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Abstract

Learning transfer (i.e. accelerated learning over a series of structurally related learning

tasks) differentiates species and age-groups, but the evolutionary and developmental impli-

cations of such differences are unclear. To this end, the relational schema induction para-

digm employing tasks that share algebraic (group-like) structures was introduced to contrast

stimulus-independent (relational) versus stimulus-dependent (associative) learning pro-

cesses. However, a theory explaining this kind of relational learning transfer has not been

forthcoming beyond a general appeal to some form of structure-mapping, as typically

assumed in models of analogy. In this paper, we provide a theory of relational schema

induction as a “reconstruction” process: the algebraic structure underlying transfer is recon-

structed by comparing stimulus relations, learned within each task, for structural consistency

across tasks—formally, the theory derives from a category theory version of Tannakian

reconstruction. The theory also applies to non-human studies of relational concepts, thereby

placing human and non-human transfer on common ground for sharper comparison and

contrast. As the theory and paradigm do not depend on linguistic ability, we also have a way

for pinpointing where aspects of human learning diverge from other species without begging

the question of language.

Author summary

Learning transfer—an improvement in the rate of learning over a series of learning

tasks—differs between species and age-groups, but the implications of such differences

are unclear. Relational schema induction is a form of learning transfer that highlights rela-

tional aspects of learning. However, a theory explaining this kind of induction and trans-

fer has not been forthcoming beyond a general appeal to some form of analogical

mapping, as typically assumed in models of analogy. I present a theory of relational

schema induction as a “reconstruction” process: the common structure affording transfer

is reconstructed by comparing stimulus relations learned within each task for structural

consistency across tasks. The theory also applies to non-human studies of relational
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concepts, thereby placing human and non-human studies on common ground for a

clearer comparison and contrast.

Introduction

Learning transfer refers to an improvement in the rate of learning across a series of structurally

related tasks [1]. For example, suppose each task is to learn a configural association, where the

target responses depend on interacting cues (colour and shape): in one task instance, subjects

are trained to select square (triangle) when presented with a square (triangle) on a blue col-

oured background, and triangle (square) when presented with a square (triangle) on a green

background; in another instance, subjects are trained to select circle (cross) when presented

with a circle (cross) on a red background, and cross (circle) when the background for the pre-

sented circle (cross) is yellow. Evidence of learning transfer is observed when the number of

training trials needed to reach criterion decreases on subsequent task instances.

Many species have a capacity to learn, yet its unclear whether differences in learning trans-

fer are quantitative, or qualitative [2–4]. For instance, some authors have argued for an associa-

tion-based (stimulus-dependent) account of learning that is extendable to propositions, so

providing a basis for higher cognition [5]. An associative model could assume that learning

rate changes with prior experience [6], thereby providing a quantitative explanation for differ-

ences in learning transfer: greater transfer is linked to greater change in learning rate. Yet,

other authors have argued that the propositional (relational) aspects of cognition—inferring

targets from stimulus-independent relations—are qualitatively unique to humans [7], and

most developed in adults [8]. Resolving such disputes over accounts of learning transfer should

inform the nature, evolution and development of cognition.

To this end, the relational schema induction paradigm was developed to distinguish associa-

tive versus relational models of learning transfer, in human studies [9, 10]. These models make

contrasting predictions following feedback on information trials that can be used to determine

the responses to the other stimuli. For example (above), having seen that circle is preferred

over cross when a circle is presented on a red background (information trial), a relational

model predicts that cross is preferred over circle when the background is yellow, because the

second task involves the same relation(al schema). By contrast, the associative model makes no

prediction for a novel stimulus, having not been paired with a target before. The data for vari-

ous instances of this paradigm support a relational model for learning transfer [9, 10].

Relational schema induction is suitable for comparing/contrasting species and age groups,

because the paradigm does not require language to administer. However, a theory explaining

this kind of learning transfer has not been forthcoming beyond a general appeal to some form

of structure-mapping [9, 10], as typically assumed in models of analogy [11, 12]. Such theory

would help clarify the extent to which evidence of relation-based transfer in other species is

comparable to that observed in humans.

We develop a theory of relational schema induction that is applicable to non-human studies

to help redress this situation. The motivation for our approach is two-fold: (1) the observation

that relational schema induction is a form of Tannakian reconstruction [13], and (2) the fact

that Tannakian reconstruction is a universal construction in the category theory sense [14]. In

this way, our theory derives from a category theory version of Tannakian reconstruction.

Briefly, relational schema induction involves a sequence of cue-target learning tasks where the

cues can be reinterpreted as (permutation) actions on a set of stimuli: e.g., shapes sending tri-

grams to trigrams, which constitute a permutation representation of a task. The actions
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constitute a group-like (algebraic) structure that is reconstructed from the within-task and

between-task trigram relations. Reconstruction obtains by computing a universal construc-

tion, called the end of a bifunctor [14].

Our category theory approach is also motivated by way of explaining a systematicity prop-

erty [15] with regard to relational schema induction, i.e. why a capacity for relational schema

induction in one situation implies a capacity for relational schema induction in another situa-

tion. Universal constructions explain systematicity properties [16]: certain equivalences

between cognitive capacities—formally, capacity A if only if capacity B [17]. The end of a func-

tor is a universal construction. Hence, our category theory approach also accounts for the sys-

tematicity of relational schema induction.

We proceed by presenting an example of the relational schema induction paradigm and

background category theory in the rest of the Introduction section. The reconstruction theory

for relational schema induction is developed and applied in the Results section, where it is also

shown to account for other examples of relational schema induction from the literature [9, 18].

Implications of the theory are explored in Discussion and theoretical details, including defini-

tions, examples and theorems, are provided in Methods. The main theorem is a known result;

the application of this theorem to cognition appears to be new.

Relational schema induction paradigm

In a relational schema induction experiment [9] (experiment 2), participants were adminis-

tered a series of cue-target learning tasks. Each task required participants to learn a map from

a set of (shape, trigram) pairs to a set of trigrams. For instance, suppose stimuli were drawn

from the set of shapes Sh = {4,☐, ♡} and the set of trigrams Tri = {BEH, FUT, PEJ}, where the

map from cues to targets, τ1: Sh × Tri! Tri, is given by a “multiplication” table (Fig 1, left):

e.g., the pair (4, BEH) maps to target BEH, the pair (☐, BEH) maps to FUT, and so on.

Hence, participants were required to learn nine cue-target mappings. Learning was afforded

by feedback, indicating the target, following their response to each cue. After learning the task,

a new learning task was administered, τ2, where stimuli were drawn from another set of unique

shapes and trigrams (Fig 1, right). Each task instance involves the same group-like structure,

where the shapes constitute the actions on the set of trigrams. Four learning tasks were admin-

istered and performance in terms of correct responses was recorded.

The actions have a geometric interpretation by assigning trigrams to the vertices of a trian-

gle: 0˚, 120˚ and ˚240˚ (equivalently, -120˚) rotation. For example,☐ (first task) corresponds

to a clockwise rotation that sends BEH to FUT (Fig 2), i.e. the left triangle rotated 120˚ to

obtain the right triangle. Formally, rotation is the (cyclic-3 group) action ↻:

Z=3Z� Tri! Tri, and a 120˚ rotation is the map ↻: (1, BEH) 7! FUT, (1, FUT) 7! PEJ, (1,

PEJ) 7! BEH.

Note that the particular ordering of trigrams and shapes given in this example is for exposi-

tory purposes. Swapping the columns (or, rows) of the multiplication table does not change

the effect of the action: e.g.,☐ : FUT! PEJ could be interpreted as saying that PEJ “follows”

Fig 1. Two task instances, τ1 (left) and τ2 (right), for the relational schema induction paradigm, specified as

“multiplication” tables.

https://doi.org/10.1371/journal.pcbi.1008641.g001

PLOS COMPUTATIONAL BIOLOGY A reconstruction theory of relational schema induction

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008641 January 26, 2021 3 / 26

https://doi.org/10.1371/journal.pcbi.1008641.g001
https://doi.org/10.1371/journal.pcbi.1008641


FUT, or that PEJ “precedes” FUT. The way that shapes are interpreted as acting on trigrams,

however, must be consistent throughout the task and with the given cue-target mappings to

afford induction and learning transfer. The paradigm and our ensuing theory do not depend

on assuming a particular ordering for trigrams, or shapes.

