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6Centro de Investigación y Formación del Pensamiento Libre en México, A.C., Colima, México
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Abstract

In genomic selection choosing the statistical machine learning model is of paramount importance. In this paper, we present an application
of a zero altered random forest model with two versions (ZAP_RF and ZAPC_RF) to deal with excess zeros in count response variables. The
proposed model was compared with the conventional random forest (RF) model and with the conventional Generalized Poisson Ridge re-
gression (GPR) using two real datasets, and we found that, in terms of prediction performance, the proposed zero inflated random forest
model outperformed the conventional RF and GPR models.

Keywords: genomic selection; count data; random forest; zero altered Poisson; plant breeding; Genomic Prediction; GenPred; Shared
Data Resource

Introduction
Novel methodologies like genomic selection (GS) proposed by
Bernardo (1994) and Meuwissen et al. (2001) are gaining popular-
ity in plant breeding because they are revolutionizing the plant
breeding paradigm. The basic idea of GS is to perform the process
of selection of candidate individuals by only genotyping and phe-
notyping a reference population and with this information train a
statistical model that is then used for predicting genomic breed-
ing values or phenotypic values of a testing (breeding) population
that only contains genotypic information. The acceptance and
popularity of GS continues to increase since empirical evidence
shows that there are no significant differences between the per-
formance of GS and that of phenotypic selection (Roorkiwal et al.
2016; Crossa et al. 2017; Wolfe et al. 2017; Huang et al. 2019). Some
of the advantages of GS are: (1) it shortens the generation inter-
val, (2) it requires fewer resources, and (3) it reduces the cost per
cycle (Farah et al. 2016; Crossa et al. 2017).

When using GS as a predictive methodology, we need to
choose the right model in each circumstance to guarantee an op-
timal performance. For this reason, nowadays many statistical
machine learning models are often used in GS, since there is no
universal model that works for all the data at hand (Wolpert and
Macready 1997). The development of prediction models for GS is

an active area of research that aims to improve the prediction
performance of the existing statistical machine learning algo-
rithms in the context of a large number of independent variables
(pÞ and a small sample size (nÞ, of correlated traits and input in-
formation from different sources, among others. When the traits
are counts, like the number of panicles per plant, number of
seeds per plant, number of infected spikelets per plant, days to
heading, days to maturity, and days to germination, among
others (Montesinos-López et al. 2016, 2017, 2020a, 2020b), there
are regression models like generalized Poisson regression (Stroup
2012), Bayesian Generalized Poisson regression (Montesinos-
López et al. 2015, 2016, 2017) and even deep neural networks
models (Montesinos-López et al. 2020a, 2020b). However, all these
models use as a loss function the negative of the log likelihood of
a Poisson distribution. Poisson distribution is very popular for
count data (that take values of 0, 1, 2,. . . with an unrestricted up-
per limit), but has two main disadvantages: (1) it is an intrinsic
property of a Poisson distribution that the variance is equal to the
mean, and for this reason many times it is unable to capture
over-dispersion efficiently, and (2) it cannot efficiently model ex-
cess zeros in the response variable.

Another problem of the Poisson family of regression models is
that they are parametric models that many times are not effi-
cient for capturing nonlinear patterns. For this reason, many
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machine learning algorithms have been successfully imple-
mented in GS (Sarkar et al. 2015; Stephan et al. 2015; Naderi et al.
2016; Waldmann 2016; Li et al. 2018) to capture nonlinear effects.
One of the most popular machine-learning methods is Random
Forests (RF, Breiman 2001), which is a tree-based ensemble
method for continuous (regression), binary and categorical classi-
fication using multiple variables as input (Chen and Ishwaran
2012; Alarcon et al. 2015; Li et al. 2016). RF has been applied in
genome-wide association studies to identify single nucleotide
polymorphisms (SNP) associated with phenotypes, and to map
QTL on the genome (Brieuc et al. 2015; Everson et al. 2015; Petralia
et al. 2015; Stephan et al. 2015; Li et al. 2018). In addition, RF has
been used for cancer identification and treatment, for epistasis
detection (Pashaei et al. 2015; Shi and He 2016), for prediction of
protein DNA-binding sites from amino acid sequences (Wu et al.
2009) and protein-protein interaction sites in sequence (Sikic et al.
2009), and for gene network pathway analysis (Pang et al. 2006;
Wang et al. 2010; Chen and Ishwaran 2012).

There is evidence that RF performs better than other methods
for binary traits when the sample size is large and the percentage
of missing data is low (Garcı́a-Magari~nos et al. 2009). However,
Naderi et al. (2016) found that, for binary traits, RF outperformed
the GBLUP method only in a scenario combining the highest heri-
tability, the extensive number of markers (50 K SNP chip), and the
largest number of QTL. González-Recio and Forni (2011) found
that RF performed better than Bayesian regressions in detecting
resistant and susceptible animals from based on genetic markers.
They also reported that RF produced the most consistent results
with very good predictive ability and outperformed other meth-
ods in terms of correct classification.

The popular RF models were originally developed for continu-
ous, binary and categorical data. The RF for continuous response
variables uses the sum of squared errors (least square) as split-
ting criteria, while the random forest for binary and categorical
data uses the Gini index of the log-likelihood based on a Bernoulli
distribution. There are also RF models for count data (Chaudhuri
et al. 1995; Loh 2002) that can be implanted in R using the package
part (Therneau and Atkinson 2019). However, these RF models
for count data are not appropriate for counts with excess zeros.
For this reason, Lee and Jin (2006) proposed a RF method for
counts with an excess of zeros, by building the splitting criterion
with the zero-inflated Poisson distribution, but it models both the
excess zero part and the Poisson part jointly, which is unlike the
basic hurdle and zero-inflated regression models that use two
models, thus allowing different covariates’ effects for each part.
A common model is based on the assumption that the excess of
zeros is generated by an independent random variable. For this
reason, conventional regression models for counts with an excess
of zeros use a logistic model for predicting excess zeros and a
truncated Poisson model for counts larger than zero.

For this reason, in this paper, we present an application of the
zero-truncated Poisson random forest with excess zeros proposed
by Mathlouthi et al. (2019); its building process is similar to the
zero altered (or inflated) Poisson regression since two models are
used in the building process: one to model excess zeros (zero
part) and the other to model counts larger than zero (Poisson
part). The proposed method is semi-parametric since it includes
only a few assumptions about a specific parametric form. The
zero part was modeled using a conventional binary random for-
est model, while the truncated Poisson part was modeled using
an RF with a new splitting criterion based on the zero-truncated
Poisson distribution.

Material and methods
Univariate ridge regression model
Under this model, the relationship between the response variable

that is continuous yið Þ and the input information [xT
i ¼ xi1; . . . ; xipð Þ

for i ¼ 1; . . . ; n] is given by yi ¼ b0 þ
Pp

j¼1 xij bj þ ei, where ei is as-

sumed distributed as normal with mean zero and variance ðr2Þ.
The estimates of bs using univariate ridge regression (RR) are

obtained by minimizing the following penalized residual sum of

squares (loss function):

LL ¼
Xn

i¼1
yi � b0 þ

Xp

j¼1
xij bj

� �2
þ k

Xp

j¼1
b2

j

� �
where k is the tuning hyper-parameter that can be chosen by

cross-validation. The optimization of this loss function (LLÞ was

done using the R package glmnent (Lasso and Elastic-Net

Regularized Generalized Linear Models) (Friedman et al. 2010).

