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Abstract

Reference evapotranspiration (ETo) is a fundamental parameter for hydrological studies

and irrigation management. The Penman-Monteith method is the standard to estimate ETo

and requires several meteorological elements. In developing countries, the number of

weather stations is insufficient. Thus, free products of remote sensing with evapotranspira-

tion information must be used for this purpose. In this context, the objective of this study was

to estimate monthly ETo from potential evapotranspiration (PET) made available by MOD16

product. In this study, the monthly ETo estimated by Penman-Monteith method was consid-

ered as the standard. For this, data from 265 weather station of the National Institute of

Meteorology (INMET), spread all over the Brazilian territory, were acquired for the period

from 2000 to 2014 (15 years). For these months, monthly PET values from MOD16 product

for all Brazil were also downloaded. By using machine learning algorithms and information

from WorldClim as covariates, ETo was estimated through images from the MOD16 prod-

uct. To perform the modeling of ETo, eight regression algorithms were tested: multiple linear

regression; random forest; cubist; partial least squares; principal components regression;

adaptive forward-backward greedy; generalized boosted regression and generalized linear

model by likelihood-based boosting. Data from 2000 to 2012 (13 years) were used for train-

ing and data of 2013 and 2014 (2 years) were used to test the models. The PET made avail-

able by the MOD16 product showed higher values than those of ETo for different periods

and climatic regions of Brazil. However, the MOD16 product showed good correlation with

ETo, indicating that it can be used in ETo estimation. All models of machine learning were

effective in improving the performance of the metrics evaluated. Cubist was the model that

presented the best metrics for r2 (0.91), NSE (0.90) and nRMSE (8.54%) and should be pre-

ferred for ETo prediction. MOD16 product is recommended to be used to predict monthly

ETo, which opens possibilities for its use in several other studies.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0245834 February 9, 2021 1 / 19

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Dias SHB, Filgueiras R, Fernandes Filho

EI, Arcanjo GS, Silva GHd, Mantovani EC, et al.

(2021) Reference evapotranspiration of Brazil

modeled with machine learning techniques and

remote sensing. PLoS ONE 16(2): e0245834.

https://doi.org/10.1371/journal.pone.0245834

Editor: Shamsuddin Shahid, Universiti Teknologi

Malaysia, MALAYSIA

Received: March 16, 2020

Accepted: January 8, 2021

Published: February 9, 2021

Copyright: © 2021 Dias et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information files. The digital files are available at:

https://zenodo.org/record/3934663.

Funding: The study was supported by the

Coordination for the Improvement of Higher

Education Personnel (CAPES) and National Council

for Scientific and Technological Development

(CNPq). The funders had no role in study design,

data collection and analysis, decision to publish, or

preparation of the manuscript.

https://orcid.org/0000-0002-0186-8907
https://orcid.org/0000-0001-7865-7502
https://orcid.org/0000-0002-1671-1021
https://doi.org/10.1371/journal.pone.0245834
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0245834&domain=pdf&date_stamp=2021-02-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0245834&domain=pdf&date_stamp=2021-02-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0245834&domain=pdf&date_stamp=2021-02-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0245834&domain=pdf&date_stamp=2021-02-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0245834&domain=pdf&date_stamp=2021-02-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0245834&domain=pdf&date_stamp=2021-02-09
https://doi.org/10.1371/journal.pone.0245834
http://creativecommons.org/licenses/by/4.0/
https://zenodo.org/record/3934663


Introduction

Adequate water availability is essential to ensure the sustainability of the environment and the

various human activities. Therefore, their sustainable management is necessary, as water is a

finite resource in quality and quantity [1].

The irrigated agriculture accounts for about 70% of all freshwater used by humans [2, 3].

Thus, it is necessary to study the water demand of crops [4]. The most relevant component of

the terrestrial phase of the hydrological cycle is evapotranspiration (ET) [5], which is crucial

for the management of water resources [6–8].

To calculate the reference evapotranspiration (ETo), in the management of water use, the

Food and Agriculture Organization (FAO) recommends using the Penman-Monteith method

(PM-FAO) [9]. However, PM-FAO requires a large number of meteorological variables, such

as: solar radiation, air temperature, wind speed, and relative humidity [10, 11]. These variables

are often difficult to obtain, as the necessary sensors are very expensive, making it even more

difficult to calculate ET, especially when the goal is to obtain its spatial dynamics [11–13].