The empirical results of interest here are the number of first-trial response errors for each

task instance in the consistent condition, i.e. where all task instances conform to the same

structure (see [9], p. 224), as an indicator of induction and learning transfer. Participants were

not informed of the group-like nature of the tasks, so first-trial responses for the first task were

expected to be at chance level. However, induction affords learning transfer given feedback on

information trials that allows participants to correctly predict targets for the other seven cues,

assuming the trials involved two different rotations. For example, suppose feedback from two

information trials that identify the mappings (♠, KES) 7!NIZ and ($, HUQ) 7! NIZ, which

implies that ♠ and$ correspond to the two (non-zero) rotations. The remaining cues are

inferred by completing the rest of the multiplication table. Note that if the two information tri-

als involve the same rotation action, then another information trial involving a new shape is

needed to determine the actions of the other shapes. If the cues are selected without replace-

ment, the number of information trials needed is between two and four, depending on the dis-

tribution of cues. The observed average number of first-trial errors was six for the first task,

which corresponds to chance level (i.e. two-thirds of nine trials), and less than three for the

third and fourth tasks [9], which is consistent with the two information trials (assuming dis-

tinct shapes) needed for transfer.

Basic category theory

Category theory constructions reside in a category (definition 1) of some kind, so the first step

towards a categorical theory of relational schema induction is to treat the induction paradigm

as a category, which means specifying the constituent objects, morphisms and composition oper-
ation. Morphisms can be regarded as (directed) relations between objects, and the collection of

such relations from an object to an object is called a hom-set (remark 2). The collections of sets

and functions between sets form a category, denoted Set (example 3). Relational schema

induction involves a series of related (learning) tasks, so we regard the induction paradigm as

a category of tasks (objects) and task relations (morphisms) to be specified next.

The objects are specified as follows. Each learning task, τi: Sh × Tri! Tri, is equivalently

constituted of actions (shapes) on a set (of trigrams). The set of actions has the algebraic struc-

ture of a monoid (definition 5), i.e. a set together with a binary operation, called “multiplica-

tion,” and a special element, called the unit. Monoids abstract a familiar situation in

elementary arithmetic (example 6): e.g., the integers together with (elementary) multiplication

and one, as the unit, form a monoid. Recall that the elements of the set of shapes Sh = {4,☐,

♡}, for the task instance τ1, correspond to rotations of a triangle. These actions constitute the

monoid M = (Sh, �,4), where the binary operation is multiplication of actions (e.g.,☐ �☐ =

♡) and4 is the unit (e.g.,4 �☐ =☐ =☐ � 4). As monoid actions on a set, the learning task τ1

Fig 2. A cyclic-3 group action on a set of trigrams as a rotation.

https://doi.org/10.1371/journal.pcbi.1008641.g002
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is formally a (left) monoid action (definition 10) on the set of trigrams Tri = {BEH, FUT, PEJ}.

The monoid action, τ1, is also called an M-act, and the set acted on, Tri, is called an M-set—
together, the pair (Tri, τ1), denoting a particular task, is called an M-set representation (defini-

tion 10). Each task has the same monoid structure, hence the collection of (possible) task

instances constitutes the objects (M-set representations) for our category of (learned) tasks.

The monoid in this example is equivalent to the integers with addition modulo-3, which is also

a group (remark 7), i.e. a monoid where every element has an inverse.

The morphisms in our category of tasks specify the “action-compatible” relations between

tasks, called equivariant maps (definition 11). The composition operation is composition of

equivariant maps. In the current example, an equivariant map is an assignment of the trigrams

in one task to trigrams in another task that is compatible with the associated actions for τ1 and

τ2. Compatibility essentially means that applying the map to an action is the same as applying

the action to the map. The map f: BEH 7!HUQ, FUT 7! KES, PEJ 7!NIZ is an equivariant

map: e.g., f(τ1(☐, FUT)) = NIZ = τ2(♠, f(FUT)). One can think of an equivariant map as an

analogy between tasks. For a monoid M, the collection of (possible) tasks and equivariant

maps between tasks forms a category, denoted MSet (remark 12). A map that has an inverse is

called an isomorphism (definition 13), which plays an important role in our category theory

approach to relational schema induction.

Most models of cognition assume some kind of function modeling information about the

world that gets presented as input to the cognitive system. A category theory version of this sit-

uation is a functor (definition 18) from a category modeling the world (e.g., the experimental

setting) and a category modeling what the participant sees. Cognitive models typically regard

cognitive processes in terms of functions between sets of cognitive states. Sets and functions

constitute objects and morphisms in the category Set. Accordingly, the relationship between

experiment and participant is a functor from the category MSet, modeling the experimental

paradigm, to the category Set, modeling cognitive states of the participant. An important

aspect of the induction paradigm is that the monoid structure of the tasks is not (explicitly)

communicated by the experimenter to the participant. Rather, this structure is induced from

the stimulus relations defining the learning tasks. This situation is given by the underlying/for-
getful functor (example 22), U: MSet! Set, which sends each task (M-set representation) to

its underlying set of trigrams, forgetting the actions, i.e. U: (S, σ) 7! S, where σ is the monoid

action on the set S. For example, U applied to the M-set representation of task τ1 yields the set

of trigrams {BEH, FUT, PEJ}. The equivariant maps are sent to the functions between corre-

sponding sets. In other words, the participants only “see” the image (definition 26) of the for-

getful functor, not the monoid structure from which the tasks were constructed, and they

“remember” (learn) the actions as (invertible) maps on sets of trigrams.

The image of the forgetful functor includes both within-task and between-task trigram rela-

tions (Fig 3). The within-task relations arise directly from learning the mappings from

Fig 3. The image of the forgetful functor includes within-task trigram relations (vertical arrows),i.e. the action a
on the set of trigrams S (R) is the function σa (ρa), and between-task trigram relations (horizontal arrows), i.e.

equivariant map f from S to R.

https://doi.org/10.1371/journal.pcbi.1008641.g003
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trigrams to trigrams for each shape and task. The between-task relations arise indirectly, as the

maps satisfying a commutativity condition (remark 27), since each task instance is adminis-

tered separately: by recognizing that a map f of a trigram t in a set of trigrams S (constituting

one task) to the trigram f(t) in the set of trigrams R (constituting another task) followed by an

action ρa, i.e. ρa(f(t)), is the same trigram as the action σa on t followed by the map f, i.e. f(σa(t))
= ρa(f(t)). Recognizing these commutative relations between the learned tasks is crucial to

inducing the monoid. Formally, a comparison of images (functors) is a natural transformation,

i.e. a map between the objects and morphisms of the images that satisfies a commutativity

(naturality) condition (definition 28). In certain situations of interest here the comparison is

bidirectional, i.e. a natural isomorphism (definition 30).

Results

With the background category theory in place, we now develop our reconstruction theory of

relational schema induction and apply the theory to account for the data given in the previous

section. The theory does not depend on the specific details of this example, which is shown by

application to other examples of relational schema induction in the second part of this section.

Reconstruction theory

Our reconstruction theory of relational schema induction derives from a category theory ver-

sion of Tannakian reconstruction [13], whereby the monoid, M, is reconstructed from the cat-

egory of learning tasks (M-set representations), MSet, via the forgetful functor, U. The theory

says that M is recovered from a particular kind of category theory construction involving U
(theorem 65). Monoid M obtains from an “optimal” comparison of trigram relations within

and between tasks, i.e. the actions and equivariant maps, respectively. A description of the the-

ory is given in two stages: the first stage concerns the induction of the monoid (Induction as

reconstruction section), and the second stage concerns the application of the induced monoid

for learning transfer on new tasks (Transfer as completion section).

Induction as reconstruction. Induction involves an optimal comparison of within-task

and between-task trigram relations. A description is given in three parts to facilitate an under-

standing of this construction and its correspondence to putative psychological processes. The

first part (Relational comparison) and the second part (Optimal comparison) pertain to the

theory, i.e. the comparisons of trigram relations and the sense in which the comparisons are

optimal, respectively. The third part pertains to a computational process for determining the

optimal comparison, which corresponds to the relational schema (Schema computation).

Relational comparison. Comparison of trigram relations involves a hom-functor (defini-

tion 35) to determine within-task and between-task trigram relations. A hom-functor,

HomC(A, −): C! Set, determines the relationships of the objects and morphisms in a cate-

gory C relative to (“landmark”) object A. In particular, for an object X in C the application

HomC(A, X) returns efferent relationships for A in the form of the hom-set of morphisms from

A to X; for a morphism f: X! Y in C the application HomC(A, f) returns the (f-)relations

between the morphisms from A to X and the morphisms from A to Y in the form of an opera-

tion that sends each morphism g: A! X to the morphism f � g: A! Y. Dually, HomCopð� ;AÞ
determines the afferent relations for A. By prefacing these hom-functors with the forgetful

functor, U, we obtain relations between trigrams within and between tasks. Within-task rela-

tions are obtained by applying the same task: e.g., Hom(U(S, σ), −) applied to U(S, σ), which

returns the hom-set of relations (including the actions) on trigrams in S, i.e. Hom(S, S).

