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Abstract: The recent elevation of cases infected from novel COVID-19 has placed the human life in
trepidation mode, especially for those suffering from comorbidities. Most of the studies in the last few
months have undeniably raised concerns for hypertensive patients that face greater risk of fatality
from COVID-19. Furthermore, one of the recent WHO reports has estimated a total of 1.13 billion
people are at a risk of hypertension of which two-thirds live in low and middle income countries. The
gradual escalation of the hypertension problem andthe sudden rise of COVID-19 cases have placed an
increasingly higher number of human lives at risk in low and middle income countries. To lower the
risk of hypertension, most physicians recommend drugs that have angiotensin-converting enzyme
(ACE) inhibitors. However, prolonged use of such drugs is not recommended due to metabolic
risks and the increase in the expression of ACE-II which could facilitate COVID-19 infection. In
contrast, the intake of optimal macronutrients is one of the possible alternatives to naturally control
hypertension. In the present study, a nontrivial feature selection and machine learning algorithm is
adopted to intelligently predict the food-derived antihypertensive peptide. The proposed idea of
the paper lies in reducing the computational power while retaining the performance of the support
vector machine (SVM) by estimating the dominant pattern in the features space through feature
filtering. The proposed feature filtering algorithm has reported a trade-off performance by reducing
the chances of Type I error, which is desirable when recommending a dietary food to patients suffering
from hypertension. The maximum achievable accuracy of the best performing SVM models through
feature selection are 86.17% and 85.61%, respectively.

Keywords: SVM; COVID-19; feature filtration; hypertension; macronutrients

1. Introduction

The novel pandemic coronavirus disease 2019 (COVID-19 or SARS-CoV-2) has un-
doubtedly created global anxiety, especially for people suffering from severe chronic diseases.
Most of the recent studies concomitant to COVID-19 from China have suggested the fatalis-
tic role of the novel virus for patients with comorbidities such as cerebrovascular diseases,
diabetes, hypertension and others. One of the studies conducted on 191 confirmed cases in
China asserted that, the most frequent comorbidities that were found in the nonsurviving
patients were hypertension (48%), diabetes (31%) and coronary heart disease (24%) [1].
Another study conducted on a confirmed 44672 patients indicate that the overall fatality
rate with preexisting comorbid conditions is 10.5% for cardiovascular disease, 7.3% for
diabetes, 6.3% for chronic respiratory disease, 6.0% for hypertension and 5.6% for cancer [2].
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It is worth noting that the investigations have revealed that the nonsurviving hypertensive
patients were frequently treated with angiotensin converting enzyme (ACE) inhibitors [3].

Hypertension is the physical exertion of the blood on the walls of the blood vessels,
and is currently one of the major concern which is aggravating the risk of fatality through
COVID-19 by approximately 250% [4]. Other than the COVID-19 risk factor, the prolonged
uncontrolled hypertension above 140 systolic and 90 diastolic (in mmHg) can lead to the
severe health risks such as cardiovascular disease and stroke [5–7]. The crucial pathway
that holds the tendency to regulate blood pressure as well as systemic vascular resistance is
the renin–angiotensin–aldosterone system (RAAS) [8,9].

To counter the problem of high blood pressure in patients, most physicians recommend
the use of drugs having ACE inhibitors that have a tendency to relax blood vessels and
eventually reduce blood pressure. However, prolonged use of such drugs can have severe
adverse side effects such as hyperkalemia, dry cough etc. [10–12]. Furthermore, treating
the hypertension with ACE inhibitors results in upregulation of the angiotensin-converting
enzyme II (ACE-II) [13], which could facilitate infection with COVID-19.

One of the alternatives to prevent the side effects of the drugs is to focus on the
intake of optimal macronutrients [14,15]. Clinical trials such as DASH (dietary approaches
to stop hypertension) [16] and omni-heart [17] have proven that certain macronutrients
are responsible for naturally lowering the blood pressure through pertinent food intake.
protein-rich diet, however, is rudimentary since only the proteins that can be broken into
functional bioactive peptides are vital for exhibiting the antihypertensive property [18].
Food-derived peptides with antihypertensive activity are viewed as one of the major
players to reduce most metabolic risks [19]. Certain bioactive peptides interact with the
key enzyme ACE-I and act as ACE-I inhibitory peptides [20], thus being similar to the
prescribed drugs. Nonetheless, the peptides are a more natural and milder alternative.
However, experimental detection and identification of the food-derived antihypertensive
peptides in diverse dietary food choices is a costly process [21].

