Gene expression pattern is higher related to physiological

condition rather than tissue spatial distance. There are common

regulation patterns in cancer cells, such as turn on/off regulation and

low/high or constant/variable adjustment, which maintain cancer

cells’ limitless proliferation ability. In order to complete basic cell

regulation within a smaller gene set, diverse cancer cell types turn on

more widely up-regulated expression genes and turn off more

constant expression genes than cells in normal condition do. Cancer-

associated HK genes are enriched in cell regulation related functions

and constitute some cancer signatures, including: insensitivity to

antigrowth signals, resisting cell death, sustained angiogenesis,

limitless replicative potential, and so on. Cancer selects AT-rich

genes and discards large genes to complete cell proliferation with

limited energy. These studies will help us understand the processes by

which cell type-specific patterns of gene expression differ among

different cell types, and particularly for cancer.

Supporting Information

Figure S1 RNA-Seq background threshold.

(TIF)

Figure S2 Illustration of tissues covered by RNA-Seq
samples. Red tissue means normal tissues that are used to

identify normal HK genes. Purple and green tissues are used to

validate definition of normal HK genes. Blue cell line indicates

cancer cell lines that are used to define cancer HK genes. Cyan

and green samples are used to validate definition of cancer HK

genes. Tissue that is marked as gray colour (colorectal) contains

normal and cancer sample, but they are too unsaturated to be

used.

(TIF)
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Figure S3 Comparison of Daniel et.al defined ubiqui-
tous expressed genes with our normal HK genes. Left

circle signifies Daniel et.al definition, which contains lncR

(modena), unknown genes (lilac), and protein-coding genes

(radiance and cyan). Right circle signifies our definition. Cyan

part means protein-coding genes that overlap between them. Kelly

part means protein-coding genes unique to our definition.

(TIF)

Figure S4 Validation of defined normal HK gene in 19
normal samples and defined cancer HK gene in 13
cancer samples. (A) Expression breadth distributions in 19

normal human tissues currently having RNA-Seq data are

compared among total genes and normal HK genes defined in

12 normal tissues. Normal HK genes defined in 12 normal tissues

show very broad expression in 19 tissues. (B) Expression breadth

distributions in 9 cancer human cell lines currently having RNA-

Seq data are compared among total genes and cancer HK genes

defined in 9 normal tissues. Cancer HK genes defined in 9 cancer

cell lines show very broad expression in 13 cancer samples.

(TIF)

Figure S5 Low and high gene expression thresholds
definition in the 12 normal samples. We set a median value

for low and high thresholds, respectively, in normal condition as a

standard.

(TIF)

Figure S6 Coefficient of Variation (CV) values distribu-
tion of normal HK genes. The up and down bars signify Q1

(one quarter) and Q3 (three quarters) of normal HK genes’ CV

values, which are marked as constant and variable expression

threshold values.

(TIF)

Figure S7 Hierarchical cluster profiles of microarray
samples based on Spearman correlation. The Spearman

correlation of gene expression profiles is used to define the

expression pattern similarity of different tissues/cells from

microarray samples.

(TIF)

Table S1 Data selection and fraction of expressed HK
genes in a sample.
(DOC)

Table S2 Microarray sample source.
(DOC)

Table S3 Comparison of HK gene definitions coming
from RNA-Seq and microarray data.
(DOC)

Table S4 Cancer-associated HK genes expression com-
parison in normal and cancer condition from micro-
array data.
(DOC)
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