Univariate generalized Poisson regression model
Since we are in a context where the number of independent vari-

ables (p) is larger than the number of observations ðnÞ, the penal-

ized loss function for the univariate generalized Poisson

regression (GPR) model is equal to:

LL ¼ �
Xn

i¼1
�li þ yi log lið Þ
� �

þ k
Xp

j¼1
b2

j

� �
;

where LL was derived as the negative penalized log likelihood based

on a Poisson distribution, li ¼ E yijxT
i

� �
¼ expðgþ

Pp
j¼1 xijbjÞ, repre-

sent the inverse link function that is an exponential function and

correspond to a log link function, and k is regularization parameter

that can be computed using cross-validation. The type of penaliza-

tion that contains the loss function is called Ridge penalization

since the sum of the squared beta coefficients is taken into account

in the penalization term. The loss function was optimized with the

R package glmnent and the k hyper-parameter was estimated with

10-fold cross-validations for both Ridge regression models (RR and

GPR). More details about this model can be found in Montesinos-

López et al. (2020b).

Random forests
Random forest (RF) is a modification of bootstrap aggregating

that builds a large collection of trees, and then averages out the

results. Each tree is built using the least-square splitting criterion

(loss function), the usual one when the response variable is con-

tinuous. For training data (Breiman 2001), RF takes B bootstrap

samples and randomly selects subsets of features as candidate

predictors for splitting tree nodes. Each tree minimizes the aver-

age loss function in the bootstrapped data and is constructed us-

ing the following algorithm:

For b ¼ 1; . . . ;B bootstrap samples fyb;Xbg:

Step 1. From the training dataset, draw bootstrap samples of

size Ntrain.
Step 2. With the bootstrapped data, grow a random-forest tree

Tb with the least-square splitting criterion, by recursively repeat-

ing the following steps for each terminal node of the tree, until

the minimum node size is reached.

1) Randomly draw mtry out of the m independent variables

(IVs). mtry is a user-specified parameter.
2) Pick the best independent variable among the mtry IVs.
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3) Split the node into two child nodes. The split ends when a

stopping criterion is reached, for instance, when a node has

less than a predetermined number of observations. No

pruning is performed.

Step 3. Output the ensemble of trees Tbf gB
1.

The predicted value of testing set (ŷi) individuals with input xi

is calculated as ŷi ¼ 1
B

PB
b¼1 TbðxiÞ. Readers are referred to Breiman

(2001) and Waldmann (2016) for details on the theory of RF. Tree

hyper-parameters, including the number of trees ðntreeÞ, number

of independent variables (features) sampled in each iteration

(mtry), and number of samples in the final nodes (nodesize) must

be defined by the user. For dataset 1 we assessed the following

combinations of values of ntree =(100, 300, 500), mtry =(30, 50, 100)

and nodesize =(2, 5, 15), while for dataset 2, we used the same

combination of values for ntree and nodesize, but a different

combination of the number of feature samples,

mtry ¼ ð150; 230; 320Þ.

Zero altered Poisson random forest
The two versions of the zero altered Poisson random forests

(ZAP_RF and ZAPC_RF) like zero altered Poisson (ZAP) regression

models, assumed that Y ¼ 0 with probability h (0 � h < 1), and

that Y follows a zero truncated Poisson distribution with parame-

ter l ðl > 0Þ, given that Y > 0 (Mathlouthi et al. 2019). That is,

they are based on the ZAP random variable:

P Y ¼ yð Þ ¼
h y ¼ 0

1� hð Þexpð�lÞly

1� exp �lð Þ
� �

y!
y > 0 :

8><>:
The mean and variance for ZAP are:

E Yð Þ ¼
1� hð Þexp �lð Þ
1� exp �lð Þ
� � and Var Yð Þ

¼ 1� hð Þ
1� exp �lð Þ
� � lþ l2

� �
� 1� hð Þ

1� exp �lð Þ
� � l

 !2

:

In general, zero altered models are two-part models, where

the first part is a logistic model, and the second part is a trun-

cated count model. However, under the ZAP_RF and ZAPC_RF, in-

stead of assuming a linear predictor (like ZAP regression models),

it is assumed that the links between the covariates and the

responses (Mathlouthi et al. 2019) through l and h are given by

nonparametric link functions like:

log lð Þ ¼ fl xð Þ and log
h

1� h

� 	
¼ f h x;ð Þ (1)

where fl and f h are general unknown link functions. A general

nonparametric and flexible procedure can be used to estimate fl

and f h in (1). However, here we used random forest in two steps

instead of a parametric model:

Step 1. Zero model. Fit a binary RF to the response I Y ¼ 0ð Þ,
that is, the binary variable takes a value of 1 if Y ¼ 0 and a

value of 0 if Y > 0. This model produces estimates of ĥ.

Step 2. Truncated model. Fit an RF using only the positive

(Y > 0) observations. Assume there are Nþ such observations

denoted by Yþ1 ; . . . ;YþNþ . This model produces estimates of l̂.

However, to exploit the Poisson assumption, the splitting

criteria used in the RF with the truncated part was derived

from the zero truncated Poisson likelihood that is equal to:

LLþ ¼ �Nþlog 1� exp �lð Þ
� �

þ log lð Þ
XNþ

i
Yþi � Nþl

�
XNþ

i
log Yþi !
� �

; (2)

where LLþ is the log-likelihood function of a sample of a zero

truncated Poisson distribution. The estimate of l is obtained by

solving @LLþ
@l ¼ 0, which reduces to:

PNþ
i Yþi
Nþ

¼ l
1� expð�lÞ :

For a given candidate split, the loglikelihood function given in

equation (2) is computed separately in the two children nodes

and the best split is the one that maximizes:

dLLþðleft nodeÞ þdLLþðright nodeÞ;

where dLLþ (left node) and dLLþðright node) are the log-likelihood

for each node.
Once we have the estimates of l and h, the predicted values of

Y under the ZAP_RF are obtained with:

Ŷ ¼ 1� ĥð Þexpð�l̂Þ
1� exp �l̂ð Þð Þ :

It is important to point out that in the prediction formula

given above, (Ŷ) is equal to the mean of the ZAP model, while un-

der the ZAPC_RF, the predictions are obtained as:

Ŷ ¼ 0; ĥ > 0:5
l̂; ĥ � 0:5

:

(

The ZAPC_RF is a conventional logistic regression model

where the predicted values are probabilities and those probabili-

ties are converted to a binary outcome if the probability is larger

(or smaller) than some probability threshold (most of the time

this threshold is 0.5). However, under the ZAPC_RF, instead of

converting the probabilities to 0 and 1, we convert to zero if ĥ >

0:5 and to the estimated expected count value (l̂Þ if ĥ � 0:5. One

limitation of the ZAPC_RF (similar to the logistic regression) is

that the probability threshold is not unique since many other val-

ues between zero and one can be used. However, the threshold

value of 0.5 is used most of the time since it assumes no prior in-

formation, and for this reason, both categories have the same

probability of occurring.

Experimental data
Phenotypic dataset 1
This dataset is composed of 115 spring wheat lines developed by

the International Maize and Wheat Improvement Center

(CIMMYT) and the trait measured was Fusarium head blight

(FHB) severity. The experiments were performed in 2011 and data

were collected in three environments (Env1, Env2, and Env3).