Over the past few years, depending on the type of dataset, the machine learning methods
are acting as vital tool for identifying various diseases such as diabetes, cancer, hypertension
and many more [22–27]. Tapak et al. [22] has noted various machine-learning classifiers to
classify diabetes with the help of various risk features. Out of various machine learning
algorithms, the support vector machine (SVM) has outperformed other algorithms namely
random forest (RF), neural network, fuzzy c-mean and linear discriminant analysis [22].
Similarly, Lee et al., have utilised various machine learning algorithms such as SVM, logis-
tic regression, K-nearest neighbors, etc., to create a supervised model for detecting type
2 diabetes [23]; while Barakat et al. [24] have proposed the SVM models for predicting
diabetes mellitus.

Siqueira et al. [25] have classified the mid-infrared spectroscopy prostate cancer with
the help of various SVM models constituted of different kernels. The performance com-
parison among various kernels have indicated that the radial basis function (RBF) has
outperformed linear, quadratic and polynomial functions. Dealing with the problem of
noisy data, Ju et al. have developed a fuzzy SVM algorithm which can handle the erroneous
data of phosphoglycerylation sites [26]. On the other hand, to classify and predict the
pulse wave of hypertensive and healthy groups, Luo et al. [27] have utilised four machine
learning algorithms namely AdaBoost, SVM, Gradient Boosting and Random Forest.

The investigations have revealed that inclusion of the trivial features while training
the models not only increases the computational complexity of the algorithm but also
adversely impacts the prediction accuracy of the model [28–30]. It is worth noting that
usually the machine learning tools perform efficiently under the circumstances where the
decision boundaries are well-defined.

However, the high dimensional biological systems are prone to noise or disturbances
that may lead to erroneous data points [31,32]. Hence, to control the level of uncertainty
while developing a predictive model, it is desirable to integrate the nontrivial feature
selection methods as pre-processing tools that can filter trivial features and classify the
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focal point of a disease more efficiently. The core objective behind feature selection is to
reduce the unnecessary features that do not hold sufficient information for classification.

It is worth noting that most of the machine learning algorithms that can identify the
food-derived antihypertensive peptides are diverse in nature and are solely established
through objective-based studies. The methods reported in the literature that predict anti-
hypertensive peptides have a major limitation point out that: (a) no clear factor has been
defined to differentiate and label the positive and negative classes of antihypertensive
peptides, and (b) they use a trivial feature for training the computational model.

The aforementioned limitations may result in performance deterioration of compu-
tational algorithms by prioritising statistical Type I error. Moreover, while supervising a
machine learning model, it is desirable to use an integrated method to predict bioactive
peptides from food protein sequences which hold vital information of biological sequences
in the form of physical features of the peptides.

Thus, the aim of the present study is to develop a machine-learning-based computa-
tional model that can predict the antihypertensive food peptides with better accuracy.
The proposed idea is helpful in abating the frequency of drug intake and elevating the
habit of a balanced diet constituting equal amount of optimal macronutrients which can
control hypertension. Note that such transformation is highly desirable to constrain the upreg-
ulation of ACE-II which plays a leading role in facilitating COVID-19 infection.

This paper is organized as follows. A brief overview of materials and methods is
described in Section 2. The vital role of features in enhancing the performance of the
proposed SVM algorithms is explored in detail in Section 3. Section 4 interprets the findings
of your study The case study of chicken egg white protein is included in Section 5, followed
by concluding remarks in Section 6.

2. Materials and Methods
2.1. Antihypertensive Peptides Database

The training and testing datasets were prepared from food-derived antihypertensive
peptides which are available on the weblink http://hazralab.iitr.ac.in/ahdb/index.php
(accessed on 29 April 2021) [21]. The 715 total peptides used in this study have been experi-
mentally validated to show antihypertensive activity within the course of past in vitro and in
vivo studies. From the complete dataset, a total of approximately 10% of the peptides were
randomly selected as a holdout sample for testing the accuracy of the machine learning model.