Between-task relations are obtained by applying a different task: e.g., Hom(U(S, σ), −) applied

to U(R, ρ), which returns the hom-set of relations (including the equivariant maps) from the
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set of trigrams S to the set of trigrams R, i.e. Hom(S, R). For a psychological interpretation, the

image of the hom-functor Hom(S, −) can be regarded as a cognitive map of trigrams relative

to the focus of attention S.

We instantiate S and R to be the tasks specified by τ1 and τ2 (Introduction) to illustrate

these comparisons. Suppose S (τ1) is our landmark task. The possible within-task trigram rela-

tions obtain from the application of HomMSet(U(Tri, τ1), −) to (Tri, τ1), which is the hom-set,

Hom(Tri, Tri), of possible functions on the set of trigrams {BEH, FUT, PEJ}. This set includes

the actions of the shapes4,☐ and ♡, which we label as the components σ4, σ☐ and σ♡, respec-

tively. Likewise, the possible between-task trigram relations obtain from application of HomM-

Set(U(Tri, τ1), −) to the second task yielding the set of possible functions from the trigrams in

the first task to the trigrams in the second task. This set includes the equivariant map f: BEH

7!HUQ, FUT 7! KES, PEJ 7! NIZ (see Introduction).

Relational comparison involves a comparison of trigram relations between tasks. So, we

require a bivariate form of the forgetful function, i.e. a functor that takes two arguments that

are the tasks whose trigram relations are being compared. A functor that takes two arguments

is called a bifunctor (definition 40). Hence, relational comparison involves the functor Hom(U
−, U−). Bifunctors are compared by a dinatural transformation (definition 44), which can be

regarded as an analogous two-dimensional generalization of natural transformation between

ordinary functors (remark 45). The dinatural transformation of interest here is a wedge (defini-

tion 46) to the bivariate form of the forgetful functor, written o : D €!HomðU� ;U� Þ. A

wedge satisfies a commutativity (dinaturality) condition (diagram 7). For the current situation,

this condition requires a set of elements D and a pair of functions (ωS, ωR), for each pair of

learned tasks (S, R), that pick out the comparable within-task trigram relations. Within-task

relations are comparable if they are equivariant, and the wedge identifies this condition as

equality of the diagonal morphisms in the commutative diagram for the equivariance condi-

tion—there are two diagonal morphisms obtained by clockwise and anticlockwise traversal of

the square of morphisms in Fig 3. In other words, each element in D picks out an action σa on

the trigrams in S and an action ρb on the trigrams in R such that the equivariant map f: S! R
composes with those actions to yield the same (“diagonal”) relation from S to R, which says

that ρb � f = f � σa. Psychologically, one can interpret this situation as finding an analogical

mapping between tasks, though the analogy need not be a one-to-one correspondence, as typi-

cally assumed in analogy models [12], because an equivariant map is not required to be an

isomorphism.

Continuing with the illustration, suppose D is the singleton set {•}, and ωS and ωR are the

maps picking out the within-task trigram relations for each task. For the equivariant map f:
BEH 7!HUQ, FUT 7! KES, PEJ 7! NIZ, the (di)naturality condition requires a pair of action

components such that composition with f yields the same map, f 0, from the set of trigrams con-

stituting the first task to the set of trigrams constituting the second task, as shown in Fig 4: e.g.,

ρ♠ � f = f 0 = f � σ☐. In this instance, ωS and ωR pick out components σ☐ and ω♠, respectively.

Optimal comparison. Reconstruction involves determining which (sets of) comparisons

are optimal, in a category theory sense to be explained shortly. Wedges determine comparable

Fig 4. An example of relational comparison.

https://doi.org/10.1371/journal.pcbi.1008641.g004
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relations. A special wedge, called the end (definition 47), is optimal in the category theory

sense of being universal (remark 48). In category theory, an optimal (universal) construction is

formally defined as a universal morphism (definition 49). Thus, a universal wedge (end) is a

particular kind of universal morphism. A universal morphism is optimal in being a common

“point of reference” (in an abstract setting) for a family of related constructions. In the current

concrete setting, the family of related constructions is the series of learning tasks and the com-

mon point of reference is the underlying monoid from which those tasks were constructed. An

end is an optimal comparison of trigram relations, which consists of just those elements that

are necessary and sufficient to pick out the actions of the monoid. These elements compose

with the same monoid structure (theorem 65). Hence, computing the end of the bifunctor

form of the forgetful functor reconstructs the underlying monoid, i.e.
R

MSet HomSet(U−, U−)

ffiM. Ends are universal constructions, which are unique up to unique isomorphism [14],

meaning that there is one and only one isomorphism satisfying commutativity (remark 52), so

this monoid is essentially the same as the monoid formed by relabeling the two actions as par-

ticular shapes.

The sense in which an end is optimal is illustrated with the following two examples. The

wedge (D, ω), where D = {•} is not an end, because it fails to satisfy the existence condition.

The two-element set D0 = {•, �} also constitutes a wedge, (D0, ω0), that picks out two compo-

nents in each task, i.e. o0S : � 7! s☐; � 7! s♡ and o0R : � 7! r♠; � 7! r
$

. However, this wedge

does not factor through D, i.e. there does not exist a map D0 ! D that composes with ω yield-

ing ω0, as required by the univerality (unique-existence) condition for ends. In terms of the

commutative diagram 8 for an end (definition 47)—our putative end D and wedge D0 corre-

spond to objects E and Z (respectively)—there does not exist a morphism u such that ω0 = ω �
u. Conversely, the wedge (D@, ω@), where D@ = {�, •, �, �} and ω@ includes the mappings of ω0

and the mappings o@
S : � 7! s4; � 7! s☐ and o@

R : � 7! r|; � 7!r♠, is also not an end. In this

case, the roles of elements • and � are redundant, as they point to the same components, σ☐
and ρ♠. For instance, the one-element wedge (D, ω) does not factor through D@ uniquely, i.e.

there exist two maps u, u0: D! D@ such that ω = ω@ � u and ω = ω@ � u0. Satisfying both exis-

tence and uniqueness conditions to be an end requires a three-element wedge. (NB. The

empty set also constitutes a wedge—naturality is trivially satisfied, since composition with an

empty function is an empty function.).

To summarize, ends obtain as optimal constraint satisfaction, where the constraints are

implicitly specified by feedback on stimulus-response trials for the tasks. Sets Hom(S, S) and

Hom(R, R) consist of the possible maps between trigrams within a task, and Hom(S, R) con-

sists of the possible maps of trigrams between tasks. Commutativity constrains the candidate

solution sets to only those sets whose elements pick out the trigram mappings for each task

instance that conjointly satisfy equivariance between task instances. Universality further con-

strains the candidates to only those sets whose elements are necessary and sufficient for com-

mutativity, i.e. the relational schema (monoid) common to all task instances. In this way,

relational schema induction is a form of optimal constraint satisfaction.

Schema computation. Computing an end is basically a “directed” search over a collection

of wedges. A wedge consists of a family of morphisms picking out actions on trigrams. For

example, let (S, σ) and (R, ρ) represent tasks τ1 and τ2 (Fig 1), respectively. So, σ4, σ☐, σ♡ 2
Hom(S, S) and ρ♣, ρ♠, ρ$ 2Hom(R, R). We fix an equivariant map f0: BEH 7!HUQ, FUT 7!

KES, PEJ 7!NIZ. (There are six possible equivariant maps from S to R, since the maps are rela-

beled permutations of S.) Inducing an action (component) amounts to supposing a wedge

consisting of an element and a map for each hom-set. Let that element be indicated as 0, since

their identifiers are unimportant beyond being distinguishable. Suppose we pick the no-
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rotation action for the first task, i.e. ωS: 0 7! σ4. The dinaturality condition requires the corre-

sponding action in the second task, which is ρ♣, i.e. ωR: 0 7! ρ♣. Selection proceeds as a form

of “hypothesis generation and test” until the dinaturality condition is satisfied. For instance,

suppose we hypothesized ρ♠ as the other action. The commutativity test fails, i.e. f0(σ4 (BEH))

= HUQ 6¼ KES = ρ♠(f0(BEH)), so this hypothesis is rejected and a new action is selected. Thus,

we have the wedge (D, ω), where D is the set {0} and ω is the pair of maps pointing to (σ4, ρ♣).

However, this wedge is not an end, because there exist two other pairs of mappings that satisfy

the commutativity condition. We require a larger set that includes D. We repeat the process by

adding another element and a pair of mappings to satisfy commutativity: e.g., the wedge (D0,
ω0), where D0 = {0, 1} and ω0 includes the mappings 1 7! σ☐ and 1 7! ρ♠. As sets, we have the

order (inclusion) relation D! D0, which is used as the basis for directed search to the end.