These datasets were the same ones used by Montesinos-López

et al. (2016) in their paper for count data with genotype � environ-

ment interaction. A full description of this dataset can be found

in Montesinos-López et al. (2020b).
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Genotypic dataset 1
For each line under study, we used 1635 SNPs, that resulted after

quality control genotyped using an Illumina 9 K SNP chip with

8632 single nucleotide polymorphisms (SNPs) (Cavanagh et al.

2013). Markers were coded as zero (absence) or one (presence).

Specific details of this genotypic information are available in

Montesinos-López et al. (2020b).

Phenotypic dataset 2
In this dataset, three traits were measured Pyrenophora tritici-

repentis (PTR), Parastagonospora nodorum (SN) and Bipolaris sorokini-

ana (SB) in 438 lines. The 438 wheat lines were evaluated in the

greenhouse in six replicates that are considered as environments

(Env1, Env2, Env3, Env4, Env5, and Env6). Therefore, the total

number of observations were 438� 6 ¼ 2628 observations. More

details of these phenotypic datasets can be found in Montesinos-

López et al. (2020b).

Genotypic dataset 2
In this dataset, after quality control and imputations, 11,617

SNPs were still available and these markers also were coded as

zero or one. This genotypic information was used for evaluation

in terms of prediction performance of the proposed models. More

details of these phenotypic datasets can be found in Montesinos-

López et al. (2020b).

Metrics used to measure prediction performance
Cross-validation was used to evaluate the prediction perfor-
mance in unseen data. Since our data contain the same lines in I
environments, we used an outer fivefold cross-validation that
mimics a situation where lines were evaluated in some environ-
ments for all traits but some lines were missing in other environ-
ments. We used cross-validation because the resulting test error
is very nearly unbiased and because our datasets are not very
large (Theodoridis 2020). Four folds were used for training and
onefold for testing. We repeated the training 5 times, each time
selecting one part (different each time) of the data for testing and
the remaining 4 parts for training. This cross-validation strategy
gives us the advantage of testing with one part of the data that
has not been involved in training, so it can be considered inde-
pendent, and eventually at the same time using all the data, both
for training and testing (Theodoridis 2020). We reported the aver-
age prediction performance combining the 5 estimates of the

Figure 1 Percentages of excess zeros for each trait in datasets 1 and 2. Trait FHB. (A) belongs to dataset 1, while traits PTR (B), SB (C) and SN (D) belong
to dataset 2.

Table 1 Summary of the phenotypic values of 4 traits under
study in datasets 1 and 2

Dataset Trait Min. 1st Qu. Median Mean 3rd Qu. Max.

1 FHB 0.000 0.000 1.000 1.780 2.000 18.000
2 PTR 0.000 4.000 5.000 6.056 9.000 19.000
2 SB 0.000 4.000 5.000 5.788 7.000 20.000
2 SN 0.000 4.000 4.000 6.284 9.000 20.000
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testing sets in terms of average Spearman correlation (ASC),
mean arctangent absolute percentage error (MAAPE) and mean
absolute error of prediction (MAE), for each environment and
across environments. The ASC was used instead of Pearson’s cor-
relation because the response variable is not normally distrib-
uted. In terms of ASC, the closer to one, the better the prediction
performance, while under MAE and MAAPE, the closer to zero,
the better the prediction performance. It is important to point out
that the process for tuning the hyper-parameter (k) in the gener-
alized Poisson regression (GPR) was done with 10-fold inner
cross-validation, while the tuning process for the random forest
models (RF, ZAP_RF, ZAPC_RF) was done with 5-fold inner cross-
validation inside each outer fold. This means that in each outer
fold, 20% of the data was used for tuning (TUN) and 80% of the in-
formation for inner training (ITRN). Each of the 9 (data_set_1 and
data_set_2) combinations of the grid search was trained with the
inner training set in each outer fold; its prediction performance
was evaluated in the inner tuning (TUN) set and the average in
terms of MAE was obtained for each fold of the 5 inner tuning
sets. For estimating the lambda hyper-parameter ðk) in GPR, we
used 10-fold partition. These are the default values for the soft-
ware and do not require significant amounts of computational
resources, while for random forest, we used only fivefold since
random forest is performed for each combination of hyper-
parameters and this increases considerably the computational
resources.

After selecting the best combination of hyper-parameters in
terms of MAE, the model was refitted, but using the whole outer
training set (80% of data) in each fold. Finally, for each outer test-
ing set, we computed each of the three metrics (ASC, MAAPE and
MAE) with its corresponding standard error (SE); then the average
of the 5 outer folds and its SE was reported as a measure of pre-
diction performance and variability in each metric. It is

important to point out that the 5-fold cross-validation strategy

was implemented with only 1 replication. The cv.zap.rf() function

developed in the R statistical software to implement the ZAP_RF

and ZAPC_RF proposed models is given in Appendix A.

Variable importance measures
For the proposed zero altered Poisson methods (ZAP_RF and

ZAPC_RF), it was possible to obtain variable importance meas-

ures (VIM), since there are many measures of variable impor-

tance. One common approach for regression trees is to calculate

the decrease in prediction accuracy from the testing dataset. For

each tree, the testing set portion of the data was passed through

the tree and the prediction error (PE) was recorded. Each predictor

variable was then randomly permuted and j new PE were calcu-

lated. The differences between the two were then averaged over

all trees, and normalized by the standard deviation of the differ-

ences. The variable showing the largest decrease in prediction ac-

curacy was the most important variable. The results were

displayed in a variable importance plot of the top ranked varia-

bles. Since the ZAP_RF and ZAPC_RF models are composed of a

zero part and a truncated part, two plots were obtained for each

trait, and the final VIM estimates of each independent variable

were the average values of the five implemented testing sets.

Data availability
The phenotypic and genotypic data for dataset 1 used in this

study are contained in the R file Data_Real_Count.RData, and

available at the following link: http://hdl.handle.net/11529/

10575. For dataset 2, the phenotypic and genotypic data are con-

tained in the R file Data_set 2.RData, available at the following

link: http://hdl.handle.net/11529/10548438.

Table 2 Phenotypic correlation between environments in each trait (FHB of dataset 1 and PTR, SN and SB of dataset 2)

Trait¼ FHB

Batan 2012 Batan 2014 Chunchi 2014
Batan 2012 1.000 1.000 0.042
Batan 2014 1.000 1.000 0.042

Chunchi 2014 0.042 0.042 1.000

Trait5 PTR
Env1 Env2 Env3 Env4 Env5 Env6

Env1 1.000 0.449 0.383 0.333 0.364 0.351
Env2 0.449 1.000 0.339 0.308 0.357 0.317
Env3 0.383 0.339 1.000 0.546 0.293 0.291
Env4 0.333 0.308 0.546 1.000 0.294 0.325
Env5 0.364 0.357 0.293 0.294 1.000 0.605
Env6 0.351 0.317 0.291 0.325 0.605 1.000

Trait5 SN
Env1 Env2 Env3 Env4 Env5 Env6

Env1 1.000 0.616 0.534 0.608 0.412 0.475
Env2 0.616 1.000 0.509 0.624 0.456 0.471
Env3 0.534 0.509 1.000 0.711 0.472 0.486
Env4 0.608 0.624 0.711 1.000 0.487 0.510
Env5 0.412 0.456 0.472 0.487 1.000 0.790
Env6 0.475 0.471 0.486 0.510 0.790 1.000

Trait5 SB
Env1 Env2 Env3 Env4 Env5 Env6

Env1 1.000 0.456 0.433 0.362 0.400 0.366
Env2 0.456 1.000 0.437 0.316 0.397 0.363
Env3 0.433 0.437 1.000 0.419 0.455 0.442
Env4 0.362 0.316 0.419 1.000 0.371 0.399
Env5 0.400 0.397 0.455 0.371 1.000 0.442
Env6 0.366 0.363 0.442 0.399 0.442 1.000

The largest and smallest correlations are in bold.
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Results
The results are given in three subsections. In the first subsection,
for each trait in each dataset, we show the percentage of excess
zeros. In the second subsection, we give a description of the pre-
diction performance of dataset 1, while in the third subsection,
the same description is given, but for dataset 2.