Note that the hypertensive sub-dataset is comprised of 136 peptides while the anti-
hypertensive sub-dataset is comprised of 579 peptides of which approximately 10% of the
data values from each sub-dataset (i.e., 14 hypertensive and 58 anti-hypertensive peptides)
were randomly picked and reserved for testing the accuracy of the machine learning
model, while the remaining 643 peptides were used to train the machine learning model.
The objective behind reserving 72 peptides from the training dataset is to create a small
veiled set of data points which can later be used to analyse the accuracy of the machine
learning models.

The quantification of inhibition is determined by the concentration of peptide at which
it inhibits 50% of the target, which is expressed as IC50 value. The ACE-I inhibitory activity
assays have been used to obtain the experimental IC50 concentration of a peptide [33,34].
At lower concentrations, the peptide shows promising results of ACE-1 inhibition, while at
larger concentrations, it shows negligible to no activity of inhibition. This criteria is used to
distinguish anti-hypertensive peptides among the collection of peptides. Furthermore, the
data related to each peptide which have been calculated as the descriptors and properties
of these peptides is also available.

2.2. Feature Selection

A knowledge-based heuristic approach has been used to select features for the purpose
of machine learning. These features are divided into two categories, namely structural
features and pseudoamino acid composition (PseACC) features. The peptide sequence de-

http://hazralab.iitr.ac.in/ahdb/index.php
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scriptors include amino acid composition as well as Chou’s pseudoamino acid composition
for incorporation of the sequence order information [35]. With success of PseACC in the
sequence-based prediction [36–38], it is an imperative addition to the standard composition
feature vectors. The peptide structure descriptors have been formulated with molecular
weight, peptide shape (R, α, β), positive charge (q+), negative charge (q−) and volume.
These features not only encompass the three-dimensional shape and size of the peptide,
they also describe the capacity of the peptide to form noncovalent interactions with the
ACE-I [39]. It has been seen that if the charge of the surface of peptides is complementary
to the charge on ACE-I, there will be a stronger interaction and thereby stronger inhibition
capability [39].

2.3. Machine Learning Models

In this paper, some of the variants of well known machine learning algorithms, such
as decision tree [40], logistic regression [41], SVM [42] and k-nearest neighbour [43] are
tested for the developed antihypertensive peptides database. The leaves of the decision
tree algorithm are divided into two variants which can make different level of distinctions
between classes. The two variants of the decision trees which are considered in this work
are fine and coarse having a maximum of 5 and 100 splits, respectively. Similarly, to train
and test the SVM model, the four kernels, namely linear, quadratic, cubic and radial basis
function (RBF) are chosen. On the other hand, the k-nearest neighbour algorithm is divided
into two variants depending on the number of neighbours and distance metric. The two
variants of k-nearest neighbour are fine (having 5 neighbours and Euclidean as distance
metric) and cosine (set to 5 neighbours and cosine as distance metric). Out of all the
aforementioned machine learning algorithms, the SVM model with radial basis kernel
function has outperformed in terms of accuracy (refer to Table 1). Due to higher accuracy
of the SVM compared to other contemporary methods, in this work, an RBF kernel SVM
model is preferred for further performance optimisation.

Table 1. Comparison of accuracy of machine learning models for antihypertensive peptides database
using Bayesian optimisation routine.

Machine Learning Algorithms Variants Accuracy (%) AUC

Decision trees Fine 76.9 0.66
Coarse 80.6 0.65

Logistic regression - 80.1 0.66

Support vector machine

Linear kernel 80.1 0.63
Quadratic kernel 80.4 0.66
Cubic kernel 77.8 0.64
RBF kernel 81.0 0.68

k-nearest neighbour Fine 78.2 0.63
Cosine 80.7 0.66

2.4. Support Vector Machine (SVM) Model

The SVM model can differentiate the different classes of the peptides through optimal
classification boundary by solving the dual Lagrange objective function. Consider a linear
classification case, where median decision surface is separating the antihypertensive be-
haviour of peptides into negative and positive classes, which can be defined in the form
of hyperplane H0. Mathematically, H0 can be defined as ~w · ~x + b = 0, where ~w is the
weight vector, ~x is the input vector of antihypertensive data, and b is the bias constant.
To accurately identify the classes of unknown antihypertensive data, it is necessary to
maximise the width between two classes.

Now, consider two hyperplanes H1 and H2 for positive and negative class, respectively,
such that there is no data point in between the hyperplane. Note that the supporting points
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of H1 and H2 are known as tips of SVs (support vectors). Mathematically, all x, H1 and H2
can be defined as, ~w ·~x + b ≥ 1 and ~w ·~x + b ≤ −1, respectively.