In Brazil, the National Institute of Meteorology (INMET) provides free meteorological data

from a large network of stations distributed throughout the country. The historical data of 265

conventional weather stations can be accessed through the Meteorological Database for Teach-

ing and Research (BDMEP). Considering that each meteorological station represents an area

with a radius of 50 km [9], meteorological information for a maximum area of 2,081,300 km2

would be possible. It is worth mentioning that this area is a potential area, as overlapping

between areas of two or more meteorological stations and different conditions of the microcli-

mate was disregarded. Even so, INMET stations correspond to less than 25% of the area in Bra-

zil, which is 8,514,817 km2. Given the above, it is clear that existing weather stations in Brazil

do not have the capacity to represent the behavior of meteorological data across the country,

which requires the search for alternative techniques that aim to overcome these problems.

One alternative is to use spatial products from satellite images, since the measurements of

surface variables with these products can be dense in time and space. With this technique, it is

possible to monitor large areas quickly and at a moderate cost. The use of remote sensing in

agriculture and hydrology has gained momentum in recent years, mainly due to the develop-

ment of new orbital sensors and the availability of free images that can be used in hydrological

and climatic monitoring [14–20].

Several authors have attempted to develop ET products for application in water resource

management [21–23]. The ability to use information from satellite sensors to estimate ET has

been developing rapidly and offers the opportunity to understand how ET behaves in space

and time, thus reducing the uncertainty levels of this parameter [12, 13, 24].

One of the available ET products is MOD16 [25, 26], which provides four parameters, being

the potential evapotranspiration (PET) one of them. This product is obtained indirectly from

other products of the MODIS (Moderate Resolution Imaging Spectroradiometer) sensor, along

with meteorological information [27] from data taken from a global meteorological network.

Some authors such as Kim et al. [28], Polhamus et al. [29] and Westerhoff [30], who worked

with the MOD16 product, found that the original product data had values that overestimate

those measured at meteorological stations, which had already been confirmed by Mu et al.

[26], authors of the product. Kim et al. [28] found underestimations in PET at a cropland site;

however, the MOD16 product successfully depicted the general pattern of the PET. Westerhoff

[30] found slight overestimates when compared with the values obtained by the standard

PM-FAO method in cold months, and this discrepancy increased in the warmer months. So,

we have the suspicion that the MOD16 PET obtained in the Brazilian territory also presents

higher values in relation to the ETo of PM-FAO.
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Thus, in addition to good covariates, it is important to use models capable of predicting

ETo with high performance. Among these models, the following are worth mentioning: multi-

ple linear regression (LM), cubist, random forest (RF), partial least squares (PLS); principal

components regression (PCR); adaptive forward-backward greedy (FoBa); generalized boosted

regression (GBM), and generalized linear model by likelihood-based boosting (GLMboost).

More information about these methods can be obtained in the item “Regression algorithms

and modeling” in the material and methods item of this article.

Studies using PET (MOD16) data and machine learning models to estimate ETo for the

entire Brazilian territory have not yet been carried out. Spatialized ETo information will con-

tribute to the water management of water crops and to the irrigation project. Due to the low

density of meteorological stations in the Brazilian territory, ETo values from very distant loca-

tions are used to calculate the project irrigation depth. Thus, one of the applications of our

research would be to provide ETo information for every 1 km2 (MOD16 spatial resolution) for

the entire Brazilian territory. This would contribute to better designed irrigation systems, giv-

ing greater confidence in the equipment and lower costs.

Considering the need for rational use of water, from an economic and environmental point

of view, also taking into account the need to estimate ETo values accurately in time and space,

we believe that the MOD16 product provides an alternative to solve this problem. The objec-

tive of the present study was to model and make available, using machine learning algorithms,

the spatial distribution of ETo for the Brazilian territory, using as covariates the WorldClim

dataset and the PET (MOD16).

Material and methods

Characterization of the study area

The study was conducted for the whole territory of Brazil, the fifth largest country in the

world, with an area of 8.5 million km2. The geographic location of the country causes it to

receive a high incidence of solar radiation on the surface; therefore, the predominant climate is

tropical. However, there are other climatic groups, such as temperate and dry [31].

The climatic classification throughout the Brazilian territory, according to the classification

of Alvares et al. [31] is presented in S1 File. The classifications that begin with “A” deal with a

type of tropical climate with some characteristics similar to those of megathermal climates:

average temperature of the coldest month of the year greater than 18˚C, absent winter season,

and strong annual precipitation (superior to the maximum potential ET of the 12 months).