The equivariant maps used to determine the end are not given by stimulus-response feed-

back, since they are maps between tasks. However, these maps are inferred from the compo-

nent form of the equivariance condition (definition 11), i.e. f(σa(s)) = ρa(f(s)), as σa and ρa are

implicitly given by feedback on the within-task trigram responses. Note that the component

actions are indexed by the elements of the monoid, a 2M. From the participant’s perspective,

however, these components are indexed by shapes, which change from task to task. So, partici-

pants must also determine the correspondence between shapes in a “hypothesis generation

and test” manner, as mention above: e.g., hypothesize that4 corresponds to ♣ and test that

the map f satisfies equivariance, i.e. f(σ4(s)) = ρ♣(f(s)). If no correspondence between shapes

satisfies equivariance, then f is also rejected.

With regard to the existence condition, there is a (sub)collection of wedges forming a preor-
dered set (definition 14), where the end is the terminal object (definition 53). The objects are

sets whose elements correspond to the elements of the monoid from which the tasks were con-

structed. The sets are ordered by inclusion (Fig 5). Thus, computing the end is a matter of fol-

lowing the arrows to the terminal object, which corresponds to the monoid. Clearly, from any

starting point—object in the preordered set—one obtains the end by arrow traversal. The

beginning of the induction paradigm corresponds to the empty set, which is also the initial
object (definition 55). The psychological interpretation is having no a priori knowledge of the

actions.

Note that although the existence condition can be satisfied with sets containing more than

three elements, sets with more than three elements fail to satisfy the uniqueness condition. For

example, a wedge consisting of set D@ = {0, 1, 2, 3} satisfies existence, but not uniqueness,

Fig 5. The preordered set of wedges with the end as the set {0, 1, 2}.

https://doi.org/10.1371/journal.pcbi.1008641.g005
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because at least one element is redundant as there are only three unique action components.

Suppose elements 2 and 3 map to the same pair (σ♡, ρ$). Element 3 (2) is sufficient, but not

necessary, as commutativity is also achieved by element 2 (3). Hence, the sets are also ordered

by containment with regard to the uniqueness condition, D@! D0. The intersection of the col-

lection of sets satisfying the existence condition and the collection of sets satisfying the unique-

ness condition is the end, consisting of the set E = {0, 1, 2} together with the pairs of maps

satisfying commutativity.

Note that any 3-element set together with the associated family of morphisms is an end for

this situation. However, as already mentioned, such alternatives are essentially the same with

regard to the universal mapping property for ends.

Transfer as completion. Having induced the monoid, M, learning transfer obtains from a

“completion” process. For example, suppose a new set of shapes, Sh0 = {�, ♢,⊡} and trigrams,

Tri0 = {DOH, MUV, RIY}. On seeing that (�, DOH) maps to DOH one infers that� corre-

sponds to the unit (or, 0˚ rotation) action; hence, correctly predicts that (�, MUV) maps to

MUV and (�, RIY) maps to RIY. Similarly, on seeing that (♢, DOH) maps to MUV one infers

that ♢ corresponds to a non-zero rotation; hence, correctly predicts (♢, MUV) maps to RIY

and (♢, RIY) maps to DOH. Note that one (non-zero) rotation can be used to infer (by com-

pletion) the other rotation: e.g., ♢ � ♢ = ⊡, as all elements of a monoid (as morphisms of a

one-object category) are compatible morphisms implying their composite (see definition 1).

As already mentioned (Introduction) the number of first trial errors will depend on the dis-

tribution of cues. Assuming different shape cues and no forgetting of feedback, two informa-

tion trials are necessary and sufficient for correct prediction of targets for the other seven cues.

Completion is also a universal construction, i.e. specifically, the free M-set representation for

the given set (definition 70). This construction is functorial (remark 71), and is the left adjoint
(definition 72)—“pseudo-inverse” (remark 73)—to the forgetful functor (example 74). Each

set S is sent to the M-set representation (M × S, μ × 1S), where μ is the multiplication for the

monoid M. The free M-set pairs every element in S with every pairwise combination of actions,

i.e. μ × 1S: ((a, b), s) 7! (a � b, s). The table of actions is completed from combinations of actions

inferred from the information trials. For example (above), knowing (♢, DOH) 7!MUV yields

(⊡, DOH) 7! RIY as the free M-set action μ × 1S((♢, ♢), DOH), i.e. the action of ♢ on DOH

yields MUV, and the action of ♢ on MUV yields RIY. In this way, transfer is afforded by a uni-

versal completion process.

Other relational schemas

The reconstruction theory is general and applies to other examples of relational schema induc-

tion [9, 10], which we consider here. The relational schema induction paradigm essentially

proceeds as described in the previous sections. However, for the examples presented here, only

some actions (shapes) of a monoid specify the learning tasks. Specifically, participants were

examined on two other group-like structures, where the actions (shapes) constitute partial

cyclic-4 and Klein-4 groups [9], as exemplified in Fig 6. In the cyclic-4 case, one shape corre-

sponds to a 90 clockwise rotation, e.g., (◼, BAL) maps to TUM, (◼, GEZ) maps to BAL, etc.

(Fig 6, top row), and the other shape corresponds to a 90˚ anticlockwise rotation, e.g., (●,

BAL) maps to GEZ, etc. In the Klein-4 case, one shape corresponds to horizontal reflection,

e.g., (⋈, CIK) maps to LEQ and (⋈, LEQ) maps to CIK, etc. (Fig 6, bottom row), and the other

shape to vertical reflection, e.g., (☼, CIK) maps to QEL and (☼, QEL) maps to CIK, etc.

The mean number of first-trial errors on the fourth task for the cyclic and Klein group-like

cases were 2.67 and 2.00, respectively [9], experiment 1. These data accord with the two infor-

mation trials needed to determine the targets for the remaining six cues. Transfer proceeds as
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with the cyclic-3 example. Assuming distinct shape cues and no forgetting, two information

trials are necessary and sufficient to predict the targets for the other six cues.

Although these two examples involve only two of the four components that constitute the

monoid (group) actions, the other components are automatically given by the composition

operation for categories. Recall that for every pair of compatible morphisms, f: A! B and g: B
! C there is a composite morphism g � f: A! C. The components of a monoid action are

endofunctions (i.e., map to/from the same set), hence every pair of components is a pair of

compatible morphisms implying their composites. So, for example (cyclic-4), given that (◼,

(BAL) maps to TUM, (◼, GEZ) maps to BAL, we have the composite (◼ �◼, BAL) maps to

JOD, etc. A similar situation arises with the Klein-4 example. For instance, (⋈, CIK) maps to

LEQ and (☼, LEQ) maps to NAZ, hence their composite (☼ �⋈, CIK) maps to NAZ, which

corresponds to diagonal reflection. Thus, the monoids are induced. However, for new task

instances, the assignment of the other two shapes to the other two actions is ambiguous: a

third information trial is needed to determine which of the remaining two shapes corresponds

to which of the remaining two actions.

A later study [10] employed three components of the cycle-6 group: no-rotation, 60˚ clock-

wise rotation, and 60˚ anticlockwise rotation. The reconstruction theory applies in the same

way as for the the previous examples. The difference is that more information trials are needed

to determine the order of stimuli for the new task.

Discussion

We return to the broader questions about the implications of learning transfer for the nature

of cognition, raised earlier, in the light of our reconstruction theory of relational schema

induction.

Relations versus associations

The relational schema induction paradigm was introduced to assess whether learning transfer

depends on relational or associative processes [9]. On one hand, some authors have argued

that developmental differences depend on a capacity to process relational information [7, 8].

However, other authors argued that associative processes are sufficient [5, 19]. Our approach

shows how these disparate views may be reconciled.

To induce the common structure, subjects must first learn the basic cue-target relations.

These relations are task-specific, so can also be regarded as a (learned) set of stimulus-specific

Fig 6. Examples of cyclic and reciprocal forms of relational schema induction.

https://doi.org/10.1371/journal.pcbi.1008641.g006
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associations. The trigram-trigram associations for a task S and a given action constitute a map

in the set Hom(S, S). Thus, there is an associative (first-order) component to induction. How-

ever, to recover the structure, subjects must also compute an end by comparing the task-spe-

cific relations (associations) for consistency across tasks via the equivariant maps. The

elements constituting the end are independent of specific task stimuli. So, there is also a task-

independent, relational (second-order) aspect to schema induction. These associative and rela-

tional aspects can be independently manipulated as the cardinalities of set S: number of ele-

ments acted on, and monoid M: number of components acting on S, respectively. Hence, the

empirical implications of associative and relational information on learning transfer can both

be assessed.