Percentage of excess zeros in each dataset
Figure 1A shows that in trait FHB that belongs to dataset 1, the
percentage of zeros was 34.87%. For trait PTR that belongs to
dataset 2, the percentage of zeros was 5.97%, while for the second
trait (SB) in this dataset, the percentage of zeros was 9.86% and
for the last trait (SN) in this second dataset, the percentage of
zeros was 3.96%. Table 1 provides a summary of the phenotypic
information of each of the four traits under study, where it is evi-
dent that the mean and median are quite different, which is an
indicator that the data are not symmetric and non-normally dis-
tributed. Table 1 also shows that the minimum count is zero in
the four traits and the maximum is 20 in two traits (SB and SN),
18 in trait FHB and 19 in trait PTR.

Table 2 gives the phenotypic correlation between the environ-
ments of each trait. In trait FHB (dataset 1), we can observe a per-
fect correlation between environments Batan2012 and
Batan2014, but a poor correlation between environment
Chunchi2014 and Batan2012 and Batan2014. In trait PTR (dataset
2) the largest correlation (0.605) was between Env5 and Env6,
while the lowest (0.291) was between Env3 and Env6. Most of the
correlations between environments are between 0.3 and 0.4. In
trait SN (dataset 2), the largest correlation (0.79) was also ob-
served between Env5 and Env6, while the lowest (0.412) was be-
tween Env1 and Env5; the remaining correlations were between
the minimum and maximum values mentioned before. Finally,
for trait SB (dataset 2), the largest (0.456) and minimum (0.316)
correlations were between Env1 and Env2 and between Env2 and
Env4, respectively.

Dataset 1
In Figure 2, we compare the prediction performance of the five
models (GPR, RF, RR, ZAP_RF, ZAPC_RF) in dataset 1 for trait FHB.
The prediction performance was evaluated in terms of Spearman’s
correlation, MAAPE and MAE for each environment. First we pro-
vide the results taking into account the genotype by environment
(GE) interaction in the predictor. In terms of ASC, Figure 2A shows
that the best prediction performance (in the three environments)
was observed under the ZAP_RF model in environment
Chunchi2014, while the worst was observed under the RR model in
environment Batan2014, and the best model outperformed the
worst by 0:809 � 0:340ð Þ � 100

0:809 ¼ 57:920%. In each environment,
the ZAP_RF model outperformed the RR by 0:560 � 0:346ð Þ �
100

0:560 ¼ 38:160% (in Batan2012), 0:566 � 0:341ð Þ � 100
0:566 ¼ 39:87% (in

Batan 2014) and by 0:809 � 0:559ð Þ � 100
0:809 ¼ 30:97% (in Chunchi

2014). In MAAPE terms, Figure 2B shows that in the three environ-
ments, the best performance was under the ZAPC_RF model and
the worst was under the RR model. In Batan2012, Batan2014, and
Chunchi2014, the ZAPC_RF outperformed the RR model by
0:927 � 0:74ð Þ � 100

0:74 ¼ 25:270%, 0:932 � 0:748ð Þ � 100
0:748 ¼ 24:599%

and 0:737 � 0:544ð Þ � 100
0:544 ¼ 35:478%, respectively. The second

best model was ZAP_RF, which was slightly better than the RF
model, but there were no significant differences between them in
terms of MAAPE performance (Figure 2B). In MAE terms, the
ZAPC_RF model was also the best in environments Batan2012 and
Batan2014, while in environment Chunchi2014, the best model was

RF (Figure 2C). In environments Batan2012 and Batan2014,
ZAPC_RF outperformed the worst model (RR) by 1:072 � 0:863ð Þ �
100

0:863 ¼ 24:218% and 1:074 � 0:872ð Þ � 100
0:872 ¼ 23:165%, respectively,

while in environment Chunchi2014, the best model ZAP_RF outper-
formed the worst model RR by 2:029 � 1:159ð Þ � 100

1:159 ¼ 75:065%.
Without the GE interaction term, we can see that in terms of
Spearman’s correlation, the best model was ZAP_RF
(Spearman¼ 0.731; Chunchi2014) and the worst was model RR
(Spearman¼ 0.341; Batan2014), and the ZAP_RF outperformed the
RR model by 0:731 � 0:341ð Þ � 100

0:731 ¼ 53:43% (Figure 2A). In terms
of MAAPE, the best and worst models were ZAPC_RF
(MAAPE¼ 0.608; Chunchi2014) and RR (MAAPE¼ 0.934; Batan2014)
and the best model outperformed the worst by 0:934 � 0:608ð Þ �
100

0:608 ¼ 53:52% (Figure 2B). Finally, in terms of MAE, the best model
(ZAPC_RF) outperformed the worst by 2:0412 � 0:904ð Þ � 100

0:904 ¼
125:83% (Figure 2C).

Figure 3A indicates that under Spearman’s correlation across
environments, the best and worst models were ZAP_RF and RR,
respectively. The best model outperformed the worst model by
0:674 � 0:456ð Þ � 100

0:674 ¼ 32:22%. Across environments, Figure 3B
shows that in MAAPE terms, the ZAPC_RF model was the best
and the RR model was the worst. The ZAPC_RF model outper-
formed the worst model (RR) by
0:867 � 0:671ð Þ � 100

0:671 ¼ 29:210%. The second best model in
terms of MAAPE was the ZAP_RF, which was outperformed by the
ZAPC_RF by 0:808 � 0:671ð Þ � 100

0:671 ¼ 20:417%. In terms of MAE,
the best model was also ZAPC_RF, which outperformed the worst
model RR by 1:381 � 0:964ð Þ � 100

0:964 ¼ 43:257%. In terms of MAE,
the ZAP_RF model was also the second best and was outper-
formed by the best model (ZAPC_RF) by only 0:972 � 0:964ð Þ �
100

0:964 ¼ 0:83% (Figure 3B). Without GE interaction across environ-
ments, the best and worst models in terms of Spearman’s corre-
lation were ZAP_RF (Spearman¼ 0.639) and RR
(Spearman¼ 0.461), respectively, where the first model outper-
formed the worst model by 0:639 � 0:461ð Þ � 100

0:639 ¼ 27:75%. In
terms of MAAPE, the best and worst models were ZAPC_RF
(MAAPE¼ 0.702) and RR (MAAPE¼ 0.870), respectively, where
ZAPC_RF outperformed the RR model by
0:870 � 0:702ð Þ � 100

0:702 ¼ 23:94%. Finally, in terms of MAE, the
best model (ZAP_RF, MAE¼ 1.11) outperformed the worst model
(RR; MAE¼ 1.389) by 1:389 � 1:110ð Þ � 100

1:110 ¼ 25:17%.
Figure 4 provides the variable important values (VIM) for the

conventional random forest model (A) and for the ZAP_RF model
(B, C). Figure 4B corresponds to the truncated part (A) and Figure
4C to the zero part (B) of the ZAP_RF model. These plots only con-
tain the 30 most important variable important measures. Figure
4A indicates that the three most important predictors for the
conventional RF model are Chunchi2014, V4, and V77 (without
GE interaction) and Chunchi2014, Chunchi2014-1 and V4 (with
GE interaction), while under the ZAP_RF model, the three most
important predictors, under the truncated part ignoring the GE
interaction, were Chunchi2014, V116 and V3, while taking into
account the GE interaction term were Chunchi2014,
Chunchi2014-1 and V116. Under the zero part, predictors
Chunchi2014, V39, V16 (without the GE interaction) and predic-
tors Chunchi2014, V39 and V16 are the most important predictors
taking into account the GE interaction term.