The subdivision of the tropical climate A is made from the precipitation, being: Af—Equato-

rial, Am—Monsoon, As—Savanna, Winter rain, and Aw—Savanna, Summer rain [31].

Classifications that start with B are related to the type of arid climate and have characteristics

such as: Dry climates (annual rainfall less than 500 mm), maximum annual potential ET superior

to the annual precipitation, and there are no permanent water courses. The subdivision of the arid

climate (B) is also made from the precipitation: BS–Steppe climate, but there is only one classifica-

tion of B in Brazil, BSh—Arid Climate, Steppe with annual precipitation between 380 mm and

760 mm, dry and hot, with the following characteristics: Average annual air temperature greater

than 18˚C and desert or hot semi-desert (average annual air temperature of 18˚C or greater).

Classifications that start with C refer to the type of temperate or hot temperate climate, with

characteristics such as: Mesothermal climates, average air temperature of the coldest three

months between -3˚C and 18˚C, average temperature of the warmest month higher than 10˚C,

and well-defined summer and winter seasons. The subdivision (second letter) of the hot tem-

perate climate (C) is also made from the precipitation, as follows: Cf—Subtropical or Oceanic

(humid climate, occurrence of precipitation in all months of the year and absence of defined
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dry season), Cs—Mediterranean (Winter rain), and Cw—Monsoon-influenced humid sub-

tropical climate (Summer rain). The third letter is used to distinguish climates with different

air temperature variations and in the hot temperate climate: (a) a hot summer (average air

temperature in the hottest month> 22˚C) and (b) temperate summer (average air temperature

in the hottest month < 22˚C and average air temperature in the hottest four months > 10˚C).

Agriculture in Brazil has been expanding in the last decades and is currently the sector with

greatest contribution to the economy in the country. Irrigated agriculture plays an important

role in this growth. The estimated irrigated area in 2014 was 6.11 million hectares, representing

21% of the national potential (29.6 million hectares), increasing at rates higher than the growth

of the total planted area [32]. According to the National Water Agency, in the year 2015, in

Brazil, 1,210 m3 s-1 of water were consumed across, considering all sectors, and irrigation

accounted for 75% of this total [32].

Historical weather data

The meteorological data needed for the survey were taken from the BDMEP of the INMET.

These data are reliable and have been used in several research studies [8, 33, 34]. Data were

from January 1, 1961 to December 31, 2016, but not all stations had complete daily data for the

entire time series. The data period was longer than those used to perform the checks and possi-

ble filling of gaps. The INMET conventional station database had 265 measurement points dis-

tributed throughout Brazil (Fig 1).

The elevation data used was produced by WorldClim, derived from the SRTM elevation

data, with a spatial resolution of 30 seconds, downloaded from https://www.worldclim.org/

data/worldclim21.html. The shapefile points were prepared using the geographic coordinates

of the Meteorological Stations obtained at http://www.inmet.gov.br/portal/index.php?r=

estacoes/estacoesConvencionais. The regional division of Brazil was download from the Brazil-

ian Institute of Geography and Statistics—IBGE (https://www.ibge.gov.br/geociencias/

downloads-geociencias.html).

The geographic location of the stations (Fig 1) served as a basis for extracting the PET val-

ues from the MOD16 product. This extraction was done using the point sampling tool plugin

present in QGIS1 software [35].

Fig 1. Location of Meteorological Database for Teaching and Research stations of INMET.

https://doi.org/10.1371/journal.pone.0245834.g001
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Calculation of ETo

After obtaining the data from the BDMEP stations, the ETo was calculated using the standard

equation (Eq 1), recommended in the FAO 56 bulletin [9]. This methodology assumes the ET

of a hypothetical grass field with a height of 0.12 m, aerodynamic resistance of 70 s m-1, and

albedo of 0.23.

ETo ¼
0:408 D Rn � Gð Þ þ g 900

Tþ273
u2 es � eað Þ

Dþ gð1þ 0:34 u2Þ
ð1Þ

where ETo is the reference evapotranspiration, mm d-1; Rn is the surface radiation balance, MJ

m-2 d-1; G is the soil heat flux, MJ m-2 d-1; T is the mean air temperature, ˚C; u2 is the wind

speed at 2 m height, m s-1; es is the saturation vapor pressure, kPa; ea is the current vapor pres-

sure of the air, kPa; Δ is the slope of saturation vapor pressure curve, kPa ˚C-1; and γ is the psy-

chrometric coefficient, kPa ˚C-1.

