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2 Departamento de Bioingenierı́a, Tecnologico de Monterrey, CP, Monterrey, Nuevo León, México,
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Abstract

The development of point-of-care (POC) diagnostic systems has received well-deserved

attention in recent years in the scientific literature, and many experimental systems show

great promise in real settings. However, in the case of an epidemic emergency (or a natural

disaster), the first line of response should be based on commercially available and validated

resources. Here, we compare the performance and ease of use of the miniPCR, a recently

commercially available compact and portable PCR device, and a conventional thermocycler

for the diagnostics of viral nucleic acids. We used both thermocyclers to detect and amplify

Ebola and Zika DNA sequences of different lengths (in the range of 91 to 300 nucleotides) at

different concentrations (in the range of ~50 to 4.0 x 108 DNA copies). Our results suggest

that the performance of both thermocyclers is quite similar. Moreover, the portability, ease

of use, and reproducibility of the miniPCR makes it a reliable alternative for point-of-care

nucleic acid detection and amplification.

Introduction

The development of cost-efficient diagnostic point of care (POC) systems for the opportune

diagnosis of infectious diseases is a research niche of high relevance [1,2]. The recent pan-

demic/epidemic episodes associated with viral diseases (e.g., influenza epi-centered in México

in 2009 [3,4], Ebola in West Africa in 2013–2015 [5–7], and Zika in Latin America and South-

east Asia in 2016 [8–10]) are tangible and cruel reminders of the need for portable, low-cost,

and easy-to-use diagnostic systems that can effectively address epidemic episodes in remote or

underprivileged areas [5,9,11,12].

Many methodologies have been proposed to deliver cost/effective diagnosis (i.e., those

based on immunoassays or specific gene hybridization [7,13–16]); however, nucleic acid

amplification continues to be the gold standard for the detection of viral diseases in early stages

[9,11,17–19]. Among these, the polymerase chain reaction (PCR) is the most established

method for molecular diagnostics [10,20]. However, bringing the benefits of PCR to remote or
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unprivileged areas has been challenging due to the need for centralized laboratory settings to

accomplish traditional PCR testing [21–23], coupled with the still inherently high cost of tradi-

tional PCR equipment and reagents [24]. To resolve this drawback, multiple studies have pro-

posed and validated the use of compact PCR-based methods and devices for POC settings

[22,25,26].

The first wave of miniaturized PCR machines has only recently become commercially avail-

able [27]. The miniPCR from Amplyus (MA, USA) is one of the first highly compact PCR

units on the international market [28]. The first miniPCR units reached the marketplace in

2015, with an approximate cost of $600 USD (versus $3000 USD for a conventional PCR ther-

mocycler) [27]. Thus far, only a few papers have been published that directly relate to the vali-

dation of use of the miniPCR system as a diagnostic tool[29–33]. For example, Guevara et al.

demonstrated its use on the study of wild populations of lemurs in the field [29]. Similarly,

Pomerantz et al. demonstrated the combined used of miniPCR and minIon sequencer (a mini-

aturized sequencer) for the rapid identification of species in the Ecuadorian rainforest [30]

(i.e., less than 24 hours after data collection). Boguraev et al. successfully amplified zebrafish

DNA in a remarkably non-conventional setting—aboard the International Space Station—and

they were able to amplify bisulfite-treated DNA to determine epigenetic variations. They

found that methylation-specific primers differentially amplified bisulfite-treated DNA just as

would be expected under standard laboratory conditions on Earth [31]. Recently, Zaky et al.

used the miniPCR system for the detection of Brugia parasites in mosquitos [33]. The com-

mercial availability, low price (as compared to conventional thermocyclers), portability, and

user friendliness make the miniPCR an attractive and tangible solution that effectively brings

PCR analysis to the POC.

In the case of evaluating the spread of an infectious disease, the deployment of any diagnos-

tic effort has to rely first on commercially available equipment [34]. Consequently, a compari-

son of current commercially available compact PCR platforms is of paramount importance.

Here, we compare the sensitivity, reproducibility, and convenience of use of the miniPCR

(www.minipcr.com) versus a conventional and commercially available PCR thermocycler for

the detection and amplification of synthetic samples of Ebola virus and Zika (ZIKV) virus. The

Zaire ebolavirus (EBOV)[35] and ZIKV have caused the two most recent widespread interna-

tional epidemic emergencies. From 2014 to 2016, West Africa was the site of the most impor-

tant Ebola epidemic documented so far; more than 20,000 persons were infected and more

than 11,000 died of this disease. From 2015 to 2016, a ZIKV epidemic episode affecting Las

Americas reached alarming proportions. The association of ZIKV with recent cases of micro-

cephalic births has increased the concern about establishing systems for early diagnosis [9,36].