Quality versus quantity

An important implication of our theory, which can be tested empirically, pertains to qualita-

tive versus quantitative differences in learning transfer with regard to configural associative

learning tasks. Configural association involves responses that depend on pairs of cues. The

shape-colour example (Introduction) is an instance of a configural association. Learning con-

figural associations can take many repeated learning trials, even for adult humans [20]. How-

ever, configural association can also be seen as a kind of relational schema [9], in which case,

our theory predicts a form of learning transfer from a single information trial when configural

associations are regarded as relational schemas.

Suppose participants are required learn to associate cues to targets depending on context:

e.g., in the context of a green display background, triangle is associated to triangle and square

is associated to square; in the context of a blue background, triangle associates to square and

square associates to triangle. After learning these associations a new instance of configural

association is administered. This new instance consists of different shapes and colours: e.g., in

the context of a yellow display background, circle associates to circle and cross associates to

cross; in the context of a brown background, circle associates to cross and cross associates to

circle. This situation can be regarded as a monoid action on a set: e.g., whereby colours corre-

spond to actions on shapes, such as the map G:4 7!4, G:☐ 7!☐, B:4 7!☐, B:☐ 7! 4. In

this case, the monoid corresponds to the cyclic-2 group, Z=2Z. Accordingly, the collection of

such tasks and their equivariant maps forms a category, and the monoid is reconstructed by

computing the end of the functor Hom(U−, U−), as in the previous examples. The monoid is

then applied to a new task instance given a single information trial, affording target prediction

for the other three cues. The empirically testable implication is that a new configural associa-

tion can be acquired following a single information trial, in contrast to the multi-shot, repeti-

tive learning typically seen in associative learning paradigms [20].

As mentioned in the Introduction, an associative learning model could also be developed to

demonstrate learning transfer in this situation, by varying the learning rate with tasks. Indeed,

a popular early method for accelerating learning was to include a “momentum” term in back-

propagation-style neural network learning models [21], which modulates the learning step for

faster learning. In this way, the number of trials to criterion may decrease with tasks, thereby

demonstrating transfer. However, the associative learning model still requires training on all

four cue-target pairs. The broader point, here, is that the (overly simple) notion of learning

transfer as “accelerated” learning belies qualitative differences in the underlying mechanism.

Humans versus non-humans

Qualitative differences in learning transfer also have implications for comparative psychology.

As mentioned earlier, a capacity to process relational information is often seen as a
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characteristic of cognition best demonstrated, if not uniquely so, in humans [7, 8, 18]. An

often used method for demonstrating relational processing in non-humans is the relational
match to sample paradigm, whereby subjects are trained to respond on the basis of the same-

ness/difference relation. The crucial test is first-trial errors for novel stimuli. Bees, for example,

show significantly better than chance performance on novel stimulus pairs [22], suggesting

that a capacity for abstract relations is not unique to humans, and indeed may be wide spread

among other species. Learning set transfer tasks as applied to non-humans can be viewed in

terms of relational schema induction and thereby used as a basis for comparison and contrast

[18]. In this way, our reconstruction theory has implications for learning transfer in other

species.

For instance, the structure of sameness/difference is also isomorphic to the cyclic-2 group:

the relations same(A, A), same(B, B), different(A, B), different(B, A) can be interpreted as

actions on sets. Let s and d denote sameness and difference, respectively. As actions on sets we

have s: A 7! A, B 7! B and d: A 7! B, B 7! A. However, unlike the induction paradigms, the

relation (action) is not indicated by a specific (unique) stimulus that changes with each

instance of the task, which affords learning transfer without any information trials. By con-

trast, for relational schema induction, one information trial is required to determine whether a

stimulus (shape) corresponds to the no-rotation, or rotation action. For comparison with the

cyclic-3 task, suppose the same shapes are used for the same actions in each learning task. In

this situation, induction reduces to identifying the order of the novel trigrams, which requires

just one (non-zero rotation) information trial.

Clearly, a capacity to represent relations independent of specific stimuli is a necessary step.

However, the relational schema induction paradigm highlights how humans also have the

capacity to apply those relations to generate a response—generativity test [10]. Our reconstruc-

tion theory helps clarify this distinction in that the end has both the elements and the structure

of such actions, i.e. the monoid underlying each task. The relational match to sample paradigm

only requires a response dependent on the identity of a relation, it does not require the subject

to generate a response given a relation as an action on a given stimulus. What is unclear is

whether (or, to what extent) non-humans have this ability. From our perspective, relational

schema induction necessitates the extra step of inducing the associated algebraic structure. A

benefit of our reconstruction theory is to bring such comparisons/contrasts between cohorts

into sharper relief.

Cognitive complexity

An earlier version of the relational schema induction paradigm was used to reveal develop-

mental differences in the capacity to demonstrate transfer [23]. Younger children had greater

difficulty at learning transfer than older children when the number of actions was increased.

The authors also used a category theory approach to model this difference, in terms of comput-

ing commutativity, although they did not address the induction aspect of the task, which we

have done here. Their essential point was that younger children are more limited in the num-

ber of stimulus relations (component actions) that they could compare for assessing the corre-

spondence between tasks as the basis for transfer. Subsequent empirical work over a wide

variety of tasks yielding analogous differences led to the relational complexity theory of cogni-

tive capacity [8, 18]. A task that requires assessing a relationship between three stimuli (ternary

relation) is generally more difficult than a task requiring at most two (binary relation). A

binary (ternary) relation is a subset of a binary (ternary) product of sets. Each set may be

regarded as a “dimension of (task) variation” whence a measure of task difficulty (cognitive

complexity) is the number of task dimensions [8, 18].
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Our reconstruction theory is compatible with relational complexity theory as the set E, con-

stituting the end, is isomorphic to the underlying monoid. Each element of E identifies with a

distinct action (component) on a set of trigrams, which can be regarded as a dimension of task

variation. So, for example, induction and transfer for tasks generated from the cyclic-3 group

should be more difficult than for tasks generated from the cyclic-2 group. Note that difficulty

is not simply a matter of increased memorization demands, as a memorization strategy does

not afford the same level of learning transfer [10].

Categorical products provide a formal connection to relational complexity. Ends can be

succinctly defined in terms of products [14], and products were used to provide a category the-

ory treatment of cognitive complexity [24]. However, for ends, the products involve all objects

in the category. This situation suggests that cognitive complexity also increases with the num-

ber of task instances (objects in the category of tasks), which is clearly not the case as learning

becomes easier as one progresses through the series of learning tasks. A more psychologically

plausible explanation is that an n-ary product is constructed from binary products, by natural

isomorphism: e.g., A × B × Cffi (A × B) × C. Such situations correspond to a segmentation
strategy, whereby excessive cognitive complexity is supposed to be circumvented by a serial

process involving lower arity relations at each step [8, 18].

Structure mapping

Notice that although the relational schema induction and learning set paradigms (as consid-

ered here) involve one-to-one correspondence between the elements (e.g., shapes and tri-

grams) of different task instances, this principle is derived by our approach, not assumed.

Relational schema induction was considered to involve the mapping of structure [9], for exam-

ple, as specified by structure mapping theory [11]. However, structure mapping theory and

related models of analogy generally assume one-to-one correspondence (isomorphism), as a

hard, or soft constraint on mapping [12]. By contrast, the equivariant maps used to compute

ends need not be isomorphisms. So, reconstruction theory implies a further generalization of

the induction paradigm whereby tasks are homomorphically, but not just isomorphically

related. This situation arises when the sets acted on have different numbers of elements. For

instance, suppose in one task the set acted on consists of three stimuli, S = {a, b, c}, and another

task consists of four stimuli R = {x, y, z, w} for the cyclic-3 action. The action on two elements

in R is the same, say z and w. Yet, the monoid is still recoverable in these situations, which

affords an empirically testable prediction for the corresponding capacity in humans.

Systematicity of inference

The systematic consistency with which subjects induce the relational schema and transfer this

knowledge across task instances [9, 10] raises a familiar systematicity challenge [15]. In the

current context, this challenge is to explain why subjects who exhibit transfer on one task also

exhibit transfer on another task. This property pertains to a systematicity of learning, or sec-
ond-order systematicity [25, 26].

A category theory explanation is that systematicity obtains from a universal construction

[16]. Ends are universal constructions [14]. Hence, the systematicity property suggested by the

relational schema induction experiments [9, 10] follows from computing the end of the appro-

priate functor. Computing the end (or, universal morphism) follows from another kind of uni-

versal process: categorical (co)recursion [27]. In a formal sense, “All roads lead to Rome” as

shown by example (Schema computation). The process terminates because the end is the ter-

minal object, pointing to itself. So, the current work affords both structural and computational

explanations for relational schema induction.
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The same form of explanation for systematicity also applies to the learning transfer aspect

of relational schema induction, as learning transfer also involves a universal construction, i.e.

the free M-set construction, which is left adjoint to the forgetful functor. The general adjoint
functor theorem (see [28], theorem 6.3.10) implies that a forgetful functor from any category of

algebras has a left adjoint (see [28], p. 163). Another example of a free-forgetful adjunction was

used to explain the systematicity of transfer aspect of relational schema induction for the

Klein-4 schema [16].