Due to the large amount of data needed for the calculation of ETo, the software CLIMA1,

developed by Faria et al. [36] at the Agronomic Institute of Paraná (IAPAR) in Brazil, was

used. ETo was calculated by the FAO-56 Penman-Monteith method and the gaps were filled

using methods already validated and used by several authors [37–39]. Besides the calculation

and gap-filling of meteorological data, the software checks for quality and data abnormality,

from pre-established values. The daily ETo data of the stations were integrated monthly to be

used as a dependent variable in the modeling.

The MOD16 product

MOD16 product is dataset that include the global evapotranspiration (ET), latent heat flow

(LE), potential ET (PET) and potential LE (PLE). The MOD16 product provides regular 1-km2

land surface ET datasets for the 109.03 Million km2 global vegetated land areas at 8-day,

monthly and annual intervals. The algorithm described by Mu et al. [26], improved from Mu

et al. [21], uses the Penman-Monteith approach [40], combining remote sensing data with

reanalysis of meteorological data to calculate plant and canopy transpiration, as well as soil

evaporation. The MODIS input data required for the MOD16 algorithm includes global soil

and land cover products (MOD12Q1), leaf area index (LAI), fraction of photosynthetically

active radiation (FPAR-MOD15A2), and albedo (MCD43B2) [30].

In this study, monthly data were used. The MOD16 data were available in the sinusoidal pro-

jection, so it was necessary to reproject them and define the datum. To facilitate the handling, the

data were converted from Hierarchical Data Format (HDF) to Geographic Tagged Image File

Format (GeoTIFF). This entire process was carried out using MODIS reprojection tools (MRT)

[41, 42]. From the available data of the MOD16 product, PET was the only variable used.

To download, the images were standardized with the orbits of their respective points (tiles).

Based on the monthly products, images corresponding to the period from January 1, 2000, to

December 31, 2014, were used. To cover the Brazilian territory, the tiles used were h10v08,

h10v09, h11v08, h11v09, h11v10, h12v08, h12v09, h12v10, h12v11, h13v08, h13v09, h13v10,

h13v11, h13v12, h14v09, h14v10, and h14v11. Thus, 12 monthly images were used during 15

years, with 17 different tiles per month, totaling 3,060 images of the MOD16 product, with

downloads made at the link: http://files.ntsg.umt.edu/data/NTSG_Products/MOD16/.

MOD16 PET does not cover all land uses, only those that have vegetation. Therefore, for

the other uses the values of the pixels of the images are filled with the following codes: Earth

(bare soil and rock), 32767; body of water, 32766; barren or sparse vegetation, 32765; perma-

nent snow and ice, 32764; permanent wetlands, 32763; urban or built, 32762; unlisted, 32761

[43].
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WorldClim dataset

The WorldClim product developed by Fick and Hijmans [44] is a set of global climate layers,

with a spatial resolution of about 1 km2. The WorldClim dataset were generated for 1970–

2000, using data from 9,000 to 60,000 weather stations. WorldClim data is available for down-

load at http://worldclim.org/. The covariables used are shown in Table 1.

Regression algorithms and modeling

To perform the modeling of ETo, eight regression algorithms were tested: Multiple Linear

Regression—LM [45]; Random Forest—RF [46]; Cubist [47]; Partial Least Squares—PLS [48];

Principal Components Regression—PCR [49]; Adaptive Forward-Backward Greedy—FoBa

[50]; Generalized Boosted Regression—GBM [51], and Generalized linear model by likeli-

hood-based boosting—GLMboost [52].

Each algorithm tested has its characteristics, advantages, and disadvantages of use. How-

ever, because it is a large number of models tested in the present study (8 models), only those

that performed well will be detailed below.

Multiple Linear regression aims to find the linear function that minimizes the sum of the

squares of errors (SSE) between the observed and predicted data. An advantage of this method

is the easy interpretation of the coefficients that are generated in the model, besides having a

low computational cost in comparison to the others [47].

The Cubist model implements a regression tree algorithm, which combines instance- based

and model-based techniques to create rule-based multivariate regression models from training

data. This model has the characteristics of being based on multiple regression models, so that

the final product is the average of all of them. The Cubist model has been widely used in appli-

cations for remote sensing data [53].