Maximising the width of the margin (d = 2/||~w||) or distance between SVs which sep-
arates the two classes using H1 and H2 can be represented in terms of convex optimisation:

min
1
2
||~w||2 s.t. yi(~w ·~xi + b) ≥ 1 (1)

Note that yi = +1 or −1. to generalise SVM and allow errors in the training set, a slack
error variable ηi ≥ 0 is used to penalise the data points falling in the undesirable regions.
The constraint defined in Equation (1) modifies to:

min
1
2
||~w||2 s.t. yi(~w ·~xi + b) ≥ 1− ηi (2)

Furthermore, to control the problem of over- and underfitting of the SVM model due to
erroneous data points, a soft control variable Ĉ can be introduced in Equation (2), resulting
in a quadratic optimisation problem.

min
1
2
||~w||2 + Ĉ

n

∑
i=1

ηi s.t. yi(~w ·~xi + b) ≥ 1− ηi (3)

To solve the optimisation problem, a Lagrange objective function (L(~w, β)) can be
introduced (where constraint β ≥ 0) which can be defined for Equation (1) as follows:

L(~w, β) =
1
2
||~w||2 −

n

∑
i=1

βi[(~w ·~xi + b)yi − 1] (4)

Due to the introduction of variables Ĉ and η, L(~w, β) modifies to L′(~w, β):

L′(~w, β) =
1
2
||~w||2 + Ĉ

n

∑
i=1

ηi −
n

∑
i=1

βi[(~w ·~xi + b)yi − 1 + ηi] (5)

The goal is to solve the dual Lagrange objective function max
β≥0

min
~w,b

L′(~w, β). To solve

the dual Lagrange objective function for the optimal value of w and b (as a function of β),
the partial derivatives ∂L′/∂w = 0 and ∂L′/∂b = 0 can be evaluated and substituted in
Equation (4) which modifies the objective function to:

max
n

∑
i=1

βi −
1
2

n

∑
i=1

n

∑
j=1

βiβ jyiyj(~xi · ~xj) (6)

s.t. Ĉ ≥ βi ≥ 0 ∀i,
n

∑
i=1

βiyi = 0

to deal with the problem of nonlinear classification, the expression (~xi · ~xj) modifies to
K(~xi, ~xj), where K represents kernel function.

In this work, the performance of the SVM is computed for different type of kernels
such as linear, quadratic, cubic and radial basis function (RBF). It has been found that, out
of all, the RBF kernel gives the best performance with comparatively the highest prediction
accuracy. Hence, in this work, the RBF kernel K(~xi, ~xj) is adopted for further analysis,
which can be defined as:

K(~xi, ~xj) = exp
(
−
||xi − xj||2

2σ2

)
(7)

where, σ is a kernel scaling parameter. Substituting Equation (7) in Equation (6) defines the
optimisation problem for the RBF kernel.
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It is worth noting that the tuning variables Ĉ and σ of the RBF kernel SVM model
plays a vital role in defining the final SVM model for the antihypertensive database, and it
is necessary to perform a rigorous search to find the best performing pair. Investigations
have revealed that in bioinformatics or computational biology analysing the importance of
features prior to applying a machine learning algorithms had not been a common practise,
which can dreadfully affect the performance accuracy of the machine learning models by
including irrelevant features and also likely introducing a statistical Type I error.

To overcome the aforementioned limitation, the proposed algorithm is designed to
extract a distinct subset of features by utilising two feature selection methods. Then, the
resulting subsets are passed through fundamental operations through which both of the
feature subsets can be combined and related with each other, resulting in a hybrid nontrivial
feature space.

2.5. Nontrivial Feature Selection and Pattern of Dominance

In this section, the nontrivial features are analysed in the data space with the help of
statistical analysis. The objective of this section is to analyse the extract of the pattern of
dominance with the feature space which can help in reducing the statistical Type I error
while predicting the antihypertensive class of unknown food-derived peptides.