Materials and methods

Equipment specifications

We ran equivalent sets of amplification experiments in a commercial standard thermocycler

(MaxyGene from Axygen, CA, USA) and a miniPCR from Amplyus (MA, USA). The Maxy-

Gene unit can run 96 amplifications simultaneously, has dimensions of 25×25×25 cm, and a

weight of 3.5 kg. This unit requires 120V (AC) and 3.5 A to operate. The miniPCR can run 8

amplifications in parallel, has dimensions of 20×5×15 cm, and a weight of 0.7 kg. This unit

requires 120V (AC) and 3.5 A to operate.

A commercial power supply (PowerPac from Bio-Rad, CA, USA) was used to operate the

electrophoresis unit in which the agarose gels were run to reveal the amplification products

obtained by both the MaxyGene and the miniPCR thermocyclers. A Bio-Rad ChemiDoc XRS

imaging system was used for end-point PCR detection. Alternatively, the miniPCR unit has its
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own blueGel electrophoresis unit (Fig 1A and 1B), powered by 120 AC volts, and photo-docu-

mentation can be done using a smartphone camera.

Samples and sample preparation

We used synthetic samples containing EBOV and ZIKV nucleic acids in our validation experi-

ments. We prepared the EBOV samples by cloning a genetic sequence (Table 1) encoding the

production of the EBOV GP capsid protein in an Escherichia coli strain (TOP10). Similarly,

we cloned a genetic sequence encoding the production of the ZIKV E capsid protein in an E.

coli strain (TOP10) to produce ZIKV nucleic acid material (Table 1). The EBOV sequence was

designed based on the consensus of GP sequences of the Zaire ebolavirus documented in Gen-

Bank from 1976–2014 (S1 Fig). The ZIKV sequence was designed by considering the consen-

sus of the E gene sequences of the ZIKV strains documented globally in GenBank from 2013–

2016 (S2 Fig).

The engineered bacterial strains were cultured overnight in LB-media (250ml) at 37˚C in

Erlenmeyer flasks under orbital agitation at 200 RPM. After 12 hours of culture, the bacteria

Fig 1. A) The miniPCR thermocycler and blueGel electrophoretic chamber. B) Outdoor use of the miniPCR device. Portability, ease of use, and low toxicity of the

reagents allow genetic material amplification outside the laboratory. C) Amplicons of various lengths can be obtained using different sets of primers targeting a sequence

encoding the Ebola virus GP protein. D) Temperature cycling scheme used in our PCR protocol.

https://doi.org/10.1371/journal.pone.0215642.g001
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were harvested by centrifugation and then lysed using a continuous homogenizer. Synthetic

viral DNA was purified from the bacterial samples using the PureYield Plasmid Maxiprep Sys-

tem (Promega, WI, USA). Samples containing different concentrations of synthetic nucleic

acids of EBOV and ZIKV were prepared by successive dilutions from stocks containing 400

ng/L of viral nucleic acids.

Amplification mix

We used REDTaq Ready Mix from Sigma-Aldrich (USA), and followed the recommended

protocol: 5 μL Readymix, 1 μL of forward primer, 1 μL of reverse primer (for a final concentra-

tion of 0.5 μM), 1 μL of DNA template (3ng to 5 x 10−7 ng; ~ 66 to 3.9 x 108 DNA copies), and

nuclease free water to final volume of reaction 10 μL.

Primers used

Three different sets of primers were used to target a region of the EBOV GP sequence. One set

of primers was used to target a region that encodes the ZIKV E protein (Fig 1C). Sequences of

all these primers and their corresponding amplicons are presented in Tables 2 and 3.

Amplification protocols

For all PCR experiments, we used the same three-stage protocol (see Fig 1D) consisting of a

denaturation stage at 94˚C for 5 min, followed by 30 cycles of 94˚C for 20s, 60˚C for 30s, and

72˚C for 30s, and then a final stage at 72˚C for 10 min, with a total duration of 76 and 80 min-

utes in the MaxyGene and the miniPCR thermocyclers, respectively.

Documentation of PCR products

We analyzed 10μL of each PCR product using 1% agarose electrophoresis in TAE (Tris-Acetic

Acid-EDTA) buffer (Sigma-Aldrich, MO, USA). Gels were dyed with GelGreen (CA, USA)

using a 1:10,000 dilution and a current of 110 V supplied by a Bio-Rad PowerPac HC power

supply (Bio-Rad, CA, USA) for 50 minutes. We used the Quick-Load Purple 2-Log DNA Lad-

der (NEB, MA, USA) as molecular a molecular weight marker. We analyzed the gels by UV

transillumination using a Bio-Rad ChemiDoc XRS imaging system.

In addition, in some of our experiments, we used the blueGel unit, a portable electrophore-

sis unit sold by MiniPCR from Amplyus (MA, USA). This is a compact electrophoresis unit

(23 × 10 × 7 cm) that weighs 350 g. In these experiments, we analyzed 10μL PCR product

using 1% agarose electrophoresis tris-borate-EDTA buffer (TBE). Gels were dyed with Gel-

Green (CA, USA) using a 1:10,000 dilution, and a current of 48V was supplied by the bluegel

built-in power supply (AC 100-240V, 50-60hz).