Further work

New approaches raise new questions and directions for further work. In this paper, we focused

on one-shot transfer, because it is regarded as a hallmark of human-level transfer [18]. An

important direction for further work is to extend this approach to the probabilistic setting.

Further work is needed to understand the link between one-shot and multi-shot learning

transfer, as commonly exhibited in non-human studies [1, 2].

Our approach has been to consider a more general theory to incorporate apparently differ-

ent forms of cognitive process: relational versus associative learning. Yet, more general theory

seems more removed from the underlying neuroscience, which raises questions about the link

to the neurocomputational system. As observed elsewhere [29], some category theory con-

structions pertaining to constraint satisfaction, like the ones employed here, are reminiscent of

a neural network model of analogy [30]. So, another direction is to investigate the formal links

between the current theory and such models.

Our reconstruction theory does not say why subjects can fail to induce the relevant struc-

ture. Relational complexity theory attributes such failures to differences in working memory

capacity limits for different cohorts [8, 18]. One possible way of addressing such differences is

to incorporate a category theory approach to resources [31] for application to relational

schema induction. In such situations, enriched category theory can be applied, where the hom-

sets have additional structure—beyond being just sets—to model the implementational aspects

of a task [32, 33].

An enriched setting could be used to explicitly model learning in response to error feed-

back. To illustrate, suppose the task is to learn a mapping from a set A to a set B. The function

space, Hom(A, B), can be enriched with an ordering in terms of the number of errors relative

to the target function to be learned: f�t g, meaning that function f yields fewer errors than

function g with regard to target function t. In this situation, Hom(A, B) together with the pre-

order�t constitutes a preordered set, hence a category, with t as the initial object, since t�t f
for all f in Hom(A, B). Thus, learning an individual task (target map) also involves a universal

construction, i.e. constructing the initial object.

The current work considers relational schema induction for learning tasks where the

underlying action is a monoid, hence a one-object category. However, the theory generalizes

to other algebraic structures as categories with more than one object (theorem 68). We expect

that this more general theory will enable us to address induction problems more broadly, in

future work.

Methods

For deeper introductions to the category theory presented here, see [14, 28]. For pedagogical

introductions, including Tannakian reconstruction as an end, see [34].
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Categories, functors and natural transformations

Definition 1 (Category). A category C consists of a collection of objects, OðCÞ ¼ fA;B; . . .g, a

collection of morphisms, MðCÞ ¼ ff ; g; . . .g—a morphism written in full as f: A! B indicates

object A as the domain and object B as the codomain of f—including for each object A 2 OðCÞ
the identity morphism 1A: A! A, and a composition operation, �, that sends each pair of com-
patible morphisms f: A! B and g: B! C (i.e. the codomain of f is the domain of g) to the com-
posite morphism g � f: A! C, that together satisfy the laws of:

• identity: f � 1A = f = 1B � f for every morphism f 2MðCÞ, and

• associativity: h � (g � f) = (h � g) � f for every triple of compatible morphisms f ; g; h 2MðCÞ.

Composition of f, g and h is also written h � g � f, since � is associative, and the operation is

also denoted �C to make the category explicit.

Remark 2. The collection of morphisms in C with domain A and codomain B is called a

hom-set, denoted HomC(A, B), or Hom(A, B) when the category is clear.

Example 3 (Set). The collection of sets and functions between sets forms a category,

denoted Set. The identity morphisms are the identity functions. Composition is composition

of functions. HomSet(A, B) is the set of functions from set A to set B, which is also called the

function space and denoted BA.

Definition 4 (Opposite category). The opposite category to a category C is the category,

denoted Cop, that has:

• the objects of C,

• the “reversed” morphisms of C, i.e. a morphism f: A! B in C is the morphism fop: B! A in

Cop, and

• “swapped” composition of C, i.e. if f � g is a composite in C, then gop � fop is a composite in

Cop.

A morphism fop is also simply denoted f when the category is understood.

Definition 5 (Monoid). A monoid (M, �, e) consists of a set M, a (closed) binary operation �,

called multiplication, and an element e 2M, called the unit, such that multiplication is:

• unital: a � e = a = e � a for every element a 2M, and

• associative: a � (b � c) = (a � b) � c for every triple of elements a, b, c 2M.

A monoid is also simply denoted by its underlying set, M.

Example 6 (Integers). The integers constitute monoids.

1. ðZ;þ; 0Þ: the integers together with addition.

2. ðZ;�; 1Þ: the integers together with multiplication.

3. Z=2Z: {0, 1} together with addition modulo-2.

4. Z=nZ: {0, . . ., n−1} together with addition modulo-n for n> 0.

Remark 7. Z=nZ is also a group, i.e. a monoid where every element a has an inverse: an ele-

ment b 2M such that a � b = e = b � a. Z=nZ is called a cyclic group.

Remark 8. A monoid (M, �, e) is a one-object category: each element a 2M is the morphism

a: � ! �, with the unit as the identity morphism, and composition given by the monoid opera-

tion, i.e. b � a corresponds to a � b. Accordingly, HomM(�, �) = M. Moreover, as the arguments
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to the composition operation are swapped, the monoid is an opposite category, denoted Mop,

i.e. we have a �Mopb ¼ b �Ma ¼ a � b. Hence, HomMopð�; �Þ has the structure of the monoid M.

Proposition 9 (Monoid). The hom-set HomMopð�; �Þ has the structure of monoid M, i.e.

ðHomMopð�; �Þ; �; eÞ ¼ ðM; �; eÞ.
Proof. See remark 8.

Definition 10 (Monoid action, M-set). Let (M, �, e) be a monoid, and S a set. A (left) monoid
action on S is a function σ: M × S! S that satisfies:

• identity: σ(e, s) = s, and

• compatibility: σ(a � b, s) = σ(a, σ(b, s))

for every a 2M and s 2 S. The set S is called an M-set, and the pair (S, σ) is called an M-set
representation. The action σ is also called an M-act. M-set representation (M, μ) is also denoted

Ml, representing the action of M on itself.

Definition 11 (Equivariant map). Let (M, �, e) be a monoid, and (S, σ) and (R, ρ) M-set rep-

resentations for M. An equivariant map is a function f: S! R that is compatible with the

actions: f(σ(a, s)) = ρ(a, f(s)) for all a 2M and s 2 S.

Remark 12. The collections of M-set representations and equivariant maps constitute a cat-

egory, denoted MSet.

Definition 13 (Isomorphism). A morphism f: A! B in C is called an isomorphism if there

exists a morphism g: B! A in C such f � g = 1B and g � f = 1A. Morphism g is called the inverse
of f and B is said to be isomorphic to A, written Affi B.

Definition 14 (Preordered set). A preordered set (P,�) is a set P with an order

relation� that is reflexive (i.e. p� p for all p 2 P) and transitive (i.e. p� q and q� r implies p
� r for all p, q, r 2 P).

Remark 15. A preordered set, (P,�), is a category whose objects are the elements p 2 P and

morphisms are the order relations, i.e. there is a morphism p! q whenever p� q. The identi-

ties are given by reflexivity and composition by transitivity.

Definition 16 (Product). In a category C, a product of objects A and B is an object P
together with a pair of morphisms �p : P! A and �p : P! B, called projections, such that for

every object Z and pair of morphisms ϕ: Z! A and ψ: Z! B there exists a unique morphism

u: Z! P such that f ¼ �p � u and g ¼ �p � u. The canonical product for P is denoted A × B,

and u is denoted hϕ, ψi as it is determined by ϕ and ψ.

Example 17 (Cartesian product). In Set, the product of sets A and B is the Cartesian prod-
uct: A × B = {(a, b)|a 2 A, b 2 B} and projections �p : ða; bÞ 7! a and �p : ða; bÞ 7! b. The unique

morphism, u, is the function hϕ, ψi: z 7! (ϕ(z), ψ(z)).

Definition 18 (Functor). A functor is a “structure-preserving” map from a category C to a

category D, written F: C!D, sending each object A and morphism f: A! B in C to the object

F(A) and the morphism F(f): F(A)! F(B) in D (respectively) that satisfies the laws of:

• identity: F(1A) = 1F(A) for every object A 2 OðCÞ, and

• compositionality: F(g �C f) = F(g) �D F(f) for every pair of compatible morphisms

f ; g 2MðCÞ.