We investigate the percentage of variability explained by each feature in the feature
space that has been analysed with the help of singular value decomposition (SVD) [44].
The SVD is a vital tool in providing a dominant pattern within the high dimensional system,
which can efficiently provide the low rank approximation of the system by decomposing
the feature space (X) of rank r into three unitary matrices U, Σ and VT , which satisfies the
following expression:

X = UΣVT (8)

where X∈ Rm×n, U∈ Rm×r, Σ∈ Rr×r, and VT∈ Rr×n. Note that Σ is a diagonal matrix
which contains nonzero eigenvalues of the feature space, i.e., Σ= diag{σ1, σ2, · · · , σr}, where
σ1 ≥ σ2 ≥ · · · ≥ σr. While, the matrix VT is comprised of eigenvectors whose strength of
contribution in the feature space has been quantified by respective eigenvalues in matrix Σ.
Due to the direct relation of eigenvalue matrix Σ with feature space matrix X, equating the
lowest values of Σ to zero will result into low dimensional approximate feature space. In
other words, to estimate the dominant feature(s), it is desirable to find α number of features
which can efficiently preserve a higher amount of information of the actual feature space.

To estimate the nontrivial feature space subset within the complete dataset, two methods,
namely MRMR [45,46] and SIDR, have been adopted. The prior algorithm discovers an optimal
set of features that is mutually disparate and ranks the features according to the entropy of
mutual information, while the latter method applies the Kruskal–Wallis one-way ANOVA
test [47] to find the significance difference among the features. In this work, for SIDR feature
filtering, the confidence levels of 1% and 5% have been considered [48].

3. Result

In this section, the role of feature selection in estimating the relevant feature space
is investigated, which helps in enhancing the accuracy of the SVM model by eliminating
trivial features from the training dataset. Prior to adopting any feature selection approach,
it is necessary to predict the importance or dominance of specific feature(s) in the entire
feature space with the help of SVD analysis. Figure 1 demonstrates the variability explained
by each feature in both the subsets of the entire feature space.

Observing Figure 1a, it can be asserted that out of the complete set of the PseAAC
feature space, 13 components are able to explain 90% of the total information consisting
within the entire feature space of the PseAAC. Furthermore, an additional six features are
able to attain a total of ≈99.9% of the information. In contrast, considering the case of the
structural feature, only one feature is able to capture >90% of the total information. Hence,
it can be asserted that according to SVD analysis, the remaining features in both feature
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subsets are not substantially required in the classification process and can be treated as
trivial features.

(a) (b)

Figure 1. Percent variability explained or information preserved by each feature in the feature space
X. Variability in the data by considering: (a) PseAAC feature; (b) structural feature.

On the other hand, Figure 2 predicts the score of the features using the MRMR
algorithm. The score has been estimated after dividing the overall feature space into
two subsets. The first feature set consists of PseAAC as variable having a total of 21
features, while the second feature set is comprises of structural characteristics such as
R, α, β, q+, q− and volume. Figure 2a illustrates that out of all the 13 most important
pseudoamino acids that have a comparatively higher MRMR score are alanine (A), cysteine
(C), aspartic acid (D), phenylalanine (F), glycine (G), histidine (H), methionine (M), proline
(P), glutamine (Q), arginine (R), threonine (T), tryptophan (W) and tyrosine (Y). On the
other hand, α, and q+ are the top two features in the structural subset (refer Figure 2b) that
hold a relatively higher MRMR score.

(a) (b)

Figure 2. Confidence score of features represented in the form of bar graph: (a) feature importance
of PseAAC, (b) feature importance of structural properties. Peaks in the graph represent higher
confidence in predicting the most important feature for the classification process.

In contrast, the SIDR algorithm utilises a nonparametric Kruskal–Wallis one-way
ANOVA test, which has been applied on the feature space that is in the ordinal measurement
scale such as the subset of positive and negative hypertensive peptides. Note that the
normality of the features has been analysed using the D’Agostino–Pearson test of normality
by setting a critical chi-squared value to 0.05 [47]. The p-value of all the features is coming
out to be <0.05, resembling rejection of the null hypothesis; hence it concludes that the
data is not following a normal distribution. The null hypothesis of this test is based on
the assumption that the samples are drawn from same population or both samples have
equal median values [49]. As per the prediction made by the SIDR algorithm in Table 2,
the components within the feature space that fall in the range of confidence level of 1% are
cysteine (C), glutamic acid (E), glycine (G), tryptophan (W), tyrosine (Y) and q+. Whilst for
the case of the 5% confidence level, a total of 10 features qualify for the nontriviality post.
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Table 2. The p-values of all the features demonstrating the statistically significant difference between
hypertensive and anti-hypertensive peptide.