Additional quantification strategies for PCR products

We evaluated the total amount of amplified nucleic acids (as quantified by absorbance analysis

at 260 nm) and their purity (as quantified by the 260/280 ratio) using a Nanodrop 1000 spec-

trophotometer (Thermo Fisher Scientific, MA, USA). In these experiments, 10μL of PCR

product was purified using the Wizard SV Gel and PCR Clean-Up kits (Promega, WI, USA),

and the purified DNA (average yield of 41.5ng/μL) was re-suspended and dissolved in 50 μL of

nuclease-free water.

In an additional set of experiments, the amount of amplified DNA was determined by stain-

ing with Brilliant III Ultra-Fast SYBR Green QPCR Master Mix (Agilent Technologies CA,

USA). We used 0.5 ng of synthetic EBOV or ZIKV as a DNA template, 2 μl of forward primer
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solution, 2 μl of reverse primer solution, 10 μl of 2× SYBR Green QPCR master mix, and

nuclease-free PCR-grade water to adjust the final volume to 20 μl. After the PCR reaction was

Table 1. Nucleotide sequences used to engineer bacterial strains to produce Ebola virus (EBOV) and Zika virus

(ZIKV) nucleic acids.

Target gene Nucleotide sequence

Ebola GPα

protein (capsid)

EBOV-GP:
ATGTCTACCGAGTCTATGATTAGGGACGTGGAACTGGCTGAGGAGGCACTGCCCAAAAAAACCGGCGGACCA
CAGGGCTCTAGGAGATGTCTGTTTCTGTCTCTGTTCTCTTTTCTCATCGTGGCTGGCGCTACAACACTCTTCT
GTCTGCTCCATTTCGGCGTGATTGGACCACAGCGAGAGGAATTTCCCCGGGATCTGTCACTCATTTCACCAC
TGGCACAGGCTGTCCGATCTTCATCTCGGACTCCATCCGACAAACCTGTCGCCCATGTCGTCGCCAACCC
ACAGGCCGAGGGCCAGCTCCAGTGGCTCAATAGGAGGGCAAACGCTCTGCTCGCCAATGGCGTGGAACTC
CGGGATAACCAGCTCGTCGTGCCTAGTGAGGGACTGTACCTCATCTACTCCCAGGTGCTGTTTAAGGGCC
AGGGATGTCCTTCTACACATGTGCTGCTCACACACACAATTTCACGGATCGCCGTGTCTTACCAGACTAA
AGTCAATCTGCTCTCTGCCATCAAATCCCCATGTCAGCGGGAAACACCTGAGGGCGCTGAGGCTAAACC
TTGGTACGAACCCATCTACCTCGGAGGCGTGTTCCAGCTGGAGAAGGGCGATAGACTGAGTGCTGAG
ATCAATCGACCCGACTACCTCGACTTTGCCGAATCTGGCCAGGTCTACTTTGGCATCATTGCTCTGG
GCCTCGAGGGCCGAGCTCATGGCGCACCTAGGCCTTTGAATTCCTCTACCGAGTCTATGATTAGGGA
CGTGGAACTGGCTGAGGAGGCACTGCCCAAAAAAACCGGCGGACCACAGGGCTCTAGGAGATGTCTGT
TTCTGTCTCTGTTCTCTTTTCTCATCGTGGCTGGCGCTACAACACTCTTCTGTCTGCTCCATTTCGGCGT
GATTGGACCACAGCGAGAGGAATTTCCCCGGGATCTGTCACTCATTTCACCACTGGCACAGGCTGTCC
GATCTTCATCTCGGACTCCATCCGACAAACCTGTCGCCCATGTCGTCGCCAACCCACAGGCCGAGGG
CCAGCTCCAGTGGCTCAATAGGAGGGCAAACGCTCTGCTCGCCAATGGCGTGGAACTCCGGGAT
AACCAGCTCGTCGTGCCTAGTGAGGGACTGTACCTCATCTACTCCCAGGTGCTGTTTAAGGGCC
AGGGATGTCCTTCTACACATGTGCTGCTCACACACACAATTTCACGGATCGCCGTGTCTTACCAGACTAAAG
TCAATCTGCTCTCTGCCATCAAATCCCCATGTCAGCGGGAAACACCTGAGGGCGCTGAGGCTAAACC
TTGGTACGAACCCATCTACCTCGGAGGCGTGTTCCAGCTGGAGAAGGGCGATAGACTGAGTGCTGA
GATCAATCGACCCGACTACCTCGACTTTGCCGAATCTGGCCAGGTCTACTTTGGCATCATTGCT
CTGGGCCTCGAGGGCCGAGCTCATGGCGCACCTAGGCCTTTGAATTCCTCTACCGAGTCTATGATTAGGGAC
GTGGAACTGGCTGAGGAGGCACTGCCCAAAAAAACCGGCGGACCACAGGGCTCTAGGAGATGTCTGTT
TCTGTCTCTGTTCTCTTTTCTCATCGTGGCTGGCGCTACAACACTCTTCTGTCTGCTCCATTTCGGCG
TGATTGGACCACAGCGAGAGGAATTTCCCCGGGATCTGTCACTCATTTCACCACTGGCACAGGCTGT
CCGATCTTCATCTCGGACTCCATCCGACAAACCTGTCGCCCATGTCGTCGCCAACCCACAGGCCGAG
GGCCAGCTCCAGTGGCTCAATAGGAGGGCAAACGCTCTGCTCGCCAATGGCGTGGAACTCCGGGAT
AACCAGCTCGTCGTGCCTAGTGAGGGACTGTACCTCATCTACTCCCAGGTGCTGTTTAAGGGCCAG
GGATGTCCTTCTACACATGTGCTGCTCACACACACAATTTCACGGATCGCCGTGTCTTACCAGACT
AAAGTCAATCTGCTCTCTGCCATCAAATCCCCATGTCAGCGGGAAACACCTGAGGGCGCTGAGGC
TAAACCTTGGTACGAACCCATCTACCTCGGAGGCGTGTTCCAGCTGGAGAAGGGCGATAGACTGA
GTGCTGAGATCAATCGACCCGACTACCTCGACTTTGCCGAATCTGGCCAGGTCTACTTTGGCATCA
TTGCTCTGGGCCTCGAGGGCCGAGCTCATGGCGCACCTAGGCCTTTGA