Example 19 (Identity functor). The identity functor for a category C, written 1C: C! C,

sends every object/morphism to itself, i.e. 1C: A 7! A, f 7! f.
Example 20 (Diagonal functor). The diagonal functor, written Δ: C! C × C, sends every

object/morphism to the pair of itself, i.e. Δ: A 7! (A, A), f 7! (f, f).
Example 21 (Product functor). The product functor, written P: C × C! C, sends every

pair of objects/morphisms to their products, i.e. P: (A, B) 7! A × B, (f, g) 7! f × g.
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Example 22 (Underlying/forgetful functor). The underlying functor U: MSet! Set sends

each M-set (S, σ) to its underlying set S. This functor is also called a forgetful functor, as it for-

gets the actions.

Remark 23. A functor F: Cop!D is called a contravariant functor; a functor F: C!D is

called a covariant functor.
Definition 24 (Transpose, component). Let (M, �, e) be a monoid, S a set, and σ: M × S! S

an M-act on S. The transpose of σ, denoted ~s, is the map

~s : M ! ðS! SÞ; a 7! ðsa : s 7! sða; sÞÞ. The map σa is called a component of σ.

Remark 25. The transpose of σ is the (contravariant) functor ~s : Mop ! Set that sends each

morphism a: � ! � to the component σa: S! S.

Definition 26 (Image). Let F: C!D be a functor. The image of F is the collection of objects

fFðAÞjA 2 OðCÞg and morphisms fFðf Þjf 2MðCÞg.
Remark 27. A commutative diagram expresses a collection of equational relations between

pairs of morphisms: any two paths of arrows beginning at the same object and finishing at the

same object, where one path consists of at least two (non-identity) arrows. Such diagrams are

sometimes referenced by their shape.

Definition 28 (Natural transformation). Let F, G: C!D be functors. A natural transfor-
mation, written Z : F _!G, is a family of D-morphisms fZA : FðAÞ ! GðAÞjA 2 OðCÞg such

that G(f) � ηA = ηB � F(f) for every morphism f: A! B in C, as indicated by the following com-

mutative square:

F (A)
´A

F (f)

G(A)

G(f)

F (B)
´B

G(B)

ð1Þ

Example 29 (Projections). Suppose projection functors �P : ðA;BÞ 7!A and �P : ðA;BÞ 7!B.

The product and projection functors are related by natural transformations, i.e. �p : P _! �P and

�p : P _! �P, as indicated by the following two commutative diagrams:

¼ ¼

¼¼¶
A£B A;B

f£g

A

f

A£B µA;B

f£g

B

g

C £D
¶C;D

C C £D
µC;D

D

ð2Þ

Definition 30 (Natural isomorphism). A natural isomorphism, written η: Fffi G, is a natural

transformation such that each component ηA: F(A)! G(A) is an isomorphism.

Example 31 (Passive product). The arguments to a product are swapped (i.e, put in passive

form) by the natural isomorphism �p � �p : A� B ffi B� A, as indicated by the following com-

mutative diagram:

¼¼

¼¼
A£B µ£¶

f£g

B £A
g£f

C £D
µ£¶ D £ C

ð3Þ

Compare John loves Mary (active) and Mary is loved by John (passive).

Remark 32. Let ~s; ~r : M ! Set be functors, i.e. the transposes of M-acts σ and ρ on sets S
and R, respectively. The equivariant map f: S! R is the natural transformation f : ~s _!~r, as
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indicated by the following commutative diagram:

S

¾a

f
R

½a

S
f

R

ð4Þ

which says that f � σa = ρa � f for each element a 2M and s 2 S.

Definition 33 (Hom-operations). The following hom-operations are defined.

1. f�: g 7! f � g.

2. f�: g 7! g � f.

3. f� g�: h 7! g � h � f.

Remark 34. These operations provide a convenient notation for defining the following

functors pertaining to hom-sets.

Definition 35 (Hom-functors). The following hom-functors are defined.

1. HomC(A, −): C! Set; X 7!Hom(A, X), f 7! f�.

2. HomCopð� ;AÞ : Cop 7! Set;X 7!HomðX;AÞ; f 7! f �.

3. HomCop�Cð� ; � Þ : ðA;BÞ 7!HomðA;BÞ; ðf ; gÞ 7! f � g�.

Example 36 (Multiplication). The multiplication operation of a monoid, μ: M ×M!M
corresponds to the hom-functor HomMopð�; � Þ : � 7!M; a 7! ma.

Remark 37. Hom-functors can be (pre)composed with other functors. Suppose functors F:

C!D and G: Dop! Cop. We have:

1. HomDop�Dð� ; F� Þ : ðg; f Þ 7! ðg�Ff� : h 7! Ff � h � gÞ, and

2. HomCop�CðG� ; � Þ : ðg; f Þ 7! ðGg�f� : h 7! f � h � GgÞ.

Simplifying, we write HomD(−, F−) and HomC(G−, −).

Remark 38. Hom-functors are related by natural (hom-)transformations. For a morphism

h: A! B in C the following natural transformations are defined.

1. Homðh; � Þ : HomðA; � Þ _!HomðB; � Þ.

2. Homð� ; hÞ : Homð� ;AÞ _!Homð� ;BÞ.

These natural transformations restate the associativity law for composition.

Remark 39. The collection of functors from a category C to a category D and their natural

transformations form a functor category, denoted DC. Hence, a hom-set from a functor F to a

functor G in DC is the collection of natural transformation HomDCðF;GÞ, also denoted Nat(F,

G).

Universal constructions

Definition 40 (Bifunctor). A bifunctor is a map F: A × B! E such that:

• for each pair of objects (A, B) in A × B the maps F(A, −): B! E and F(−, B): A! E are func-

tors, and
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• for each pair of morphisms (f: A! C, g: B! D) in A × B the following diagram commutes:

F (A;B)
F (1A;g)

F (f;1B)

F (A;D)

F (f;1D)

F (C;B)
F (1C ;g)

F (C;D)

ð5Þ

Remark 41. In other words, the functoriality of each argument (first condition) must be

jointly compatible (second condition).

Example 42. (Bivariate hom-functor). Hom(−, −): Cop × C! Set.

Remark 43. There is an analogous notion of naturality between bifunctors.

Definition 44 (Dinatural transformation). Let F, G: Cop × C!D be a pair of bifunctors. A

dinatural transformation, written o : F €!G, is a family of D-morphisms

foA : FðA;AÞ ! GðA;AÞjA 2 OðCÞg such that for each morphism f: A! B in C the follow-

ing hexagon commutes

F (A;A)
!A

G(A;A)

G(1A;f)

F (B;A)

F (f;1A)

F (1B ;f)

G(A;B)

F (B;B)
!B

G(B;B)

G(f;1B)

ð6Þ

Remark 45. An ordinary natural transformation Z : F _!G is equivalent to a projection of a

dinatural transformation: e.g., Z �P : F � �P €!G � �P, where �P is a projection functor (see

example 29). In this situation, the commutative hexagon for Z �P reduces to the commutative

square for η by effectively ignoring the first variable.

Definition 46 (Wedge). A wedge to a functor F: Cop × C!D is a dinatural transformation

o : D €!F consisting of a family of D-morphisms foA : D! FðA;AÞjA 2 OðCÞg such that

for each morphism f: A! B in C the following diagram commutes:

D
!A

!B

F (A;A)

F (1A;f)

F (B;B)
F (f;1B)

F (A;B)

ð7Þ

Definition 47 (End). The end of a functor F: Cop × C!D is a pair (E, ω) consisting of an

object E in D and a wedge o : E €!F such that for every wedge b : Z €!F there exists a unique

morphism u: Z! E such that β = ω � u, as indicated by the following commutative diagram:

Z

u
¯

E
!

F

ð8Þ

Object E is also denoted
R
A2C F(A, A), or

R
C F.

Remark 48. An end is a universal wedge, i.e. a universal morphism in a category of wedges

and wedge morphisms (see definition 49, cf. diagram 8 and diagram 10).
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Definition 49 (Universal morphism). The definition of universal morphism has two forms:

(a) primal and (b) dual, which obtains from reversing the directions of arrows in the primal

form.

1. Primal: Let F: D! C be a functor and X an object in C. A universal morphism from X to F
is a pair (A, ϕ) consisting of an object A in D and a morphism ϕ: X! F(A) in C such that

for every object Y in D and every morphism f: X! F(Y) in C there exists a unique morph-

ism u: A! Y in D such that f = F(u) � ϕ, as indicated by commutative diagram

X
Á

f

F (A)

F (u)

A

u

F (Y ) Y

ð9Þ

2. Dual: Let F: C!D be a functor and Y an object in D. A universal morphism from F to Y is

a pair (B, ψ) consisting of an object B in C and a morphism ψ: F(B)! Y in D such that for

every object X in C and every morphism g: F(X)! Y in D there exists a unique morphism

u: X! B in C such that g = ψ � F(u), as indicated by commutative diagram

X

u

F (X)

F (u)
g

B F (B)
Ã

Y

ð10Þ

Example 50 (Product). A product of A and B is the universal morphism (A × B, π) from the

diagonal functor, Δ, to the pair of objects (A, B), where p ¼ ð�p; �pÞ.