Features p-Value Significant

PseAAC

A (alanine) 0.6881 No
C (cysteine) 0.0023 Yes †

D (aspartic acid) 0.8265 No
E (glutamic acid) 9.2421 × 10−4 Yes †

F (phenylalanine) 0.4242 No
G (glycine) 4.3718 × 10−14 Yes †

H (histidine) 0.4542 No
I (isoleucine) 0.8942 No
K (lysine) 0.1785 No
L (leucine) 0.8502 No
M (methionine) 0.9626 No
N (asparagine) 0.3234 No
P (proline) 0.0873 No
Q (glutamine) 0.6676 No
R (arginine) 0.1939 No
S (serine) 0.3363 No
T (threonine) 0.8461 No
V (valine) 0.5726 No
W (tryptophan) 0.0066 Yes †

Y (tyrosine) 1.0596 × 10−4 Yes †

Sequence order effect 0.0142 Yes *

Structural

Molecular weight 0.0210 Yes *
R 0.0301 Yes *
α 0.0723 No
β 0.8902 No
q+ 0.0016 Yes †

q− 0.3122 No
Volume 0.0138 Yes *

† For p = 0.01 and p = 0.05, * For p = 0.05 only.

3.1. Biological Significance of Nontrivial Features

In the previous section, the statistical analysis indicated the role of some vital amino
acids and structural features in significantly differentiating the properties of the peptides.
These features potentially assist in identifying the proteins from which antihypertensive
peptides can be extracted. Food-derived peptides satisfying the characteristics of the
predicted features of the peptides are immensely functional. The possible biological signifi-
cance of some of the nontrivial amino acids and structural characteristics that are signifi-
cantly contributing to the MRMR and SIDR algorithms in predicting the antihypertensive
activities of the peptides is discussed in Supplementary File S1.

3.2. Performance Evaluation

To analyse the impact of dominant patterns on the estimation of antihypertensive
peptides, five performance evaluation metrics have been included, namely, accuracy, area
under curve (AUC), sensitivity, specificity and Matthew’s correlation coefficient (MCC).
Out of all the five performance metrics, the accuracy of the SVM has been considered as the
highest priority metric to estimate the best performing combination of variables Ĉ and σ.
Figure 3 demonstrates the variation in the accuracy of the SVM models due to the filtration
of some features from the feature space. Observing all the sub-figures of Figure 3, it can be
asserted that the surface of the accuracy distribution is highly nonlinear in nature; hence it
is most likely that the Bayesian optimisation routine [50] will fall into the local minina for
estimating the best performing combinations of variables Ĉ and σ, which is self evident
from Table 3.
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Table 3. Estimation of highest accuracy using Bayesian optimisation routine.

Features Best Accuracy (%)

Reference value (Entire space) 81.0
PseAAC 82.6
Structural 84.5
MRMR 82.2
SIDR (p = 0.01) 83.5
SIDR (p = 0.05) 85.0
MRMR ∩ SIDR 83.2
MRMR ∪ SIDR 84.9

Hence, instead of using an optimisation function, a systematic combination search al-
gorithm has been performed to find the best performing combinations of Ĉ and σ. Figure 3a
illustrates the reference SVM model accuracy which includes all the 28 features in the fea-
ture space and is able to achieve a maximum accuracy of 84.90% for Ĉ = 2.8001 and
σ = 2.7501. While considering core subset features, i.e., PseAAC and structural features
individually can yield a maximum of 85.47% (at Ĉ = 1.9501 and σ = 3.5001) and 84.49%
(at Ĉ = 0.5001 and σ = 0.4501), respectively, which is a bit less than reference value.

The filtering of trivial features using algorithms such asMRMR and SIDR (p = 0.01)
has further deteriorated the accuracy of the model and is giving comparatively less accuracy
of 84.49% (for Ĉ = 1.0001 and σ = 3.4001) and 84.07% (for Ĉ = 1.2001 and σ = 5.4001. On
the other hand, the SIDR (p = 0.05) algorithm has outstandingly performed by giving the
highest accuracy of 86.17% for Ĉ = 0.7001 and σ = 1.8501. To investigate the combined
effect of MRMR and SIDR algorithms, the converging and diverging features of both
algorithms are opted. The intersection of MRMR and SIDR has nominated four PseAAC
and one structural features, which are giving the highest accuracy of 84.07% at Ĉ = 1.1501
and σ = 1.6501. In contrast, the union of both the aforementioned algorithms has suggested
15 PseAAC and 5 structural nontrivial features, which resulted in 85.61% of accuracy at
Ĉ = 2.6001 and σ = 2.1001.