Dataset 2
Trait PTR
First, we give the results for trait PTR, then for trait SB and finally
for SN. The prediction performance of the five models (GPR, RF,
RR, ZAP_RF, ZAPC_RF) of dataset 2 for trait PTR was evaluated in
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terms of Spearman’s correlation, MAAPE and MAE for each envi-
ronment (Figure 5). First, we provide the prediction performance
taking into account the GE interaction. In terms of Spearman’s
correlation, for the PTR trait the best and worst prediction per-
formances were observed under the ZAPC_RF (Spearman¼ 0.565;
Env6) and RF (Spearman¼ 0.439, Env2) models, respectively. The

best model outperformed the worst model by 0:565 � 0:439ð Þ �

100
0:565 ¼ 22:27% (Figure 5A). Under the MAAPE, the best perfor-
mance was observed under the ZAP_RF model (MAAPE¼ 0.2953,
Env6) and the worst under the RR model (MAAPE¼ 0.544, Env4).
The ZAP_RF outperformed the RR model by 0:554 � 0:2953ð Þ �

100
0:2953 ¼ 84:49% (Figure 5B), while under the MAE, the best model
was the ZAPC_RF (MAE¼ 2.029, Env6), and the worst was

RR model (MAE¼ 2.975, Env4), and the best model outperformed

Figure 2 Prediction performance in terms of average Spearman’s correlation (Spearman; A), mean arctangent absolute percentage error (MAAPE; B) and
mean absolute error of prediction (MAE; C) of the five models (GPR, RF, RR, ZAP_RF, ZAPC_RF) for each environment in dataset 1 for trait FHB. NO in the
plots means that the genotype�environment (GE) interaction was ignored, while YES means that the GE interaction term was taken into account.
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the worst by 2:975 � 2:029ð Þ � 100
2:029 ¼ 46:60% (Figure 5C). Without

taking into account the GE interaction, we can see that in
terms of Spearman’s correlation, the best model was the
ZAP_RF (Spearman¼ 0.554, Env6), while the worst was ZAPC_RF
(Spearman¼ 0.450, Env2); the ZAP_RF outperformed the ZAPC_RF
by 0:554 � 0:450ð Þ � 100

0:554 ¼ 18:86%. In terms of MAAPE, the
best model was ZAP_RF (MAAPE¼ 0.277, Env6), while the

worst was the RF (MAAPE¼ 0.502, Env3) model; the best model
outperformed the worst by 0:502 � 0:277ð Þ � 100

0:227 ¼ 81:42%.
In terms of MAE, the ZAPC_RF (MAE¼ 2.019, Env6) model
was the best, while the worst model was also de
ZAPC_RF(MAE¼ 2.672), but in environment (Env4) the best pre-
diction of ZAPC_RF in Env6 outperformed the ZAPC_RF in Env4
by 2:672 � 2:019ð Þ � 100

2:019 ¼ 32:33%.

Figure 3 Prediction performance in terms of average Spearman’s correlation (Spearman; A), mean arctangent absolute percentage error (MAAPE; B) and
mean absolute error of prediction (MAE; C) of the five models (GPR, RF, RR, ZAP_RF, ZAPC_RF) across environments in dataset 1 for trait FHB. NO in the
plots means that the genotype�environment (GE) interaction was ignored, while YES means that the GE interaction term was taken into account.
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Figure 6A indicates that across-environments taking into ac-
count the GE interaction the best model was ZAP_RF
(Spearman¼ 0.547), the worst was GPR (Spearman¼ 0.521)
model, and the best model outperformed the worst by
0:547 � 0:521ð Þ � 100

0:547 ¼ 4:67%. Figure 6B shows that in terms of
MAAPE, across environments, the ZAP_RF (MAAPE¼ 0.400) model
was the best and the worst was the RR (MAAPE¼ 0.458) model.
But the best model outperformed the worst model by only
0:458 � 0:400ð Þ � 100

0:400 ¼ 12:70%. In terms of MAE, the best model
was also ZAP_RF (MAE¼ 2.312) which outperformed the worst
model RR (MAE¼ 2.706) by 2:706 � 2:312ð Þ � 100

2:312 ¼ 14:54%

(Figure 6C). Without taking into account the GE interaction, the
best prediction performance across-environments under
Spearman’s correlation was with model RF (Spearman¼ 0.542)
and the worst was with model ZAPC_RF (Spearman¼ 0.51) and
model RF outperformed ZAPC_RF by
0:542 � 0:51ð Þ � 100

0:542 ¼ 5:92%. But, in terms of MAAPE, the best
model was ZAP_RF (MAAPE¼ 0.403) and the worst was ZAPC_RF
(MAAPE¼ 0.451) and the ZAP_RF outperformed the ZAPC_RF by
0:451 � 0:403ð Þ � 100

0:403 ¼ 3:17%. Finally, in terms of MAE, the best
model (ZAP_RF) outperformed the worst model (ZAPC_RF) by
2:409 � 2:317ð Þ � 100

2:317 ¼ 3:94%:

Figure 7 provides the VIM for the conventional random forest
model (A) and for the ZAP_RF model (B, truncated part; C, zero
part) for trait PTR of dataset 2. These plots only contain the 30
most important VIM. The three most important predictors for the
conventional RF model correspond to predictors V8, V12 and V7
(with and without GE interaction), respectively. For the ZAP_RF
model under the truncated part, the same predictors, V7, V8 and
V12 (with and without GE interaction) were the most important
predictors. Under the zero part, three dummies out of the six
environments (Env6, Env4 and Env3) were the most important
predictors ignoring the GE interaction, while with the GE interac-
tion, the most important predictors were Z.G46.Env4, V189 and
Z.G202.Env2.

