
RESEARCH ARTICLE

Metabolic flux configuration determination

using information entropy

Marcelo Rivas-AstrozaID
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¤ Current address: Departamento de Biotecnologı́a, Universidad Tecnológica Metropolitana, Ñuñoa, Chile
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Abstract

Constraint-based models use steady-state mass balances to define a solution space of flux

configurations, which can be narrowed down by measuring as many fluxes as possible. Due

to loops and redundant pathways, this process typically yields multiple alternative solutions.

To address this ambiguity, flux sampling can estimate the probability distribution of each

flux, or a flux configuration can be singled out by further minimizing the sum of fluxes accord-

ing to the assumption that cellular metabolism favors states where enzyme-related costs

are economized. However, flux sampling is susceptible to artifacts introduced by thermody-

namically infeasible cycles and is it not clear if the economy of fluxes assumption (EFA) is

universally valid. Here, we formulated a constraint-based approach, MaxEnt, based on the

principle of maximum entropy, which in this context states that if more than one flux configu-

ration is consistent with a set of experimentally measured fluxes, then the one with the mini-

mum amount of unwarranted assumptions corresponds to the best estimation of the non-

observed fluxes. We compared MaxEnt predictions to Escherichia coli and Saccharomyces

cerevisiae publicly available flux data. We found that the mean square error (MSE) between

experimental and predicted fluxes by MaxEnt and EFA-based methods are three orders of

magnitude lower than the median of 1,350,000 MSE values obtained using flux sampling.

However, only MaxEnt and flux sampling correctly predicted flux through E. coli’s glyoxylate

cycle, whereas EFA-based methods, in general, predict no flux cycles. We also tested Max-

Ent predictions at increasing levels of overflow metabolism. We found that MaxEnt accuracy

is not affected by overflow metabolism levels, whereas the EFA-based methods show a

decreasing performance. These results suggest that MaxEnt is less sensitive than flux sam-

pling to artifacts introduced by thermodynamically infeasible cycles and that its predictions

are less susceptible to overfitting than EFA-based methods.

Introduction

Genome-scale metabolic networks provide the basis for reconstructing the set of metabolic

reactions occurring within a living organism. These reactions carry the flux of materials dis-

tributing the building blocks for macro-molecules production and, ultimately, biomass
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formation. However, flux configurations cannot be determined with complete certainty as

experiments can only probe a fraction of all the states allowed by the various concentration lev-

els that enzymes, RNAs, and metabolites can reach within a cell [1].

Alternatively, the mass balance principle can be applied to obtain a mathematical model

describing the variation of all concentrations for the metabolic system. This model can be fur-

ther simplified by assuming a steady-state condition, resulting in a linear mathematical model

which provides a solution space for all possible flux configuration that comply with the con-

straints set by the stoichiometry of the reaction network. In this framework, metabolic net-

works can be considered as providing a space of possible flux configurations where some

adaptive regulatory mechanism of the reaction rates resolves into the one that maximizes cellu-

lar fitness [2, 3]. An implementation of this idea has been Flux Balance Analysis (FBA) [4],

which encodes known uptake rates and metabolites mass balances as constraints of a linear

optimization problem where biomass growth rate is maximized. FBA has been an influential

approach as sequencing technologies have allowed inferring the topology of metabolic net-

works at a genome-scale [5–7]. As FBA is formulated as a linear programming problem, it

does not necessarily yield a single solution [8, 9]. This is typically the case for metabolic net-

works as they contain loops and alternative pathways [10] that accept various flux configura-

tions to be compatible with a given set of know uptake rates and maximized objective function

values [11]. Linear programming can be used to efficiently select a single flux configuration

within this space, but its pick is based on the implementation of the algorithm performing the

optimization rather than on biological considerations. This is problematic as different imple-

mentations may result in different solutions, which affect the reproducibility of results, and it

can produce conflicting outcomes. For instance, two algorithmic implementations can predict

flux through mutually exclusive pathways. Using alternative metrics of cellular fitness, e.g.

ATP production, or measuring extra uptake rates is typically insufficient to reduce the solution

space to a single flux configuration.