Zika Eβ protein

(capside)

ZIKV-E:

ATGATCAGGTGCATAGGAGTCAGCAATAGGGACTTTGTGGAAGGTATGTCAGGTGGGACTTGGG
TTGATGTTGTCTTGGAACATGGAGGTTGTGTCACCGTAATGGCACAGGACAAACCGACTGTCGACATAGAGCT
GGTTACAACAACAGTCAGCAACATGGCGGAGGTAAGATCCTACTGCTATGAGGCATCAATATCAGACAT
GGCTTCGGACAGCCGCTGCCCAACACAAGGTGAAGCCTACCTTGACAAGCAATCAGACACTCAATATGTCTG
CAAAAGAACGTTAGTGGACAGAGGCTGGGGAAATGGATGTGGACTTTTTGGCAAAGGGAGCCTG
GTGACATGCGCTAAGTTTGCATGCTCCAAGAAAATGACCGGGAAGAGCATCCAGCCAGAGAATC
TGGAGTACCGGATAATGCTGTCAGTTCATGGCTCCCAGCACAGTGGGATGATCGTTAATGACA
CAGGACATGAAACTGATGAGAATAGAGCGAAGGTTGAGATAACGCCCAATTCACCAAGAGCC
GAAGCCACCCTGGGGGGTTTTGGAAGCCTAGGACTTGATTGTGAACCGAGGACAGGCCTT
GACTTTTCAGATTTGTATTACTTGACTATGAATAACAAGCACTGGTTGGTTCACAAGGAGTG
GTTCCACGACATTCCATTACCTTGGCACGCTGGGGCAGACACCGGAACTCCACACTGGAACA
ACAAAGAAGCACTGGTAGAGTTCAAGGACGCACATGCCAAAAGGCAAACTGTCGTGGTTCTA
GGGAGTCAAGAAGGAGCAGTTCACACGGCCCTTGCTGGAGCTCTGGAGGCTGAGATGGATGG
TGCAAAGGGAAGGCTGTCCTCTGGCCACTTGAAATGTCGCCTGAAAATGGATAAACTTAGAT
TGAAGGGCGTGTCATACTCCTTGTGTACCGCAGCGTTCACATTCACCAAGATCCCGGCTGAA
ACACTGCACGGGACAGTCACAGTGGAGGTACAGTACGCAGGGACAGATGGACCTTGCAAGGT
TCCAGCTCAGATGGCGGTGGACATGCAAACTCTGACCCCAGTTGGGAGGTTGATAACCGCTA
ACCCCGTAATCACTGAAAGCACTGAGAACTCTAAGATGATGCTGGAACTTGATCCACCATTT
GGGGACTCTTACATTGTCATAGGAGTCGGGGAGAAGAAGATCACCCACCACTGGCACAGGA
GTGGCAGCACCATTGGAAAAGCATTTGAAGCCACTGTGAGAGGTGCCAAGAGAATGGCAGTC
TTGGGAGACACAGCCTGGGACTTTGGATCAGTTGGAGGCGCTCTCAACTCATTGGGCAAGGG
CATCCATCAAATTTTTGGAGCAGCTTTCAAATCATTGTTTGGAGGAATGTCCTGGTTCTCACAA
ATTCTCATTGGAACGTTGCTGATGTGGTTGGGTCTGAACACAAAGAATGGATCTATTTCCCTTAT
GTGCTTGGCCTTAGGGGGAGTGTTGATCTTCTTATCCACAGCCGTCTCTGCTCATCATCATCATCA
TCATTGA

αMost abundant EBOV capsid protein; molecular weight = 74 kDa
βMost antigenic ZIKV protein; molecular weight = 54 kDa.

https://doi.org/10.1371/journal.pone.0215642.t001
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completed (3 minutes at 95˚C; 40 cycles of 5 seconds at 95˚C, and 12 seconds at 60˚C), the

amplification product was transferred to a 7500 Fast Real-Time PCR System (Thermo Fisher

Scientific, MA, USA). The amount of amplification product was determined by fluorescence

measurements using a SYBR Green filter. For this purpose, 10 cycles of 10 seconds at 21˚C

were programmed in the Real-Time PCR System. The reading from the fourth cycle was used

for statistical analysis.