Trait SB:
Next, we provide the results for the SB trait. The prediction per-
formance of the five models (GPR, RF, RR, ZAP_RF, ZAPC_RF) for
this trait in dataset 2 is reported in terms of Spearman’s correla-
tion, MAAPE and MAE for each environment (Figure 8). First, we
provide the prediction performance with the GE interaction. In
terms of Spearman’s correlation, the best and worst prediction
performances, in the SB trait, were observed under models

Figure 4 Predictor importance for trait FHB in dataset 1 under conventional random forest (A) and under zero altered Poisson random forest (B and C).
The first column contains the results without interaction (NO) and the second column contains the results with interaction (YES).
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ZAP_RF (Spearman¼ 0.554; Env3) and GPR (Spearman¼ 0.409,
Env2), respectively. The ZAP_RF model outperformed the GPR
model by 0:554 � 0:409ð Þ � 100

0:554 ¼ 26:22% (Figure 8A). In terms of
MAAPE, the best model was also ZAP_RF (MAAPE¼ 0.325; Env2),
but now the worst was RR model (MAAPE¼ 0.437, Env4) and the
ZAP_RF outperformed the RR model by 0:437 � 0:325ð Þ � 100

0:325 ¼
34:67% (Figure 8B). Under the MAE, the best model was RF
(MAE¼ 1.842, Env2) and the worst was model RR (MAE¼ 2.432,
Env6), and the RF model outperformed the RR by
2:432 � 1:842ð Þ � 100

2:432 ¼ 32:45% (Figure 8C). Ignoring the GE inter-
action, in terms of Spearman’s correlation the best model was
ZAPC_RF (Spearman¼ 0.546, Env3), while the worst was RR
(Spearman¼ 0.423, Env2) and the ZAPC_RF outperformed the RR
by 0:546 � 0:423ð Þ � 100

0:546 ¼ 22:58% (Figure 8A). With MAAPE, the

best models were ZAP_RF (MAAPE¼ 0.326, Env2) and GPR
(MAAPE¼ 0.326, Env2), while the worst was RR (MAAPE¼ 0.411,
Env6) and the best model outperformed the worst by
0:411 � 0:326ð Þ � 100

0:326 ¼ 26:20% (Figure 8B). In terms of MAE, the
GPR (MAE¼ 1.847, Env2) model was the best, while the worst
model was the RR (MAE¼ 2.249, Env6) and model GPR outper-
formed model RR by 2:249 � 1:847ð Þ � 100

1:847 ¼ 21:79% (Figure 8C).
In Figure 9A across-environments, taking into account the GE

interaction, the best model was ZAP_RF (Spearman¼ 0.479) and
the worst was model GPR (Spearman¼ 0.458) and the ZAP_RF
model outperformed the GPR by 0:479 � 0:458ð Þ � 100

0:479 ¼ 4:31%. In
terms of MAAPE (Figure 9B), across environments, the ZAP_RF
(MAAPE¼ 0.364) model was the best and the worst was the RR
(MAAPE¼ 0.404) model and the ZAP_RF model outperformed the

Figure 5 Prediction performance in terms of average Spearman’s correlation (Spearman; A), mean arctangent absolute percentage error (MAAPE; A)
and mean absolute error of prediction (MAE; C) of the five models (GPR, RF, RR, ZAP_RF, ZAPC_RF) for each environment in dataset 2 for trait PTR. NO in
the plots means that the genotype�environment (GE) interaction was ignored, while YES means that the GE interaction term was taken into account.
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RR model by 0:404 � 0:364ð Þ � 100
0:364 ¼ 10:71%. Under MAE, the

ZAP_RF (best model with MAE¼ 2.018) outperformed the RR (worst
model with MAE¼ 2.266) by 2:266 � 2:018ð Þ � 100

2:018 ¼ 12:27%

(Figure 9C). Without the GE interaction, in terms of Spearman’s

correlation across-environments, ZAP_RF (Spearman¼ 0.489) was
the best model and RR (Spearman¼ 0.480) was the worst model,
and ZAP_RF outperformed the RR model by 0:489 � 0:480ð Þ �
100

0:489 ¼ 1:77% (Figure 9A). Under MAAPE, ZAP_RF (MAAPE¼ 0.369)

Figure 6 Prediction performance in terms of average Spearman’s correlation (Spearman; A), mean arctangent absolute percentage error (MAAPE; B) and
mean absolute error of prediction (MAE; C) of the five models (GPR, RF, RR, ZAP_RF, ZAPC_RF) across environments in dataset 2 for trait PTR. NO in the
plots means that the genotype�environment (GE) interaction was ignored, while YES means that the GE interaction term was taken into account.
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was the best model and RR (MAAPE¼ 0.373) was the worst model,
and ZAP_RF outperformed the RR model by 0:373 � 0:369ð Þ �
100

0:369 ¼ 1:27% (Figure 9B). Finally, in terms of MAE, ZAP_RF (the best
model) outperformed the RR (worst model) by
2:021 � 2:043ð Þ � 100

2:043 ¼ 1:03% ðFigure 9C).
Figure 10 for the conventional random forest model (A) and

for the ZAP_RF model (B, truncated part; C, zero part) for trait SB
in dataset 2 provides the VIM. Only the 30 most important VIM
are given in these plots. With and without GE interaction, the
three most important predictors for the conventional RF model
were V7, V8 and V115, respectively. For the ZAP_RF model under
the truncated part, with and without GE interaction, the most im-
portant predictors were the same: V7, V8, and V115. Under the
zero part, V13, V15 and Env4 were the most important predictors
ignoring the GE interaction, while with the GE interaction the
most important predictors were V13, V15, and V414.

Trait SN:
With the GE interaction term in the predictor, we can observe
that in terms of Spearman’s correlation, the best model was
ZAP_RF (Spearman¼ 0.701, Env4) and the worst was RR
(Spearman¼ 0.552, Env5) and model ZAP_RF outperformed the
RR model by 0:701 � 0:552ð Þ � 100

0:701 ¼ 21:28% (Figure 11A), while

in terms of MAAPE, the best model (ZAP_RF with MAAPE¼ 0.259
in Env4) outperformed the worst model (RR with MAAPE¼ 0.469
in Env2) by 0:469 � 0:259ð Þ � 100

0:259 ¼ 81:25% (Figure 11B). In terms
of MAE, the best model was also ZAP_RF (MAE¼ 1.555, Env4) and
the worst was also model RR (MAE¼ 3.287, Env1), and model
ZAP_RF outperformed the RR model by 3:287 � 1:555ð Þ � 100

1:555 ¼
111:36% (Figure 11C). Ignoring the GE interaction term, we can
observe that in terms of Spearman’s correlation the best model
was ZAP_RF (Spearman¼ 0.720, Env4) and the worst was model
RR (Spearman¼ 0.567, Env5) and the gain of the best model
over the worst model was 0:720 � 0:567ð Þ � 100

0:720 ¼ 21:27%

(Figure 11A). In terms of MAAPE, the best and worst models were
ZAP_RF (MAAPE¼ 0.259, Env4) and RR (MAAPE¼ 0.361, Env1), and
the ZAP_RF outperformed the RR by 0:361 � 0:259ð Þ � 100

0:259 ¼
39:41% (Figure 11B). Finally, in terms of MAE, the ZAP_RF
(MAE¼ 1.508, Env4) and RR (MAE¼ 2.546, Env1) models were also
the best and worst, respectively, and the best outperformed the
worst by 2:546 � 1:508ð Þ � 100

1:508 ¼ 68:81% (Figure 11C).
Across-environments, taking into account the GE interaction,

the best model in terms of Spearman’s correlation was ZAPC_RF
(Spearman¼ 0.655) and the worst was model RR
(Spearman¼ 0.618), and the ZAPC_RF outperformed the RR
model by 0:655 � 0:618ð Þ � 100