Various methods have been proposed to deal with the ambiguity of these alternative solu-

tions. One of them is flux sampling, where a sequence of random samples from the space of

alternative solutions is generated until the entire space is analyzed [12, 13]. Unlike FBA, flux

sampling does not require defining an objective function [12]. This method has been applied

to small catabolic networks [14] and to genome-scale networks [12] to infer the range and

probability distribution values for each flux. However, the mass balances of the metabolic net-

work are not enough to prevent thermodynamically infeasible flux cycles. For instance, in the

example network presented in Fig 1, an arbitrarily large flux value can be cycled between the

metabolites of the inner loop. Only the upper bounds imposed over these fluxes prevent them

from reaching ever larger values. These bounds are not meant to be biologically meaningful so

that the sampling space is arbitrarily biased. Considering each reaction Gibbs free energy can

prevent thermodynamically infeasible cycles [15], but this information is not always available

for each reaction of a genome-scale metabolic network. To circumvent this problem extra con-

straints can be added in order to rule out the formation of closed cycles [16] but this renders

the problem computationally intractable at genome-scale [17]. As a consequence, the presence

of thermodynamically infeasible loops remains an open problem that can severely bias the

inferences drawn from flux sampling.

Alternatively, infeasible cycles can be avoided by considering only the subspace of alterna-

tive solution where the sum of all fluxes magnitudes reach their minimum [17]. In this sub-

space, reactions forming close loops attain flux values equal to zero, effectively preventing

thermodynamically infeasible cycles. If fluxes magnitudes are measured by their squared val-

ues, the space of alternative solutions is reduced to a single flux configuration [18]. We will

refer to this method as MinFlux. Alternatively, if fluxes magnitudes are measured by their
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absolute values, more than one flux configuration can achieve the same minimum sum of

fluxes, rendering a subspace of alternative solutions. In this case, further assumptions can be

made to select a single flux configuration from this subspace. In particular, Geometric is a con-

straint-based model that selects the flux configuration located at the geometric center of the

polytope formed by these alternative solutions [19]. Regardless of how flux magnitudes are

measured, the minimization of fluxes assumption is coherent with the hypothesis that under

optimal growing conditions cells save energy by producing the minimum amount of enzyme-

related proteins [20]. Compared to MinFlux, Geometric predicts flux configurations where

more reactions have zero flux. This is a result of Geometric measuring fluxes magnitudes by

their absolute values, which is a known sparsity inducing norm [21].

MinFlux and Geometric each yield reproducible results while avoiding thermodynamically

infeasible cycles, but they also have limitations. On the one hand, it is not known if the mini-

mization of fluxes’ assumption is universally valid. For instance, it has been observed in Sac-
charomyces cerevisiae and Escherichia coli that high glucose consumption rates are

accompanied by the activation of otherwise shut off pathways, resulting in the production of

overflow metabolites through non oxidative pathways [22–24]. Numerous explanations have

been offered, including ATP savings for the production of non-oxidative enzymes (which by

being smaller, compared to their oxidative counterparts, requires less ATP in their synthesis)

Fig 1. Polytope of possible flux configurations. (A) Example metabolic network with known exchange fluxes v1 and vμ, and two unknown inner fluxes v2

and v3 forming a loop. The upper bounds for fluxes v2 and v3 are UB2 and UB3. Any value of v3 2 [0, UB3] satisfy the metabolites’ mass balances, resulting in

an infinite set of solutions. (B) Different methods to estimate the inner fluxes. Flux sampling estimates flux configurations from random samples from the

set of alternative flux configurations (represented by the points forming the blue line). MinFlux selects the flux configuration where v2
2
þ v2

3
reach their

minimum value according to the assumption that cells uses the the minimum amount of fluxes to economize enzyme synthesis. Geometric selects the flux

configuration located at the geometric center of the space formed by the alternative solutions. MaxEnt selects flux configuration with the maximum

information entropy (Hv).

https://doi.org/10.1371/journal.pone.0243067.g001
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[25, 26], limited uptake rates capacity [27], and an upper limit on the dissipation of Gibbs

energy [28]. On the other hand, minimizing the sum of fluxes can break thermodynamically

feasible cycles. For example, the isocitrate dehydrogenase reaction of the glyoxylate cycle

would be systematically predicted to be inactive, although it is known to be active in E. coli
[29–31]. Also, when a metabolite can be converted into another by more than one pathway,

the minimization of the sum of the fluxes absolute values leads to the inactivation of all but

one of these alternative pathways [17]. Thus, introducing the risk of overestimating the flux

through the remaining active pathway.