Random forest is an aggregation of trees dependent on random variables. For example, bag-

ging trees (building trees on random subsets of predictors and bootstrap samples of the

Table 1. WorldClim covariates used in the study.

Variable Description

Bio01 Annual mean temperature

Bio02 Mean diurnal range

Bio03 Isothermality

Bio04 Temperature seasonality

Bio05 Max temperature of warmest month

Bio06 Min temperature of coldest month

Bio07 Temperature annual range

Bio08 Mean temperature of wettest quarter

Bio09 Mean temperature of driest quarter

Bio10 Mean temperature of warmest quarter

Bio11 Mean temperature of coldest quarter

Bio12 Annual precipitation

Bio13 Precipitation of wettest month

Bio14 Precipitation of driest month

Bio15 Precipitation seasonality

Bio16 Precipitation of wettest quarter

Bio17 Precipitation of driest quarter

Bio18 Precipitation of warmest quarter

Bio19 Precipitation of coldest quarter

https://doi.org/10.1371/journal.pone.0245834.t001
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training data) defines a random forest. The Random Forest allows to improve the predictive

accuracy and to control over-fitting [54].

PLS linearize models that have nonlinear parameters. Therefore, it was performed as an

adaptation in the regression methodology of the NIPALS algorithm so that it was able to per-

form regressions with correlated predictors. This modification was denoted as PLS [47, 55].

PCR is an adaptation of LM, which tries to solve the high correlation of the predictors, per-

forming a principal component analysis (PCA) of them, that is, the predictors are preprocessed

via PCA. Use this algorithm is recommended when there are variables that have a high correla-

tion among them or for cases that have more variables than observations [47, 55].

GBM is known as one of the most robust prediction techniques, which has come forward

with the idea of modifying a weak predictor to become more efficient. This boosting method

uses the creation of a set of weak predictors in sequences; most of the time, these predictors are

decision trees [56].

In order to carry out the modeling, it was necessary to calculate the monthly ETo (target

variable) of the stations (Fig 2), since the MOD16 product is monthly.

Among the bioclimatic variables of WorldClim V2 [44] and MOD16, the covariates with

the greatest influence on the models were selected. For this purpose, a function called Recur-

sive Feature Elimination (RFE), present in the labgeo Package [57], was used inside the R soft-

ware. With this feature it is possible to select the metric that will be used to select the ideal

model. By default, possible values are "RMSE" and "Rsquared" for regression and "Accuracy"

and "Kappa" for classification. Thus, it was possible to eliminate the highly correlated explana-

tory variables and rank and select the most important explanatory variables to be used in the

modeling. The most important covariates selected in this methodology are presented in order

of importance in Table 2.

In the present study, we used the caret package [58] on the statistical software R to train all

the regression algorithms used. The caret package uses in the training function the grid search

Fig 2. Flowchart of the methodology used to model the ETo. The figure was elaborated with the TIFF files processed

in the paper using the free software QGIS [35].

https://doi.org/10.1371/journal.pone.0245834.g002
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by default to fit the parameters of each algorithm in the training. To train the models using

this package, first we have to choose the set of parameters of each regression to analyze (tuning

parameters). After, we have to specify the type of resampling, which in this study was the k-

fold cross-validation.

Wing et al. [58] describe all the training process, cross-validation performed by the models

and their respective regression strategies. However, the cross validation supported in the caret

was not used to choose the better model to predict the ETo in the present research, we only

consider this cross-validation to better tune the parameters. To decide the best model we per-

form a cross-validation denominated holdout and we repeated this procedure 100 times,

where two-year subsets of the data were separated randomly to perform the validation. Thus,

the training and validation was carried out randomly 100 times differently, and the mean of

the statistical indices was used as the value for the models.

As shown in Fig 2, which exemplifies a training performed, 13 years (86.67%) of data were

used to perform the training (training set) and two years (13.33%) of data for the validation

(validation set) of the models. From the daily ET data from stations, the monthly data were

obtained. Spatial and temporal separation was tested, however there was no difference in the

fit for the different separation methods. It was decided to use temporal separation with train-

ing for 13 years and test with 2 years. Despite the test being carried out with data of 2 years,

spatially we had a large area with great variability of climate, altitude, and vegetation, among

others.

Statistical analyses

Statistical evaluations were carried out based on statistical indices with different functions. The

coefficient of determination (r2) indicates a descriptive measure of the quality of fit obtained,

that is, how much the model was able to account for the variability of the observed data. How-

ever, it does not take into account the lack of fit, which could be large, especially if the observed

and predicted values were non-linearly related. Thus, r2 should not be considered alone, but

should generally be combined with other metrics.