Results and discussion

Previous epidemic episodes (for example, those related to EBOV in West Africa in 2014–2016)

have proven that an actual emergency does not provide the required timeframe for testing

new strategies. This is true for new therapies as well as for diagnosis. In the case of epidemic

emergencies (or natural disasters), the first line of response must be based on commercially

available and validated resources. Here, we compare the performance of a commercially avail-

able portable PCR unit (aimed at several markets, including POC applications) versus that of a

conventional, regular-sized PCR thermocycler. The comparison was made in terms of the abil-

ity of both units to identify and amplify different synthetically designed genetic sequences of

Table 2. Primer sequences used in PCR amplification experiments and their corresponding amplicons.

Target gene Primers sequences

Ebola GP gene (capsid) EBOV1: ACACTACTGGGAAGCTGATCTGGAAAGTCA
EBOV2: AGGTGGTGAGGTGCGACACGGCCGCTTCGC
EBOV3: AAACCAAGAAGAACCTGACCAGAAAGATCC
EBOV4: GCTGTTTTCGCTAGCCATAATCTTATGATC
EBOV5: AGGAGCTGTCCTTCACCGTGGTGTCAAATG
EBOV6: GTGTTAGTACCCGGGTCGGATGAGGTGCGC

Zika E gene (capsid) ZIKV1: AGCCGAAGCCACCCTGGGGGGTTTTGGAAG
ZIKV2: CCTAGAACCACGACAGTTTGCCTTTTGGCA

https://doi.org/10.1371/journal.pone.0215642.t002

Table 3. Amplicon sequences generated (and their corresponding length) by each of the primer pairs used in the PCR amplification experiments (see also Fig 1C).

Primers Amplicon

sequence

Amplicon

Length (nt)

EBOV1–EBOV2 ACACTACTGGGAAGCTGATCTGGAAAGTCAACCCGGAGATCGACACTACGATCGGAGAGTGGGCCTTTTGGGAAAC
CAAGAAGAACCTGACCAGAAAGATCCGGTCCGAGGAGCTGTCCTTCACCGTGGTGTCAAATGGCGCCAAGAACATC
TCGGGACAGTCTCCCGCGCGCACCTCATCCGACCCGGGTACTAACACCACTACCGAGGATCATAAGATTATGGCTAG
CGAAAACAGCTCGGCCATGGTGCAAGTCCACAGCCAGGGACGCGAAGCGGCCGTGTCGCACCTCACCACCT

300

EBOV3–EBOV4 AAACCAAGAAGAACCTGACCAGAAAGATCCGGTCCGAGGAGCTGTCCTTCACCGTGGTGTCAAATGGCGCCAA
GAACATCTCGGGACAGTCTCCCGCGCGCACCTCATCCGACCCGGGTACTAACACCACTACCGAGGATCATA
AGATTATGGCTAGCGAAAACAGC

167

EBOV5–EBOV6 AGGAGCTGTCCTTCACCGTGGTGTCAAATGGCGCCAAGAACATCTCGGGACAGTCTCCCGCGCGCACCT
CATCCGACCCGGGTACTAACAC

91

EBOV1–EBOV4 ACACTACTGGGAAGCTGATCTGGAAAGTCAACCCGGAGATCGACACTACGATCGGAGAGTGGGCCTTTTGGGAA
ACCAAGAAGAACCTGACCAGAAAGATCCGGTCCGAGGAGCTGTCCTTCACCGTGGTGTCAAATGGCGCC
AAGAACATCTCGGGACAGTCTCCCGCGCGCACCTCATCCGACCCGGGTACTAACACCACTACCGAGGAT
CATAAGATTATGGCTAGCGAAAACAGC

239

EBOV5–EBOV4 AGGAGCTGTCCTTCACCGTGGTGTCAAATGGCGCCAAGAACATCTCGGGACAGTCTCCCGCGCGCACC
TCATCCGACCCGGGTACTAACACCACTACCGAGGATCATAAGATTATGGCTAGCGAAAACAGC

131

ZIKV1–ZIKV2 AGCCGAAGCCACCCTGGGGGGTTTTGGAAGCCTAGGACTTGATTGTGAACCGAGGACAGGCCTTGA
CTTTTCAGATTTGTATTACTTGACTATGAATAACAAGCACTGGTTGGTTCACAAGGAGTGGTTCCAC
GACATTCCATTACCTTGGCACGCTGGGGCAGACACCGGAACTCCACACTGGAACAACAAAGAAGCAC
TGGTAGAGTTCAAGGACGCACATGCCAAAAGGCAAACTGTCGTGGTTCTAGG

252

https://doi.org/10.1371/journal.pone.0215642.t003
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EVOB and ZIKV under the same set of experimental protocols and using the same materials

and reagents (see Materials and Methods).