Thus, current methods to estimate flux configurations are either overly sensitive to artifacts

introduced by thermodynamically infeasible cycles or rely on assumptions that may not be

universally valid. To overcome this, we propose to use statistical inference methods, specifi-

cally the principle of maximum entropy [32], which in general terms states that the best state

of knowledge of a system –expressed as a probability distribution– is the one that admits the

most ignorance besides prior information. This principle has been applied in biological sci-

ences [33], including the metabolism of bacterial populations to infer statistical models from

limited data. De Martino et al. (2016) [34] modeled the fluctuations of growth rates in E. coli
using a Boltzmann probability distribution as this is the one that maximizes entropy under the

constraint that the population’s average growth rate equals its experimental value. A sampling

of the solution space of E. coli metabolic network based on Boltzmann distribution is pro-

posed, producing distributions of growth rates that closely resemble experimental data. De

Martino et al. (2018) [1] have applied this procedure to sample the space of flux configurations

of the catabolic core of E. coli metabolism. This method produces flux distributions whose

averages are closer to experimental data than those produced using FBA or uniform sampling.

Fernandez de Cossio Diaz and Mulet (2019) [35] applied this approach to address cell-to-cell

metabolic variability in Chinese hamster ovary cells population as a function of the dilution

rate in a chemostat. Since the sampling procedure is intractable at genome-scale sized meta-

bolic networks, the authors reduced the network by pruning reactions that do not carry flux

when computed using FBA at various dilution rates. As FBA typically produces multiple alter-

native solutions, the authors selected the one where enzymatic costs are minimized. Tourigny

(2020) [36] has expanded the application of these ideas, proposing that the maximum entropy

principle can assign the best allocation of resources among elementary flux modes for maxi-

mizing expected return on investment of metabolic resources in the face of uncertain environ-

mental conditions. As the number of elementary flux modes explodes with the network’s size

[37], this approach was applied to a simplified model of yeast metabolism, reproducing the

observed behavior of a cellular population in continuous and batch cultures.

Here, we use the principle of maximum entropy to determine a single flux configuration

for a genome-scale metabolic network based on information theory. In particular, we pro-

posed that the best estimation of the cellular flux configuration is the one with the minimum

amount of unwarranted assumptions. Each flux configurations within the polytope of alterna-

tive solutions can be encoded as a probability distribution. The information entropy of these

probability distributions can be interpreted as the average level of information inherent to

each flux configuration. It follows that out of all flux configurations that are consistent with

experimentally measured fluxes (for instance, glucose uptake), we should select the one with

the largest value of information entropy [38], as it requires the fewest prior assumptions, and

hence corresponds to the least biased solution. This idea was implemented at a genome-scale

as a constraint-based model, which we called MaxEnt. MaxEnt finds the flux configuration

with the most homogeneous distribution of fluxes that is consistent with the restrictions

imposed by the constraint-based model. This makes MaxEnt less sensitive than flux sampling

to the artifacts introduced by thermodynamically infeasible cycles as their fluxes are prevented
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from reaching their upper bounds. At the same time, MaxEnt predictions neither eliminate

thermodynamically feasible cycles nor alternative pathways. The latter of which are biases

introduced by MinFlux and Geometric methods.

In the methods section, we provide a formalism to apply information entropy to flux con-

figurations. In the results section, we used this formalism to set up and test quantitative predic-

tions for E. coli and S. cerevisiae. Here, we provide evidence that MaxEnt can improve our

estimation of single flux configurations.

Materials and methods

General background

For a metabolic network of N reactions and M metabolites, we define the scalar vector of

metabolites concentrations c, its time derivatives _c and the scalar vector of fluxes v, where c
and _c 2 RM

, and v 2 RN
þ

. We have considered all fluxes to be non-negative, with reversible

reactions been split-up into forward and reverse reactions. The stoichiometric matrix S has (M
× N) elements, so that the product Sv results in a (M × 1) matrix. Thus, the time dependent

mass balance is written as:

_c ¼ Sv ð1Þ

Assuming steady-state condition for the metabolism, _c ¼ 0, and including further con-

straints for reversibility of reactions, uptake fluxes of nutrient, and kinetic limits in the form of

lower LB 2 RN
þ

and upper bounds UB 2 RN
þ

on fluxes, a convex polytope P of alternative flux

configurations is defined:

P ¼ fv 2 RN
þ
jSv ¼ 0; LB � v � UBg ð2Þ

Biomass growth rate is integrated into the metabolic network using a biomass reaction in

the form of a linear combination of metabolic fluxes vμ = ∑i bi vi, where bi correspond to the

mass proportion of the metabolite i in biomass.

Genome-scale metabolic networks

Genome-scale metabolic networks reconstructions for E. coli and S. cerevisiae were used

iJR904 (N = 1075 reactions, and M = 761 metabolites) [39] and iMM904 (N = 1577, M = 1226)

[40], respectively. Both were obtained from the BiGG Models database [41].