Table 4 further elaborates the performance of various sub-feature spaces compared
to the complete feature space. Note that the two best performing values are boldfaced
in each metric for enhanced visualisation. From Table 4, it can be observed that SIDR
(p = 0.05) and MRMR ∪ SIDR include a maximum number of metrics that are giving
the best performance, perhaps due to fact that both algorithms include maximum features
that are biologically significant in defining antihypertensive activity of the peptide (refer to
Section 3.1). The only metric that has weaker performance in the SIDR (p = 0.05) algorithm
is AUC, while in the MRMR ∪ SIDR algorithm it is sensitivity. It is worth noting that while
predicting the antihypertensive peptide, not all metrics hold equal importance. For example,
the patients suffering from hypertension are expected to take those food products that must
have antihypertensive properties.

Table 4. Comparison of highest attainable performance of SVM models using a systematic combina-
tion search algorithm.

Performance Reference PseAAC Structural MRMR SIDR MRMR ∩ SIDR MRMR ∪ SIDRMetrics Value p = 0.01 p = 0.05

Accuracy (%) 84.91 85.47 85.33 84.49 84.07 86.17 84.07 85.61
AUC 0.9966 0.9769 0.9531 0.9093 0.7118 0.8718 0.7621 0.9905

Sensitivity (%) 63.15 55.17 87.50 68.18 86.66 85.29 73.91 80.76
Specificity (%) 84.02 84.19 83.38 82.56 82.45 84.31 82.82 85.78

MCC 0.2880 0.2738 0.3252 0.2233 0.2524 0.3774 0.2551 0.3728

In each row, the top two performing metrics have been represented in boldface.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3. Deviation in the accuracy of the SVM model due to a variation in the feature space for
systematic combinations of box constraint (Ĉ) and kernel scale (σ). Using feature selection methods, the
following features have been extracted for performance comparison: (a) all features (or reference fea-
ture space); (b) PseAAC features; (c) structural features; (d) features extracted from MRMR; (e) features
extracted from SIDR (p = 0.01); (f) features extracted from SIDR (p = 0.05); (g) features extracted from
MRMR ∩ SIDR; and (h) features extracted from MRMR ∪ SIDR.
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4. Discussion

The usefulness of applied machine learning in predicting food-derived antihyperten-
sive peptides is critical to analyse due to existence of Type I and Type II errors during
training process. Under such scenarios, the only solution is to opt a best possible trade-off
which gives importance to specific error by analysing the significance of specific class.
Hence, to overcome the aforementioned limitation, this study focuses on detecting positive
class of food derivative peptide because it holds more importance than negative class of
peptide in dealing with critical hypertensive patients. That is, the tolerance for detecting
antihypertensive peptides with Type I error (false positive) is much lower than Type II error
(false negative) [47], which makes sensitivity metric less impeccable than specificity metric;
and with the similar logic AUC also holds higher importance during estimation of positive
food derivative peptide. Observing the AUC curves of all the varying feature spaces,
illustrated in Supplementary File S2, it can be asserted that the algorithm MRMR ∪ SIDR is
relatively better than other feature selection algorithms and is able to report higher number
of true positive cases.

The maximum attainable accuracy of the proposed SVM model in predicting the
antihypertensive peptide is 86.17%, which is better than the previously existing models
demonstrated in the artificial intelligence empowered web servers such as AHTpin and
PAAP giving average accuracy of 78.58% and 84.73%, respectively [51,52]. Note that one of
the major limitations of both the aforementioned algorithms is their comparatively lesser
value of specificity metric, which is 78.89% for AHTpin and 77.65% for PAAP [52]. As
stated earlier, the lesser the value of specificity is, the stronger the confidence in conducting
Type I error will be. That is, it can be disastrous to recommend a dietary food to the patients
suffering from hypertension in which the artificially intelligent algorithm is not reasonably
confident in correctly predicting the antihypertensive property of the dietary food.

It is worth noting that when considering a trade-off between Type I and Type II errors,
it is desirable to adopt an SIDR (p = 0.05) algorithm for predicting the activity of the
peptides. However, the chances of obtaining a reasonable trade-off value between Type
I and Type II errors is lesser in our case due to lack of a big dataset. In future work, the
intent is to experimentally validate large numbers of peptides so that they can be used for
developing more accurate machine learning models.