Engineering of target sequences and primers

For the case of EBOV detection, we designed and synthetized a construct to enable the expres-

sion of the EBOV GP protein in E.coli. GP, an antigenic glycoprotein abundantly present in

the EBOV capsid, has been widely studied in literature [6]. The GP construct was cloned in the

TOP10 E. coli strain. The culture and harvest of expressing clones of the bacteria allowed the

collection of genetic DNA of EBOV without resorting to the use or propagation of the real

virus [4]. For the case of ZIKV detection, we used the same strategy for synthetic production

of nucleic acid sequences encoding the ZIKV E protein (Table 1). The flavivirus envelope (E)

glycoprotein is a structural protein and is responsible for virus entry (attachment, membrane

fusion, and virion assembly); it therefore represents a major target for neutralizing antibodies.

Table 2 shows the sets of primers used to target genetic sequences that code for the expres-

sion of the EBOV GP protein and the ZIKV E protein. EBOV and ZIKV were selected for this

validation study because they were responsible for two of the most recent international epi-

demic emergencies of viral origin. The EBOV variant Makona was the causal agent of the

West Africa Ebola epidemics [37,38], while ZIKV was the causal agent of a recent epidemic

event that spanned most of Latin America and a significant portion of the United States in

2016 [5–10].

Effect of amplicon length

We conducted different sets of experiments to compare the performance of the miniPCR and

a conventional commercial thermocycler. In a first round of experiments, we used five differ-

ent sets of primers of different lengths that target different regions within the selected EBOV

GP sequence. The lengths and sequences of each of the amplicons generated by each set of

primers are presented in Tables 2 and 3. Fig 1C graphically shows the regions of the EBOV GP

sequence to which each primer set binds and the length of each of the originated amplicons.

These sets of primers generated PCR products of 91, 131, 167, 239, and 300 nucleotides (nt).

Fig 2A shows images of a representative agarose gel experiment for the PCR products of differ-

ent amplification reactions using different primer combinations. Products obtained using the

miniPCR and the conventional thermocycler are presented. These results show that the use of

primer sets designed to produce PCR products of different lengths has no meaningful effect on

the performance of the amplifications. Moreover, we did not observe any substantial differ-

ences between the performance of the miniPCR and the conventional thermocycler. In addi-

tion, our use of a multiplex PCR strategy did not result in any obvious advantage over the use

of conventional PCR; this observation holds for reactions conducted using both the miniPCR

and the conventional thermocycler.

Interestingly, the profile of amplification products from the multiplexed reactions differed

between the mini-PCR and the conventional thermocycler (Fig 2A). In an ideal multiplex PCR

[39], where all targeted sequences are equally accessible to primer pairs and the polymerase,

denser (more intense) bands are expected for the higher molecular weight amplification prod-

ucts (more base pairs per amplicon unit) than for the lower molecular weight products. Con-

sistently, the higher molecular weight product of the multiplex reaction appears as a darker

band in the miniPCR amplification. However, this is not the case for the conventional PCR

results. This finding, which was consistent among experimental repeats, suggests a tighter con-

trol of the PCR microenvironmental conditions (i.e., mixing, temperature homogeneity, etc.)

within the miniPCR reaction cells.
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Fig 2. Comparison of the miniPCR and Maxygen thermocyclers using primer sets that yield different amplicon sizes. (A) Comparative images of agarose gel

electrophoresis of DNA coding for EBOV GP protein using miniPCR and Maxygen thermocyclers. Different amplicon sizes obtained using the miniPCR (left section)

and Maxygen (right section) thermal cyclers. From left to right: 91 bp (lane 1), 131 bp (lane 2), 167 bp (lane 3), 239 bp (lane 4), and 300 bp (lane 5), multiplex

amplification of 91 and 167 bp (lane 6), and a negative control (lane 7). B) Evaluation of the amount of miniPCR-amplified DNA (as measured by Nanodrop

Spectrometry at 260 nm), and (C) the purity (absorbance ratio at 260/280 nm) of DNA produced by primer sets that produce amplicons of different sizes. Primers that

were aimed to produce amplicons of 91bp produced statistically lower amounts of DNA in miniPCR amplification experiments (p-value< 0.05). All primer sets yielded

amplification products with statistically similar purities (p-value>> 0.05). Error bars indicate one standard deviation.

https://doi.org/10.1371/journal.pone.0215642.g002
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We further evaluated the effect of using primers that yield amplification products of differ-

ent sizes (namely 91, 167, and 300 bp) in the miniPCR thermocycler. For this purpose, we con-

ducted experiments in which we determined the amount of DNA produced by miniPCR

amplifications using NanoDrop spectrophotometry. For this experimental set, we used 0.5 ng

of EBOV DNA template. Our results suggest that the total amount of amplification product is

statistically lower with the use of primers that flank a region of 91 bp (Fig 2B). This is an

expected result; primers aimed at producing shorter amplicons should render less DNA per

cycle. However, the purity of the DNA obtained in reactions using all different primer sets is

statistically similar (Fig 2C). Moreover, the amount of amplification product is statistically

similar for reaction protocols that yield amplicons of 167 and 300 bp (Fig 2B). These results

suggest that the use of primers of about 150bp in size for miniPCR amplifications will render

similar results, in terms of DNA quantity and quality, as those obtained with larger primers.