Information entropy modeling

Let us consider an experiment where reactions are randomly sampled from a metabolic net-

work. The outcome of each sample can be encoded by the random variable X 2 {x1, . . ., xN},

where xi is the identity of reaction i (for instance the name of the enzyme catalyzing the reac-

tion), and the probability of observing xi is given by Pv(X = xi). If Q enzymes are distributed

among N reactions, such that Q = ∑j qj, where qi are the enzyme units catalyzing reaction i,
then:

PvðX ¼ xiÞ ¼
qiP
jqj

ð3Þ

For reaction i, its flux vi is a function of the amount of enzymes, namely vi = ki ηi qi, where

ki is the maximum turnover of catalyst qi and ηi is a function ranging from 0 to 1 describing

the decrease in catalytic rate due to intracellular conditions (for example, incomplete substrate
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saturation) [42]. Then, qi in Eq 3 can be replaced by vi/(ki ηi). Unfortunately, values of ki ηi are

unknown for the vast majority of reactions [42], so that we assume their values to be similar to

one another in order rewrite Eq 3 as:

PvðX ¼ xiÞ ¼
viP
jvj

ð4Þ

This is an approximation that can be improved if values of ki ηi became available. Still, each

v 2 P defines a different probability distribution for X, and the average level of information

inherent to the various possible outcomes of X is given by its information entropy [38]:

HvðXÞ ¼ �
XN

i¼1

PvðX ¼ xiÞ logPvðX ¼ xiÞ ð5Þ

Hv(X) has two extreme values. Its minimum is 0 and is obtained when all but one flux in v
are 0. In this case, we would be certain of the outcome of any random sample as Pv(xk) = 1 for

the non-zero flux, and 0 otherwise. On the other hand, the maximum value of Hv(X) is

obtained when all fluxes of v have the same value, generating a uniform probability distribu-

tion Pv(X) = 1/N. In this case, Hv(X) = log(N), which is the maximum uncertainty for the out-

come of a random sample. These two limits are not biologically realistic but illustrate the

notion that Hv(X) corresponds to the average uncertainty contained in the outcome of this

random sampling.

According to the principle of maximum entropy [32, 43], the v 2 P that best represents our

knowledge of the flux configuration of the cell is the one with the largest value of Hv(X). H can

be interpreted as the average number of yes/no questions that we would need to ask in order

to determine the outcomes of X (when using two as the base of log). It follows that out of all

v 2 P, the one with the largest value of H should be selected, as this is the one that would

require the fewest prior assumptions. Alternatively, the v that maximizes H can also be inter-

preted as the flux configuration that can happen in the greatest number of ways when a cell

assigns a given amount of catalysts among its N reactions. This is the case if we assume that

any two units of Q can be exchanged between reactions, for instance, by recycling the amino

acids from one enzyme to produce another. Then, the greatest number of permutations in

which these units of Q can be distributed among N reactions is given by the probability distri-

bution that maximizes Boltzmann entropy [44], S = −kb∑i P(X = xi)log(P(X = xi)), where kb is

the Boltzmann constant and P(X = xi) is the same as defined in Eq 4. Since argmax(H) = arg-

max(S) [45], it can be concluded that the v 2 P maximizing H also allows the units of Q to be

assigned in the greatest number of ways. Therefore, such v would be the most likely to be

observed.

Hv(X) is a strictly convex function [46], therefore there is only one v 2 P that maximizes

Hv(X). Hence, we formulate MaxEnt as the following constraint-based problem:

max
v

HvðXÞ

subject to :

Sv ¼ 0

LB � v � UB

ð6Þ
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Computational implementation

For the implementation, it is important to note that splitting reversible fluxes into non-nega-

tive forward and reverse fluxes introduces cycles, such as the one depicted in Fig 1A. These

cycles admit an arbitrarily large amount of flux to be added to the forward and reverse fluxes

and still produce a flux configuration compatible with the metabolites’ mass balances. This

problem can be avoided by setting at least one flux to its experimentally observed value. Since

MaxEnt finds the most uniform flux configuration that is compatible with the restrictions

defined in Eq 6, the forward and reverse values of the unknown fluxes result in magnitudes

similar to the experimentally known. For MaxEnt and all other methods, all reaction were

assigned LB = 0 and UB = 1000, except for the biomass reaction, vμ, and exchange flux of

glucose, vEX_glu, which were set to match their corresponding measured values:

LBEX glu ¼ UBEX glu ¼ vObs
EX glu, and LBvm ¼ UBvm ¼ vObs

m
.