The root mean square error (RMSE) provides a measure of the mean magnitude of the

error through the squared difference between the estimated and observed data. The normaliza-

tion of the root mean square error (nRMSE) provides a measure of the mean magnitude of the

error. Unlike RMSE, normalization allows errors to be observed, regardless of the magnitude

of the variable of interest. The mean absolute error (MAE) gives a mean value of the absolute

errors. The RMSE gives a greater weight to the large errors, and thus, comparing it with the

Table 2. Variables selected for training of the models according to the Recursive Feature Elimination.

Variable Description

MOD16 PET Potential evapotranspiration (mm per month)

Srad Solar radiation (kJ m-2 d-1)

Prec Precipitation (mm)

Wind Wind speed (m s-1)

Bio02 Mean Diurnal Range (Mean of monthly (max temp-min temp)) (˚C)

Bio12 Annual Precipitation (mm)

Bio19 Precipitation of Coldest Quarter (mm)

Bio13 Precipitation of Wettest Month (mm)

Altitude Altitude WorldClim (m)

Bio07 Temperature Annual Range (˚C)

Bio15 Precipitation Seasonality (Coefficient of Variation)

https://doi.org/10.1371/journal.pone.0245834.t002
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MAE can indicate the presence of outliers, which is useful when large errors are particularly

undesirable [59, 60].

The mean bias error (MBE) can indicate tendencies of underestimation or overestimation.

The Nash-Sutcliffe (NSE) efficiency is used to evaluate the predictive power of the model and

varies from -1 to 1, with 1 being the perfect fit between the data estimated by the model and

the measured data [61, 62].

Eqs 2 to 7 represent the statistical indices:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1
ðOi � PiÞ

2

n

s

ð2Þ

nRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
ðOi � PiÞ

2

n

r

�O
� 100 ð3Þ

NSE ¼ 1 �

Pn
i¼1
ðOi � PiÞ

2

Pn
i¼1
ðOi �

�OÞ2
ð4Þ

MAE ¼
1

n
Pn

i¼1
jPi � Oij ð5Þ

MBE ¼
1

n
Pn

i¼1
ðPi � OiÞ ð6Þ

r2 ¼
ð
Pn

i¼1
ðPi �

�PÞðOi �
�OÞÞ2

ð
Pn

i¼1
ðPi �

�PÞ2Þð
Pn

i¼1
ðOi �

�OÞ2Þ
ð7Þ

where Pi is the value predicted by the model, mm per month; Oi is the observed value; �P is the

average value predicted by the model; Ō is the average observed value; and n is the number of

samples.

Results and discussion

Fig 3 shows the statistical indices of the MOD16 PET and the ETo modeled by different regres-

sion algorithms in comparison to the standard ETo method (PM-FAO). The MOD16 PET var-

iable was added to the error graphs just for comparison with the ETo results generated by the

different models, since they are different variables. Thus, as expected, the values of the statisti-

cal indices for PET of MOD16 product clearly differed from all the modeled ETo methods.

Fig 3 shows that all the algorithms used in the ETo modeling presented MBE values below

1.62 mm per month. This indicates that the values overestimated and underestimated by the

methods were close, but yet, some methods such as the Cubist and linear regression methods

tended to underestimate the ETo values. The foba, glmboost, and MOD16 models overesti-

mated ETo.

According to Yao et al. [63], algorithms based on machine learning processes have been

widely used to estimate evapotranspiration, but when used uniquely in the estimation of

parameters, they still have an uncertainty in their prediction. In this study, the support vector

machine (SVM), Bayesian Model Averaging (BMA), and General Regression Neural Networks

(GRNNs) were implemented to improve ET results estimated by three process-based ET algo-

rithms: MOD16 (MODIS ET products algorithm), PT-JPL (Priestley-Taylor ET algorithm of
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Jet Propulsion Laboratory), and SEMI-PM (Semi-empirical Penman ET algorithm). These

authors verified that in the ET results analyzed, the SVM was the model that stood out the

most against the others for considerably reducing the errors.