The total amount and purity of amplification product was statistically similar for multiplex

amplification (using primers that yield amplicons of 91 and 167 bp) and single primer amplifi-

cation (using primers that yield amplicons of 167 or 300bp) (Fig 2B and 2C). This observation

is based on final-point PCR results; in a real-time amplification, multiplexing might provide

faster results.

Analysis of sensitivity

Next, we conducted a second series of experiments to assess the sensitivity of the PCR reac-

tions conducted in both thermocyclers using primers that generate amplicons of two different

sizes. Fig 3A and 3B show the PCR products of amplification reactions conducted using a set

of primers that produce amplicons of 91 nt and a 300 bp, respectively. In both cases, different

concentrations of EBOV-GP genetic material, in the range of 5 × 10−7 to 3.0 ng/10 μL, were

used as reaction template. The amplification proceeds with sufficient quality to allow proper

visualization of the amplification product, even at low nucleic acid concentrations. However,

we observed differences in the profile of the products of amplification when using primers to

flank regions of 91 or 300 nt (compare Fig 3A and 3B). For instance, at low DNA template con-

centrations, the primers that flank the 91nt region appears to be more effective than those that

target the 300nt region. In this set of experiments, we were particularly careful to ensure the

integrity of the genetic material used as a template. Evidently, under real conditions, the integ-

rity of larger templates can be more compromised by environmental factors when compared

to shorter DNA segments, so targeting shorter nucleic DNA sequences might be advantageous

[40,41]. Moreover, in the range of DNA concentrations explored, we did not observe any con-

clusive difference in performance between the miniPCR and the conventional thermocycler.

In an additional experiment, we challenged the sensitivity of both PCR thermocyclers with

a different set of primers. This time, we amplified a ZIKV sequence, aiming to produce an

amplicon of 252 base pairs (bp). Different concentrations of ZIKV genetic material, in the

range of 5 × 10−7 to 3.0 ng/10 μL, were used as reaction template. Fig 2C presents an agarose

gel showing the amplification products of this experiment. As before, we observed a similar

performance between thermocyclers. Both the miniPCR and the conventional systems were

able to generate a visible band of amplification products across the whole range of DNA

dilutions.

Robustness of the miniPCR system

In a final set of experiments, we tested the robustness of the miniPCR system from two differ-

ent angles. First, we validated the reproducibility of the results generated by the miniPCR

between different assay wells. For that purpose, we dispensed the same sample of DNA (EBOV
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Fig 3. Comparison of sensitivity between the miniPCR and Maxygen thermal cyclers. A) Sensitivity trials using a 91

bp amplicon in miniPCR (left section) and Maxygen (right section) thermal cyclers. The initial template amount was

gradually increased from left to right: 66 (lane 1), 6.62 x 102 (lane 2), 6.62 x 104 (lanes 3), 6.62 x 106 (lane 4), 6.62 x 107

(lane 5), 1.30 x 108 (lane 6), and 3.9 x 108 DNA copies (lane 7), and negative control (lane 8). B). Sensitivity trials using

a 300bp amplicon in the miniPCR (left section) and Maxygen (right section) thermal cyclers. The initial template

amount was gradually increased from left to right: negative control (lane 1), 66 (lane 2), 6.62 x 102 (lane 3), 6.62 x 104

(lanes 4), 6.62 x 106 (lane 5), 6.62 x 107 (lane 6), 1.30 x 108 (lane 7), and 3.9 x 108 DNA copies (lane 8). These results

showed no significant differences between devices. (C) Sensitivity trials using a 252bp Zika virus amplicon in the

miniPCR (left section) and Maxygen (right section) thermal cyclers. The initial template amount was gradually

increased from left to right: 66 (lane 1), 6.62 x 102 (lane 2), 6.62 x 104 (lane 3), 6.62 x 106 (lane 4), 6.62 x 107 (lane 5),

1.30 x 108 (lane 6), and 3.9 x 108 DNA copies (lane 7), and negative control (lane 8).

https://doi.org/10.1371/journal.pone.0215642.g003
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genetic material; at 0.5 ng/μL; expected amplicon of 300bp) in seven of the eight amplification

wells of the miniPCR thermocycler (one well was left as a negative control). For comparison,

the same amplification experiment was performed in eight of the amplification cells of the con-

ventional PCR system, selected at random. Fig 4A shows an agarose gel of the amplification

products for eight different wells of both thermocyclers. We did not observe any significant

variations in intensity among the wells in any thermocycles. In addition, we quantified the

intensities of the bands corresponding to amplification products using band purification and

nanodrop quantification. The results revealed small standard deviations for both sets of sam-

ples. Both thermocyclers also performed similarly in terms of reproducibility; the average

amounts of amplification products were statistically similar for both data sets (α-value = 0.5;

Fig 4B).