All methods (MaxEnt, flux sampling, MinFlux, and Geometric) were implemented using

the COBRApy 0.16.0 [47] library in Python 3.7. MaxEnt non-linear maximization was

done using IPOPT 3.12.3 [48] optimizer through the CasADi 3.4.5 [49] interface.

Flux sampling and Geometric were performed using the optGpSampler [13] and

geometric_fba functions implemented in COBRApy. The minimization of MinFlux’s

quadratic objective function was done using CPLEX 12.9.

To perform MaxEnt optimization via IPOPT we added a small number, �, to each flux

value in Eq 5 to avoid the undefined value of LogPv(xi) when vi = 0. For all computations we

used � = 10−8. We used Flux Variability Analysis (flux_variability_analysis func-

tion of COBRApy) to narrow down the lower and upper bounds of each flux within the poly-

tope of alternative solutions. Fluxes narrowed down to a single value were considered

constants in MaxEnt, thus reducing the number of variables.

Results

Analysis of metabolic networks loops

Loops are an important feature of metabolic networks. They have been proposed as essentials

to explain the self-amplification capacity of metabolism and necessary to re-concentrate path-

ways’ inputs into a finite number of metabolic intermediates [50]. However, as information of

the Gibbs free energy is not always available to determine the direction of reversible reactions,

thermodynamically infeasible cycles can arise within the polytope of alternative solutions. This

is illustrated by the example metabolic network presented in Fig 2A, which despite being con-

strained by its uptake (v1 = 10) and production (vμ = 10) fluxes, can have an arbitrarily large

flux value v5 cycling between metabolites A and C. Therefore, we started by analyzing how

MaxEnt accounts for metabolic loops.

For the example network Fig 2A, MaxEnt yields a uniform distribution of fluxes (Fig 2B).

By maximizing the information entropy, MaxEnt selects the most homogeneous configuration

compatible with the observed fluxes, naturally tending to veer away from flux configurations

where one or more fluxes have large value differences compared to the measured uptake and

production fluxes. In this scenario, flux sampling would result in a distribution of values for v5

that would only be bounded by the upper limit imposed on this flux, which in itself is not bio-

logically meaningful.

On the other hand, MinFlux and Geometric can avoid the artificially large flux values of v5

as they select flux configurations with the minimum sum of fluxes (Fig 2C and 2D). Although

it is plausible to assume that cells minimize the energy costs associated with the production of

the enzymes carrying out the metabolic reactions, it is not clear if these fluxes should be zero.
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A known case is isocitrate lyase (ICL) reaction, which in E. coli creates a nested cycle within

the Krebs cycle, the glyoxylate shunt (see Fig 3A). This reaction has been observed to have pos-

itive flux [29–31].

To test if MaxEnt would produce non zero flux value through E. coli’s glyoxylate shunt at a

genome-scale level, we compared its predictions to 25 measured fluxes including ICL [29–31,

51–54] at two growth rates (data was retrieved from CeCaFBD [55], see also S1 File). To have a

reference point, we also computed the flux configuration using flux sampling (1,350,000 sam-

ples taken within the space P), and the single predictions of MinFlux and Geometric. The

results, presented in Fig 3B and 3C, show that only MaxEnt and flux sampling predict flux

through the glyoxylate shunt. Comparing to experimental fluxes of the Krebs cycle, MaxEnt

predicted values in the same order of magnitude (Fig 3B and 3C). On the contrary, flux sam-

pling predicts an average SUCOAS flux that is two orders of magnitude above the experimen-

tal result, being this the result of flux sampling not able to rule out thermodynamically

infeasible flux values [17]. On the other hand, MinFlux and Geometric were unable to predict

flux through the glyoxylate shunt as expected by their underlying economy of fluxes

assumption.

To analyze if current methods already produced flux configurations with high information

entropy levels, we determined their information entropy by using Eqs 4 and 5 to their predic-

tions (in the case of flux sampling, we used the average flux values). We found that MaxEnt

predictions (Fig 4A and 4C) have a significantly larger information entropy (p-values < 10−5,

one-tailed test of a normal distribution) than the mean information entropy obtained by flux

sampling, with MinFlux and Geometric having information entropy values in between these

two methods.