5. Case Study of Chicken Egg White Protein

In this section, the performance of SIDR (p = 0.05) and MRMR ∪ SIDR has been
tested for chicken egg white protein. The ACE inhibitory peptides from chicken egg white
protein have demonstrated its vital role in constraining blood pressure in vivo [53,54]. So,
in this section, the food protein sequence of chicken egg white extracted from UniProt is
considered for estimating the specific peptides known for its antihypertensive activity. The
UniProt ID of the protein sequence is P01012 [55], which is also mentioned below.
>sp|P01012|OVAL_CHICK Ovalbumin OS=Gallus gallus OX=9031 GN=SERPINB14 PE=1
SV=2.
MGSIGAASMEFCFDVFKELKVHHANENIFYCPIAIMSALAMVYLGAKD

STRTQINKVVRFDKLPGFGDSIEAQCGTSVNVHSSLRDILNQITKPNDVY

SFSLASRLYAEERYPILPEYLQCVKELYRGGLEPINFQTAADQARELINSW

VESQTNGIIRNVLQPSSVDSQTAMVLVNAIVFKGLWEKAFKDEDTQAM

PFRVTEQESKPVQMMYQIGLFRVASMASEKMKILELPFASGTMSMLVLL

PDEVSGLEQLESIINFEKLTEWTSSNVMEERKIKVYLPRMKMEEKYNLT

SVLMAMGITDVFSSSANLSGISSAESLKISQAVHAAHAEINEAGREVVGS

AEAGVDAASVSEEFRADHPFLFCIKHIATNAVLFFGRCVSP

The proposed best performing SVM algorithms estimates antihypertensive activity
of the peptide sequences that have been obtained post digestion process eventuated via
combination of human proteases (Chymotrypsin C, Pancreatic Endopeptidase E, Trypsin,
Pepsin, Gastricin), which mimics the human gastrointestinal tract digestion.
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During the digestion process, the egg white protein breaks into 339 peptides, out
of which 37 antihypertensive peptides have been found to be directly matching with
the experimentally validated training dataset; while the remaining peptides have been
seeded into pre-trained SVM models for predicting the antihypertensive activity (refer to
Supplementary File S3). From the set of peptides mentioned in Supplementary File S3.2,
the reference SVM model has found 28 antihypertensive peptides, while SIDR (p = 0.05)
and MRMR ∪ SIDR have found 24 and 27 antihypertensive peptides, respectively, (refer to
Supplementary Files S3.3–S3.5). The aforementioned results indicate that the SVM models
have bagged the reasonable number of peptides into the antihypertensive category, which
is also inline with the experimental findings which suggests that the chicken egg white
holds a potential blood pressure lowering effect and its consistent consumption has vital
implications for the patients.

6. Conclusions

The impact of COVID-19 has been largely observed in the patients suffering
from hypertension. The frequent use of drugs that have an ACE inhibitory property can
result into upregulation of ACE-II, which contributes to facilitating COVID-19 infection. In
this paper, we have proposed to abate the frequency of drug intake and adopt a diet consti-
tuting optimal macronutrients. To estimate the food-derived antihypertensive peptide, a
nontrivial feature selection and machine learning approach have been suggested which can
predict natural hypertension controllers and minimise the intake of ACE inhibitory drugs.
The ACE inhibitory peptide database containing 715 peptides is used in this study which
have been experimentally validated through in vivo and in vitro models. The maximum
attainable accuracy and specificity of the SIDR (p = 0.05) SVM models in predicting the
antihypertensive food-derived peptide is 86.17% and 84.31%, respectively. The priority of
the study has been set on detecting positive food derivative peptides which are directly cor-
related with statistical Type I error, and the well known metrics which give more emphasis
on minimising the error are specificity and AUC. The proposed MRMR ∪ SIDR algorithm
is able to achieve the specificity of 85.78% and AUC of 0.9905 without degrading the overall
accuracy of the model. The proposed algorithms are expected to help clinicians or patients
for personalised decision making for the diet food preferences to constrain the adverse
consequences of hypertension.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nu14142794/s1, File S1: Biological significance of non-trivial
features; File S2: Area under curve (AUC); File S3: Peptide fragments of egg white protein. References
[56–59] are cited in the supplementary materials.
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