0:655 ¼ 5:61% (Figure 12A). In terms of

Figure 7 Predictor importance for trait PTR in dataset 2 under conventional random forest (A) and under zero altered Poisson random forest for trait
PTR (B and C). The first column contains the results without interaction (NO) and the second column contains the results with interaction (YES).
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MAAPE, the best and worst models were also the ZAP_RF
(MAAPE¼ 0.290) and the RR (MAAPE¼ 0.429) models, respec-
tively, and the best outperformed the worst by 0:429 � 0:290ð Þ �
100

0:290 ¼ 47:84% (Figure 12B), while in terms of MAE, the ZAP_RF
(best, with MAE¼ 1.892) outperformed the RR (worst, with
MAE¼ 2.717) model by 2:717 � 1:892ð Þ � 100

1:892 ¼ 43:54% (Figure
12C). While ignoring the GE term, in terms of Spearman’s correla-
tion the best model was also the ZAP_RF (Spearman¼ 0.659) and
the worst was also RR (Spearman¼ 0.643) and the ZAP_RF was
superior to the RR model by 0:659 � 0:643ð Þ � 100

0:659 ¼ 2:51%

(Figure 12A). In terms of MAAPE (Figure 12B) and MAE (Figure
12C), the ZAP_RF (MAAPE¼ 0.279, MAE¼ 1.815) was also the best
model and the RR (MAAPE¼ 0.305, MAE¼ 1.943) was the worst,

and the ZAP_RF outperformed the RR by 0:305 � 0:279ð Þ � 100
0:279 ¼

9:15% in terms of MAAPE and by 1:943 � 1:815ð Þ � 100
1:815 ¼ 7:02%

in terms of MAE.
The 30 most important VIM for the conventional random

forest model (Figure 13A) and for the ZAP_RF model (Figure
13B, truncated part; Figure 13C, zero part) are given for trait
SN in dataset 2. The three most important predictors for the
conventional RF model were: V10, V14 and V7 (without GE
interaction) and V10, V14 and V54 (with GE interaction). For
the ZAP_RF model under the truncated part, the most impor-
tant predictors were: V10, V14 and V24 (without the GE
term) and V10, V14 and V7 (with the GE interaction term).
Under the zero part, V247, V55 and V203 were the most

Figure 8 Prediction performance in terms of average Spearman’s correlation (Spearman; A), mean arctangent absolute percentage error (MAAPE; B) and
mean absolute error of prediction (MAE; C) of the five models (GPR, RF, RR, ZAP_RF, ZAPC_RF) for each environment in dataset 2 for trait SB. NO in the
plots means that the genotype�environment (GE) interaction was ignored, while YES means that the GE interaction term was taken into account.
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important predictors ignoring the GE interaction, while with

the GE interaction, the most important predictors were V44,

Z.G277.Env3, and V189.

Discussion
Due to the fact that there is no universal model that works in all

circumstances, many statistical machine learning models have

been adopted for genomic prediction. Random forest is one of the

models adopted for genomic prediction with many successful

applications (Sarkar et al. 2015; Stephan et al. 2015; Naderi, et al.
2016; Waldmann 2016; Li et al. 2018).

Some of the reasons for the increased popularity of random
forests are: (1) they require very simple input preparation and
can handle binary, categorical and numerical independent varia-
bles without the need for any preprocessing like scaling, (2) they
perform implicit variable selection and provide a ranking of pre-
dictor (feature) importance, (3) they are inexpensive in terms of
computational resources needed for its training since there are
few hyper-parameters that need to be tuned (number of trees,
number of features sampled and number of samples in the final

Figure 9 Prediction performance in terms of average Spearman’s correlation (Spearman; A), mean arctangent absolute percentage error (MAAPE; B) and
mean absolute error of prediction (MAE; C) of the five models (GPR, RF, RR, ZAP_RF, ZAPC_RF) across environments in dataset 2 for trait SB. NO in the
plots means that the genotype�environment (GE) interaction was ignored, while YES means that the GE interaction term was taken into account.
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nodes) and due to the fact that instead of working directly with
all independent variables simultaneously each time, they use
only a fraction of the independent variables, (4) some algorithms
can beat random forests, but it is never by much, and other algo-
rithms many times take much longer to build and tune than an
RF model, (5) contrary to deep neural networks that are really
hard to build, it is really hard to build a bad random forest, since
it depends on very few hyper-parameters and some of them are
not very sensitive, which means that a lot of tweaking and fid-
dling is not required to get a decent random forest model, (6) RFs
are very versatile since they can deal with continuous, binary
and categorical response variables, (7) they have a very simple
learning algorithm, (8) they are easy to implement since there are
many free and open-source implementations, and (9) RF paralle-
lization is possible because each tree is grown independently.

The model originally proposed for estimation purposes by
Mathlouthi et al. (2019) expanded the versatility of the random
forest algorithm since ZAP_RF and ZAPC_RF are appropriate for
count data with excess zeros. The main advantage of these meth-
ods is their flexibility, meaning they can adapt to the data at

hand without having to specify a parametric form. We found that
the proposed methods outperformed Ridge regression and
Poisson Ridge regression and slightly outperformed the conven-
tional random forest. For this reason, the proposed methods con-
tribute to the lack of efficient algorithms for dealing with count
data with excess zeros. The previously mentioned advantages of
conventional RF are inherited by the proposed methods since the
only difference between the conventional RF and the proposed
zero altered Poisson random forest models is that instead of
training only a conventional random forest model with the sum
of squared errors (least squares) as splitting criteria, now two
random forest models are trained, one for the excess of zeros
(with conventional splitting criteria for binary outcomes like the
Gini index or log-likelihood of Bernoulli distribution) and another
for counts larger than zero that use the log-likelihood of zero
truncated Poisson distribution as splitting criteria. This change in
using two models instead of one allows the conventional random
forest to be modified to deal better with count data with excess
zeros. Also, the proposed zero altered Poisson random forest
methods allow reporting the important features (predictors), but

Figure 10 Predictor importance for trait SB in dataset 2 under conventional random forest (A) and under zero altered Poisson random forest for trait SB
(B and C). The first column contains the results without interaction (NO) and the second column contains the results with interaction (YES).
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instead of one graph, two are generated, one for the zero-altered
part that shows which features are the most important to the
counts with excess zeros and the other for the remaining counts
(1, 2,. . .). These two graphs of important predictors are very useful
to gain insight into the biological meaning of the most important
predictors.

The proposed zero altered Poisson random forest methods
(ZAP_RF and ZAPC_RF) belong to the category of ensemble regres-
sion tree models, that by their nature it is difficult to evaluate the

effect of each predictor. This means that these methods differ
from parametric models (e.g., a linear mixed model) for GWAS
since they do not provide the parameter estimates and p-values
(for significance) for measuring the degree of importance of each
predictor. However, many other non-parametric models allow
calculating variable importance values (denoted as VIM) to indi-
cate the contributions of individual predictors to the prediction
error. Figures 4, 7, 10, and 13 show the distribution profiles of the
VIM values of the ranked predictors (from the most important to

Figure 11 Prediction performance in terms of average Spearman’s correlation (Spearman; A), mean arctangent absolute percentage error (MAAPE; B)
and mean absolute error of prediction (MAE; C) of the five models (GPR, RF, RR, ZAP_RF, ZAPC_RF) for each environment in dataset 2 for trait SN. NO in
the plots means that the genotype�environment (GE) interaction was ignored, while YES means that the GE interaction term was taken into account.
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the least important ones) for RF analyses and for the proposed
methods. The larger the predictor VIM value, the more important
a predictor is. Most of the predictors were found to have either
very small positive influence or no effect on the VIM values in RF
and the proposed methods. Also, since the proposed zero altered
Poisson random forest models (ZAP_RF and ZAPC_RF) were built
with two models (a truncated and zero part), they provide two
plots for the VIM values, one for the truncated part and another

for the zero part, indicating that different predictors influence
each model. These plots are of paramount importance because
they allow identifying which predictors play the most important
role in the prediction of the response variable of interest.