We further studied MaxEnt predictions by comparing them to the rest of the 25 experimen-

tally observed metabolic fluxes, which span the central catabolic core of E. coli. We quantified

Fig 2. Example network with alternatives routes and a loop. (A) The metabolic network has a direct route from metabolites A to C and an indirect one

mediated by metabolite B. A loop is formed by the reaction that goes from C back to A. The flux v5 can reach an arbitrarily large value without violating the

metabolites’ mass balances. (B) Constrained by the uptake and production fluxes, MaxEnt predicts a network with all fluxes being equal to 10. Any

deviation from this flux configuration results in a reduction in the value of H(v), thus ruling out arbitrarily large values of v5. (C) MinFlux predicts a zero

flux value going from C to A. (D) Geometric also predicts zero flux from C to A, but as it measures fluxes’ magnitudes by their absolute values, it also

predicts zero flux from the A to B and B to C reactions.

https://doi.org/10.1371/journal.pone.0243067.g002
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the similarity between predicted and measured fluxes using mean-squared error (MSE):

MSE ¼
1

Nf

XNf

i¼1

vi

jvEx gluj
�

vObs
i

jvObs
Ex gluj

 !2

; ð7Þ

where the measured vObs
i and predicted vi flux are normalized by the measured jvObs

Ex gluj and pre-

dicted jvObs
Ex glujmagnitude of the exchange glucose rate.

We found that MaxEnt, MinFlux, and Geometric outperforms the average solution of flux

sampling (Fig 4), producing MSE values that are more than 3 orders of magnitude lower than

the median MSE of flux sampling (Fig 4B and 4D). This suggests that the accuracy of flux sam-

pling predictions is highly sensitive to artifacts introduced by thermodynamically infeasible

cycles.

Previous results have shown that E. coli fluxes are distributed according to a power-law dis-

tribution [57], with most reactions having zero flux and only a few of them having large flux

values. On the other hand, MaxEnt finds the most uniform distribution of fluxes compatible

with the optimization problem’s restrictions defined in Eq 6. To verify whether MaxEnt for-

mulation produces a rich and structured distribution of fluxes or not, histograms of the flux

values for E. coli predicted by MaxEnt at growth rates of 0.1 and 0.2 [1/h] are presented in Fig

5A and 5B. These results show that MaxEnt solution follows a power-law distribution, which

was verified by plotting the same results in a log-log scale (see S3 Fig).

Fig 3. E. coli Krebs cycle and glyoxylate shunt. (A) The glyoxylate shunt is a two-step metabolic pathway (isocitrate lyase, ICL; and malate synthase,

MALS) that bypasses the Krebs cycle carbon dioxide-producing steps [56]. As it forms a loop, the economy of fluxes assumption would predict no flux

through it, which contradicts experimental data. (B) and (C) show the predicted and experimental fluxes of the glyoxylate shunt and Krebs cycle at two

specific biomass growth rates, 0.1 [1/h] and 0.2 [1/h], respectively. In both cases, MaxEnt and flux sampling correctly predict flux through ICL. However,

flux sampling predicts a flux magnitude through succinyl-CoA synthetase (SUCOAS) which is two orders of magnitude above the observed value (red

arrows). On the other hand, MinFlux and Geometric predict zero flux through ICL, see black arrows. For flux sampling, the values reported correspond to

the median of 1,350,000 samples and thinning = 1000 (see S1 and S2 Figs).

https://doi.org/10.1371/journal.pone.0243067.g003
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Fig 4. Entropy and MSE at two E. coli growth rates. (A) and (B) show the entropy and MSE values at a growth rate of 0.1 [1/h]. (C) and (D) show the

same indices at a growth rate of 0.2 [1/h]. For both growth rates, MaxEnt predictions have a statistically significantly larger information entropy (p-

values< 10−5, one-tailed test of a normal distribution) compared to the median entropy of flux sampling, with the entropy of MinFlux and Geometric

predictions falling between them. MaxEnt predictions have an MSE value in the same order of magnitude as the ones obtained by MinFlux and Geometric,

but at least three orders of magnitude lower than the median MSE of flux sampling, supporting MaxEnt capacity to predict inner metabolic fluxes. For flux

sampling, 1,350,000 samples from the space of alternative solutions (thinning = 1000) were taken, and for each sample, entropy and MSE were computed.

The resulting distributions are shown in light blue.

https://doi.org/10.1371/journal.pone.0243067.g004

Fig 5. Relative frequency of fluxes estimated by MaxEnt for E. coli. (A) and (B) show histograms of fluxes of the solution of MaxEnt at growth rates 0.1

and 0.2 [1/h] in E. coli. For both histograms 10 bins were used.

https://doi.org/10.1371/journal.pone.0243067.g005
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Predicting flux configuration considering overflow metabolism

MaxEnt, MinFlux, and Geometric produced flux configuration predictions with low MSE at

specific growth rates of 0.1 and 0.2 [1/h], suggesting that under these growing conditions, they

can predict the fluxes of the central carbon system. However, it has been observed in S. cerevi-
siae and E. coli that high glucose uptake rates are accompanied with partial oxidation path-

ways, resulting in the production of overflow metabolites: acetate, ethanol and lactate,

respectively [22–24]. As a result, overflow metabolism produces a redistribution of fluxes

through previously inactive pathways, which is at odds with the economy of fluxes assumption

underlying MinFlux and Geometric.