Proposition 51 (Natural Hom-set). Let F, G: C!D be functors. The end of HomD(F−, G
−) is the set of natural transformations Nat(F, G), i.e

R
C HomD(F−, G−)ffi Nat(F, G).

Proof. The end of this functor restates the naturality condition. Substitution yields the fol-

lowing commutative diagram:

E
!A

!B

Hom(FA;GA)

Hom(1FA;Gf)

Hom(FB;GB)
Hom(Ff;1GB)

Hom(FA;GB)

ð11Þ

Commutativity says that for each element x 2 E there is a pair of morphisms ωA(x) 2Hom

(FA, GA) and ωB(x) 2Hom(FB, GB), labeled ηA and ηB (respectively), such that G(f) � ηA = ηB
� F(f) for every morphism f in C, restating the naturality condition (diagram 1). Thus, x identi-

fies with a natural transformation Z : F _!G. Universality says that E consists of those elements

that are necessary and sufficient to identify every natural transformation from F to G, i.e. Effi
Nat(F, G).

Remark 52. Universal morphisms are unique up to unique isomorphism, meaning that for

any other universal morphism (B0, ϕ0) there is one and only one isomorphism, Bffi B0, that

makes the associated diagram commute. In this regard, universal morphisms are essentially

the same, hence referenced as the (rather than a) universal morphism. The canonical universal

morphism is the one conventionally given for the situation: e.g., the canoncial product of
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objects A and B (example 50) is the universal morphism (A × B, π). However, (B × A, π0),
where p0 ¼ ð�p; �pÞ, is also a product of A and B—there may be more than one isomorphism A
× Bffi B × A, but there is only one isomorphism making the associated diagram for products

commute: �p � �p.

Definition 53 (Terminal). In a category C, a terminal object is an object, denoted 1, such

that for every object Z in C there exists a unique morphism u: Z! 1.

Example 54 (Singleton set). The terminal object in Set is any singleton set.

Definition 55 (Initial). In a category C, an initial object is an object, denoted 0, such that

for every object Z in C there exists a unique morphism u: 0! Z.

Example 56 (Empty set). The initial object in Set is the empty set.

Reconstruction

Definition 57 (Representable functor). A representable functor is a (set-valued) functor F: C!

Set that is naturally isomorphic to a hom-functor HomC(A, −) for an object A in C, i.e. α:

Hom(A, −)ffi F, as indicated by commutative diagram

Hom(A;X)
®X

Hom(1A;f)

F (X)

F (f)

Hom(A; Y )
®Y

F (Y )

ð12Þ

Functor F is said to be represented by the pair (A, α).

Example 58 (Hom-functors) Hom-functors are representable functors, as they are naturally

isomorphic to themselves.

Proposition 59 (Forgetful functor). U: MSet! Set is a representable functor.

Proof. The proof turns on showing that U is naturally isomorphic to a hom-functor, specif-

ically HomMSet(Ml, −). For an M-set representation (S, σ), we are required to show that

HomMSet(Ml, (S, σ))ffi S, i.e., a bijection between the set of equivalent maps, {f: M! S}, and

S. An equivariant map, f, satisfies a commutativity condition (see diagram 4). For the unit, e
2M, commutativity says that f(a) = a � f(e). So, for each a 2M, the number of elements f(a) 2

S is entirely determined by the number of maps f 2HomMSet(Ml, (S, σ)). Hence, HomMSet(Ml,

(S, σ))ffi S.

Remark 60. HomMSet(Ml, Ml)ffiM. Set (S, σ) to Ml in proposition 59.

Proposition 61 (Ml). The functor Ml is a representable functor.

Proof. The proof follows the reasoning for proposition 59, i.e. we are required to show that

Ml is naturally isomorphic to a hom-functor, in this case HomMopð�; � Þ. Recall that Ml(�) = M,

so we are required to show that HomMopð�; �Þ ffi M. In fact, we have HomMopð�; �Þ ¼ M
(remark 8).

Lemma 62 (Yoneda). Let F: C! Set be a set-valued functor, and A an object in C. The set

of natural transformations from the hom-functor HomC(A, −) to F is isomorphic to F(A), i.e.

Nat(HomC(A, −), F)ffi F(A).

Proof. See [28], theorem 4.2.1.

Remark 63. Category C is assumed to be locally small: all hom-sets in C are sets, not proper

classes [14].

Corollary 64 (Embedding). Let A and B be objects in a (locally small) category C. We have

Nat(HomC(A, −), HomC(B, −))ffiHomC(B, A).

Proof. Apply Yoneda (lemma 62) with F set to HomC(B, −).
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Theorem 65 (Reconstruction). Let MSet be a category of M-set representations for a

monoid M, and U: MSet! Set the forgetful functor. The end of HomSet(U−, U−) is isomor-

phic to the monoid M, i.e.
R

MSet HomSet(U−, U−)ffiM.

Proof. The proof turns on U and Ml being representable functors and applications of the

Yoneda lemma.

Z

MSet
HomSetðU� ;U� Þ

ffi ðend—prop: 51Þ

NatðU;UÞ

ffi ðrepresentable—prop: 59Þ

NatðHomMSetðMl; � Þ;HomMSetðMl; � ÞÞ

ffi ðYoneda—cor: 64Þ

HomMSetðMl;MlÞ

¼ ðrepresentable—prop: 61Þ

NatðHomMopð�; � Þ;HomMopð�; � ÞÞ

¼ ðYoneda—cor: 64Þ

HomMopð�; �Þ

¼ ðprop: 9Þ

M:

Remark 66. Substituting HomSet(U−, U−) for functor F in definition 47 yields commutative

diagram

E
!S

!R

Hom(S; S)

Hom(1S ;f)

Hom(R;R)
Hom(f;1R)

Hom(S;R)

ð13Þ

Commutativity says that for each element x 2 E there is a pair of transformations ωS(x) 2

Hom(S, S) and ωR(x) 2Hom(R, R), which we label σx and ρx (respectively), such that f � σx =

ρx � f. In other words, x picks out a transformation of S that corresponds to a transformation

of R. In this way, E corresponds to the acting monoid. (NB. HomMSet(Ml, Ml)ffiM as sets, see

remark 60.).

Remark 67. The reconstruction theorem for monoids generalizes to a reconstruction theo-

rem for (small) categories, by replacing the monoid M with a category C. In this situation, the

hom-sets of C are the actions on sets. The associated representations and equivariant maps

form a functor category, SetC, called the permutation representation of C, denoted RepSet(C).

The analogous forgetful functor (also called the fibre functor) is used to reconstruct the cate-

gory. Thus, we have the following more general form of the reconstruction theorem for per-

mutation representations of (locally small) categories.

Theorem 68 (Reconstruction—category). Let RepSet(C) be the representation permutation

category for a (locally small) category C, and FA: RepSet(C)! Set the underlying (fibre) func-

tor at object A in C. We have HomSetCðFA; FBÞ ffi HomCðA;BÞ.
Proof See [13].
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Remark 69. For comparison, U corresponds to the fibre functor evaluated at �, i.e. F�, and

so we have

Z

MSet
HomSetðF�; F�Þ ffi HomMopð�; �Þ ¼ M.

Completion

Definition 70 (Free M-set representation). Let M be a monoid with multiplication μ, and S a

set. The free M-set representation on S is the M-set representation (M × S, μ × 1S). The action is

μ × 1S: M ×M × S!M × S.

Remark 71. The free M-set construction is functorial, i.e., we have the functor F: Set!

MSet; S 7! (M × S, μ × 1S), f 7! 1M × f.
Definition 72 (Adjunction). An adjunction is a pair of functors F: C!D and G: D! C

such that for every object A in C there is a universal morphism from A to G, i.e. the pair (F(A),

ηA), as indicated by the following commutative diagram:

A
´A

f

GF (A)

G(g)

F (A)

g

G(B) B

ð14Þ

F is called the left adjoint to G, written F a G.

Remark 73. Adjoint functors are “pseudo-inverses” but not necessarily actual inverses: the

round trip does not return to the original object/morphism, but to an object/morphism that is

related to the original by a natural transformation. There are two such natural transformations,

Z : 1C _!G � F and � : F � G _!1D.

Example 74 (Free-forgetful). The free M-set functor F: Set!MSet is left adjoint to the for-

getful functor U: MSet! Set, i.e. F a U, as indicated by the following commutative diagram:

¼ ¼µ µ

S
he;1Si

f

M £ S
f±

(M £ S; ¹£ 1S)
f±

R (R; ½)

ð15Þ
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