It is important to point out that under a univariate Poisson re-
gression, the inverse link function is equal to li ¼ expðgþ

Pp
j¼1 xijbjÞ.

However, if we change the inverse link function to
li ¼ gþ

Pp
j¼1 xijbj; that is, an identity inverse link function, and if

Figure 12 Prediction performance in terms of average Spearman’s correlation (Spearman; A), mean arctangent absolute percentage error (MAAPE; B)
and mean absolute error of prediction (MAE; C) of the five models (GPR, RF, RR, ZAP_RF, ZAPC_RF) across environments in dataset 2 for trait SN. NO in
the plots means that the genotype�environment (GE) interaction was ignored, while YES means that the GE interaction term was taken into account.
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we assume that yi � Normal li ¼ gþ
Pp

j¼1 xijbj; r
2

� �
, we move

from a univariate Poisson regression to a univariate Gaussian re-
gression model. However, there is a lot of empirical evidence that
for count response variables, the Poisson regression model
should be preferred since it guarantees that all predictions are
non-negative (which is not guaranteed with a normal model)
(Montesinos-López et al. 2015, 2016, 2017). When the Gaussian re-
gression is used instead of Poisson regression, negative outputs of
the Gaussian regression must be truncated to zero, and it is
unclear how this affects the optimality of the predictive distribu-
tion (Montesinos-López et al. 2015, 2016, 2017). However, in terms
of prediction performance there is also evidence that many times
(for particular datasets) using a Gaussian model gives similar pre-
diction performance to a Poisson regression; however, when the
count contains an excess of zeros, the normal approximation
fails to capture the excess of zeros, and for this reason, improved
versions of Poisson regression such as the zero-inflated Poisson

and zero altered Poisson regression, are used. For this reason, the
goal of our proposed method is to improve the prediction perfor-
mance of counts in the presence of an excess of zeros.

Also, as conventional RF, the individual decision trees gen-
erated by the proposed methods (ZAP_RF and ZAPC_RF) are
prone to overfitting (that is, they have high variance and low
bias), but by resampling the data many times to create a large
number of un-pruned decision trees, the accuracy of predic-
tion based on sample data is improved due to the fact that the
variance component is reduced. Also, the proposed methods
do not differentiate between random (lines) and fixed effects
(environments) since they are non-parametric models; for this
reason, the environmental, genotypic and genotypic
�environmental effects used in the inputs are treated as addi-
tional predictors in the model, that also influence the re-
sponse variable, as shown in the plots of predictor importance
for each trait (Figures 4, 7, 10, and 13).

Figure 13 Predictor importance for trait SN in dataset 2 under conventional random forest (A) and under the zero altered Poisson random forest for
trait SN (B and C). The first column contains the results without interaction (NO) and the second column contains the results with interaction (YES).
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Conclusion
In this paper, a zero altered Poisson random forest model was
evaluated for genomic prediction. This model is a modified ran-

dom forest that instead of fitting only one RF model, two random
forest models are implemented: one for the zero counts (with

splitting criteria using the Gini index) and another for the counts
larger than zero (with a splitting criterion based on the log-

likelihood of a zero truncated Poisson distribution). The two ver-
sions of the proposed model for excess zeros (ZAP_RF and
ZAPC_RF) were compared in terms of prediction performance

with Ridge regression for continuous outcomes, Poisson Ridge re-
gression and conventional random forest. Our results suggest

that the two versions of the proposed zero altered Poisson ran-
dom forest model most of the time was the best in terms of pre-

diction performance and clearly outperformed Ridge regression
and Poisson Ridge regression, but produced only a slight improve-
ment over the conventional random forest model. However, we

observed that in dataset 1, which contains a larger percentage of
excess zeros, the proposed model was clearly better than all mod-

els. For this reason, we also provide the cv.zap.rf() function to im-
plement in R the proposed models to enable other scientists with

other real data to benchmark the prediction performance of the
proposed methods. Finally, we encourage the use of the proposed
zero altered random forest models because their implementation

is straightforward using the proposed cv.zap.rf() function in the R
statistical software, and they produce very competitive predic-

tions like the conventional random forest model.
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Appendix A: cv.zap.rf () function to
implement in R the zero altered Poisson
random forest.
rm(list ¼ ls(all ¼ TRUE))
devtools::install_github(“brandon-mosqueda/randomForestSRC”)
library(randomForestSRC)
library(dplyr)

load(“Data_Real_Count.RData,” verbose ¼ TRUE)
Pheno <- rename(Pheno, Line ¼ “GID,” Env ¼ “Loc,” Response ¼
“y”)
Geno <- as.data.frame(G)
Geno$Line <- unique(Pheno$Line)

Results <- cv.zap.rf(
Pheno, Geno ¼ Geno, Markers ¼ NULL, with_interaction ¼

TRUE, mult_env_anal ¼ TRUE,
ntree_theta ¼ c(100, 300, 500), mtry_theta ¼ c(0.15, 0.30, 0.45),
nodesize_theta ¼ c(2, 5, 15), ntree_lambda ¼ c(100, 300, 500),
mtry_lambda ¼ c(0.15, 0.30, 0.45), nodesize_lambda ¼ c(2, 5,

15),
importance ¼ TRUE, type ¼ c(“original”), loss_function ¼mse,

cross_validation ¼ “k_fold,” number_of_folds ¼ 5,
proportion_of_testing¼ 0.2, type_of_tuning ¼ “local,” tuning_-
cross_validation ¼ “k_fold,” tuning_number_of_folds ¼ 5,
tuning_proportion_of_testing¼ 0.2, sample_proportion ¼ 1, digits

¼ 4, seed ¼ NULL, results_dir ¼ “zap_random_forest_results,” ver-
bose ¼ TRUE)

# View individual predictions per fold
Results$All

This function, cv.zap.rf(), allows as input a genomic relationship
matrix (GRM) or marker information directly. Also, by default the
input takes into account the information of environments, geno-
types and genotype by environment interaction (with_interaction
¼ TRUE), but if you specify FALSE in with_interaction ¼FALSE, it
only takes into account in the predictor the environment and
genotypes. Also, if you want to perform single environment
analysis using only genotypic information in the predictor, you
need to specify mult_env_anal ¼FALSE. With type ¼ “original,”
the ZAP_RF is implemented, but with type ¼ “custom” the
ZAPC_RF is implemented. Two types of cross-validation are avail-
able: k_fold and random_partition; in the random_partition you
need to specify the number of partitions in number_of_folds and
the proportion for testing in each partition in proportion_of_test-
ing. For the tuning process, you also need to specify the type of
cross-validation and also k_fold and the type random_partition;
sample_proportion ¼ 1 use all the information in the grid of
hyper-parameters (a value between 0 and 1 is possible). For ex-
ample, when sample_proportion ¼ 0.2 is used, only 20% of all
combinations available in the grid will be evaluated to choose the
best hyper-parameters. Finally, in results_dir =, you need to write
the name of the directory where the outcomes should be saved.
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