To investigate if MaxEnt is able to produce reasonable predictions at various levels of over-

flow metabolism, we compared its predictions against a set of 8 growth conditions in S. cerevi-
siae [58–61], and a set of 25 growth conditions in E. coli [29, 30, 52–54, 62–74] (data was

retrieved from CeCaFBD [55], see also S2 File). In each set, the data-points vary in terms of

both the uptake rate of glucose and biomass growth rate. FBA is a good predictor for the

growth rate in the absence of overflow metabolism, but it overestimates the growth rates other-

wise. We took advantage of this to quantify the level of overflow metabolism in the experimen-

tal data by measuring the difference between the maximum theoretical growth rate (as

computed by FBA) and the actual growth rate, with the difference normalized by the maxi-

mum theoretical growth rate. The results (see Fig 6) show that the datasets of S. cerevisiae and

E. coli span growth conditions with various levels of overflow metabolism.

Then, for S. cerevisiae and E. coli, we set their specific growth and glucose uptake rates to

match their observed values and used MaxEnt to predict the corresponding flux configura-

tions. The results (see Fig 7) show that MinFlux and Geometric predictions have lower MSE

values compared to MaxEnt when the level of overflow metabolism is close to zero, but that

the situation reverts at levels of overflow metabolism close to 1. On the contrary, MaxEnt pre-

diction performance seems unaffected by higher levels of overflow metabolism. Although not

statistically significant, these results support the use of MaxEnt over MinFlux and Geometric

when metabolic pathways deviate from biomass production to generation of overflow

metabolites.

Fig 6. Metabolism of S. cerevisiae and E. coli data at various levels of overflow metabolism. We estimated the level of overflow metabolism as the

normalized difference between observed vObs
m

and theoretical maximum vMax
m

biomass growth rates. (A) Various growth conditions of S. cerevisiae are

represented by their observed rates of glucose exchange (uptake) and biomass growth. Δ correspond to mutated strains overproducing acetate. (B) Various

growth conditions of E. coli.

https://doi.org/10.1371/journal.pone.0243067.g006
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There has been extensive work to explain the simultaneous use of ATP-efficient and ineffi-

cient pathways during overflow metabolism [75]. Several constraint-based models have been

able to reproduce overflow metabolism behavior [76] by integrating relevant information

coming from proteomics [77], gene expression [78], limitation in oxygen uptake rates [79],

and free energy dissipation [28]. The extra information used by these models reduces the solu-

tion space but typically does not single out a unique flux configuration. As a constraint-based

model, MaxEnt can be swiftly integrated into these models, helping the study of overflow

metabolism by estimating a single flux configuration without adding extra assumptions.

To explore the differences between MaxEnt, on the one hand, and MinFlux and Geometric,

on the other, that could explain their divergent behavior at higher levels of overflow metabo-

lism, we analyzed the information entropy of their predictions. The results (see Fig 8A and 8C)

show that the information entropy increases with the level of overflow metabolism. This likely

stems from the additional metabolic fluxes activated to divert flux from biomass to produce

overflow metabolites. To test this, at each growth condition, we measured the total flux:

TðvÞ ¼
XN

i¼1

vi ð8Þ

We found that all methods increase their total flux with overflow metabolism (see Fig 8C

and 8D), forming a saturation curve as the level of overflow metabolisms increases. Compared

to MinFlux and Geometric, MaxEnt predicts larger increments in total flux, this being

Fig 7. Correlation between overflow metabolism and Mean Square Error (MSE). (A), (B), and (C) show S. cerevisaie’s MSE between observed and

predicted inner metabolic fluxes. MinFlux and Geometric predictions outperform MaxEnt when the level of overflow metabolism is below 0.5 but

thereafter the situation inverts, suggesting that the minimization of fluxes assumption of MinFlux and Geometric may not be universally suitable. (D), (E),

and (F) show a similar trend in E. coli. MinFlux and Geometric predictions have lower MSE than MaxEnt at low levels of overflow metabolism, but their

MSE shows a positive Pearson correlation, r, at higher levels of overflow metabolism. On the other hand, MaxEnt shows a close to zero correlation with the

level of overflow metabolism in both species. � indicates statistically significant Pearson correlation values (p-value� 0.005). Data points are color coded as

�MaxEnt, � Geometric, and �MinFlux. Δ correspond to mutated strains overproducing acetate.

https://doi.org/10.1371/journal.pone.0243067.g007
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coherent with its tendency to predict a more homogeneous distribution of fluxes, and it results

in more reactions carrying flux.