In an additional set of experiments, we quantified the amount of DNA amplified in differ-

ent assay wells (in both thermocyclers) using SYBR Green staining followed by fluorescence

determination in a RT-PCR apparatus (Fig 4C). The results confirm that both thermocyclers

are similar in terms of reproducibility, as both exhibited a variance coefficient of ~0.06.

Fig 4. Comparison of the amount of amplification product produced by miniPCR (left section) and Maxygen (right

section) thermal cyclers. A) Repeatability test using an initial amount of 0.5ng of a 300bp amplicon corresponding to the

Ebola virus GP protein in the miniPCR (left section) and Maxygen (right section) thermal cyclers. Seven repeats (lane 1 to 7)

and a negative control (lane 8) are shown. B) Average amount of nucleic acid material recovered from the agarose gels. No

significant differences were noted between devices (p-value> 0.05). Error bars indicate one standard deviation. C) Average

amount of nucleic acid material recovered, as quantified by SYBR Green qPCR staining and fluorescence measurements in a

real time thermocycler. Significant differences were noted between devices (p-value� = 0.043). Error bars indicate one

standard deviation.

https://doi.org/10.1371/journal.pone.0215642.g004
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Interestingly, in these experiments (without purification), the miniPCR thermocycler pro-

duced significantly higher amounts of DNA than were obtained with the conventional

thermocycler.

In all previously described experiments, the products of amplification from both thermocy-

clers were primarily detected on agarose gels using conventional electrophoresis techniques

conducted with conventional lab equipment. However, as previously mentioned, the miniPCR

system is commercialized with its own “blueGel” electrophoretic unit (Fig 5A). In a last set of

experiments, we separated the amplification products using the miniPCR electrophoretic unit

to assess its practicality and reliability. Fig 5B shows a gel that displays the products of amplifi-

cation of a typical experiment where EBOV sequences were targeted.

Besides its portability, the blueGel electrophoretic unit has other important advantages: its

size allows optimization of reagent usage (agarose gel 15ml, buffer 25ml), the built-in power

supply allows visualization of band separation in real time, which can shorten the electropho-

retic time by up to 5 minutes; and exposure to ethidium bromide and UV light is completely

avoided by the use of GelGreen dye and detection with blue light.

Conclusions

The challenge of POC detection of viral threats is of paramount importance, particularly in

underdeveloped regions and in emergency situations (i.e., natural disasters or epidemic out-

breaks). In the context of an emergency, time is very limited (as are other resources) to do

research or develop new technologies; therefore, the use of commercially available and tested

technologies is an obvious first countermeasure. Our research extends the validation of the

miniPCR technology to the as yet unexplored topic of detection of Ebola and Zika, and we

Fig 5. The blueGel electrophoresis chamber: blueGel (A) allows visualization of a 15 ml agarose gel using an integrated blue

LED array. B) Agarose gel electrophoresis of Ebola virus amplification products of different sizes using the miniPCR

thermocycler and blueGel electrophoretic chamber: 91 bp (lane 1), 131 bp (lane 2), 167 bp (lane 3), 239 bp (lane 4), 300 bp

(lane 5), multiplex amplification of 91and 167 bp (lane 6), and negative control (lane 7).

https://doi.org/10.1371/journal.pone.0215642.g005
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have validated six sets of primers for Ebola and one set for Zika detection. Our results suggest

that the capacity of selective amplification in a conventional thermocycler and in a miniPCR is

essentially the same. The use of the miniPCR is intuitive and simple; the user can easily follow

the advance of the iterative temperature cycling using a laptop. Despite its compact size, the

miniPCR allows a full amplification protocol to be performed in a similar time as in a conven-

tional thermocycler (a difference of only six minutes in a 30-cycle protocol). The mini-PCR

thermocycler exhibits the essential attributes of a POC system: (a) the use of small volumes, (b)

low capital cost, (c) portability, (d) and a fast, accurate, and selective response. Therefore, this

already commercially available and simple nucleic acid amplification system has great poten-

tial for use in remote or underprivileged areas, in the case of natural disasters, on the battle-

field, or during epidemic emergencies.

In addition, we have documented the effect of using different primers that yield different

amplicon sizes, thereby providing a reference resource for primer design for POC applications

using the miniPCR. We also provided a detailed account of a strategy for producing Ebola-

and ZIKV-related nucleic acids that is free of infection risk in any conventional lab. This is a

useful, if not necessarily intuitive, resource that allows personnel to study the virus nucleic

acids without the risk of contracting a deadly disease. This straightforward approach will facili-

tate POC research related to highly infective viruses in underdeveloped regions.
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