Computing times

Finally, we compared MaxEnt and alternative methods CPU times for various levels of over-

flow metabolism. The results (see Fig 9) show that the CPU times of MaxEnt, Geometric, and

flux sampling are all within the same order of magnitude. Only MinFlux resulted in CPU

times within fractions of a second. MaxEnt CPU times do not increase linearly with the level

of overflow metabolism but caps on average at 20 min for the iMM904 network of S. cerevisiae
and 6 min for the iJR904 network of E. coli. MaxEnt was implemented using out of the shelve

algorithms, and its CPU times may be further reduced if a tailored implementation is used.

Conclusion

Given a set of measured fluxes, constraint-based models typically predict a consistent space of

flux configurations. In this work, we present a method based on the principle of maximum

entropy, which in this context states that the best estimation of fluxes is the one with the least

amount of unwarranted assumptions. We searched for the least bias flux configuration by

Fig 8. Information entropy and flux though the metabolic network predicted by various methods. (A) and (B) show the information entropy of the flux

configurations for S. cerevisiae and E. coli, respectively. For each time point, MaxEnt predictions always have greater information entropy compared to

MinFlux and Geometric. (C) and (D) show the total flux of the metabolic configurations predicted for S. cerevisiae and E. coli, respectively. MaxEnt predicts

larger total flux compared to the other two methods, as the later rely on the minimization of fluxes assumption. Data points are color coded as �MaxEnt, �

Geometric, and �MinFlux. Δ corresponds to mutated strains overproducing acetate.

https://doi.org/10.1371/journal.pone.0243067.g008
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computing its information entropy. Based on this, we formulated a constraint-based approach,

MaxEnt, to find a single flux configuration that maximizes the information entropy within the

space of alternative solutions. We found that MaxEnt predictions avoid artificially large flux

values due to thermodynamically infeasible cycles in the metabolic networks. MaxEnt correctly

predicted flux through the ICL reaction of the glyoxylate shunt of E. coli, which the alternative

methods, MinFlux and Geometric, missed as they systematically avoid the formation of cycles.

Unlike flux sampling, MaxEnt predicts fluxes in the same order of magnitude as the experi-

mentally observed ones. MaxEnt also produces accurate estimations of the fluxes of the central

carbon systems of E. coli and S, cerevisiae at various levels of overflow metabolism. In all these

cases, MaxEnt does not require prior assumptions about the distribution of fluxes or their

bounds, both of which can introduce observer bias in the results. By selecting the least bias flux

configuration, MaxEnt is less prone to over-fitting, which is its main advantage over alterna-

tive methods, and may prove useful for estimating flux configurations when there is not suffi-

ciently available bona fide information to constraint the solution space to a single point.

Supporting information

S1 Fig. Flux value distributions for reactions of the Krebs cycle and glyoxylate shunt at

growth rate 0.1 [1/h]. For each reaction, a distribution of 1,350,000 flux values was obtained

using flux sampling (thinning = 1000).

(TIF)

S2 Fig. Flux value distributions for reactions of the Krebs cycle and glyoxylate shunt at

growth rate 0.2 [1/h]. For each reaction, a distribution of 1,350,000 flux values was obtained

using flux sampling (thinning = 1000).

(TIF)

S3 Fig. Frequency of the flux configuration values predicted by MaxEnt for E. coli at

growth rates 0.1 and 0.2 [1/h]. The figures are scatter plots in log-log scale.

(TIF)

S1 File. Flux data for E. coli at growth rates 0.1 and 0.2 [1/h].

(XLS)

Fig 9. CPU times for various levels of overflow metabolism. (A) iMM904 (Saccharomyces cerevisiae), and (B) iJR904 (Escherichia coli). Data points are

color coded as �MaxEnt, � Geometric, � flux sampling and �MinFlux. Δ corresponds to mutated strains overproducing acetate. 1000 samples were used in

flux sampling.

https://doi.org/10.1371/journal.pone.0243067.g009
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S2 File. Flux data for S. cerevisiae and E. coli at various growth conditions.

(XLSX)
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Project administration: Marcelo Rivas-Astroza.

Supervision: Raúl Conejeros.
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