After the modeling of ETo, the MAE was drastically reduced, that is, the models of ETo,

when compared to the MOD16 PET, obtained results closer to those observed at the meteoro-

logical stations (Fig 3B). A similar result was obtained when the RMSE (Fig 3C) and nRMSE

metrics (Fig 3D) were applied, indicating an accuracy gain (all algorithms) of the modeled

ETo, against the result of the MOD16. The nRMSE values of all models evaluated were less

than 15.6% and MOD16 PET was 55.6% (Fig 3D).

Evaluating the MOD16 product for irrigated rice crop in Rio Grande do Sul, Brazil, Souza

et al. [64] found an RMSE of 15.87 mm (8d-1), which is consistent with the value of 66.584 mm

per month found in the present study for the PET of MOD16. After the modeling, the RMSE

values decreased significantly compared to the MOD16 PET, which made the product of ETo

(all algorithms) more accurate and reliable for use throughout the Brazilian territory for pur-

poses related to reference evapotranspiration. Ramoelo et al. [65], in order to validate the

MOD16 product from the flux towers in South Africa’s Savanna, concluded that the product is

inefficient and its accuracy is not consistent for the period and the places analyzed, which

emphasizes the necessity of a fit before applying or creating a more reliable model.

The original MOD16 product had a low coefficient of determination (r2) in comparison to

the ETo products modeled in the present research (Fig 3E). Although this value is small com-

pared to that obtained by the regression models, it is a considerable value for a predictor

Fig 3. Results of the statistical indices used to evaluate the pre-selected models in comparison to the standard method

(PM-FAO), (A) MBE, (B) MAE, (C) RMSE, (D) nRMSE, (E) r2 and (F) NSE with out-of-sample data from the period

2012–2013.

https://doi.org/10.1371/journal.pone.0245834.g003
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variable, which demonstrates huge importance of this variable in the prediction models. PCR

and PLS had the lowest values of r2 among the eight options analyzed. These models should

not be recommended to model ETo based on the MOD16 PET product. According to Khosrav

et al. [66], PCR and PLS models are recommended only for a set of data that have a high corre-

lation between the independent variables. Maybe, because of these characteristics they had

similar responses.

Fig 3F shows that the NSE of the MOD16 PET product was much lower than the values of

the ETo models created in the present study. NSE values close to zero show that the average

ETo value, obtained through data from weather stations, is a forecast equal to that obtained

from the model, indicating a poor performance [62].

According to our results, three of the eight algorithms have a high potential of application.

These were the Cubist, Random Forest and Linear Regression. The first two because they had

the best results of the statistical indices and the third one, because it is simple to replicate,

which is in accordance with the parsimony of science.

The equation fitted with the linear regression model is shown below (Eq 8). The wind speed

regression coefficient was significant at 1% and the others at 0.1% by the student’s t-test.

ETo ¼ � 27:09344�� þ 0:02381�� MOD16þ 0:00594�� Radþ 0:02258�� Prec
� 0:50952�� Windþ 0:85620� Bio02þ 0:00957�� Bio12þ 0:01134�� Bio19

� 0:11342�� Bio13 � 0:01267�� Altitude � 0:89244�� Bio07þ 0:41986�� Bio15 ð8Þ

r2 = 0.7528; p-value<0.0001; �p<0.01 and ��p<0.001

The model showed good generality, since we must consider that our area is very large and

presents changes in climate, land use, and altitude, among others. These results answer the sus-

picions of Jovanovic et al. [27], who believed that MOD16 could be used to estimate ETo in

regions with different weather conditions. But we have to agree that due to the relatively coarse

resolution of ~1 km2 pixels may have implications for applications in restricted areas, espe-

cially in heterogeneous vegetation, land use/cover and landscape.

We can emphasize the linear regression in the present study, due to the easy explanation of

the results generated and the performance that it reached for ETo modeling in the present

study. Westerhoff [30] worked with the precision of the MOD16 product, performing the PET

correction with linear regression, and its results were very similar to those obtained in this

study.

The RF and Cubist models led to better results for the five most significant indices to evalu-

ate the accuracy of a model. Other research corroborates our results. Noi et al. [67] applied the

RF and Cubist models to estimate the daily air surface temperature in northwest Vietnam. For

this, the linear/linear multiple regression (LM) algorithms are frequently applied. They found

that the Cubist and RF results were similar or far superior to those of the LM and showed bet-

ter results in all the 15 combinations made. Other authors had already proposed hybrid algo-

rithms between the RF and the Cubist, in order to improve the results that were obtained by

the models [68].

Cubist is a powerful tool for generating rule-based models that balance the need for accu-

rate prediction against the requirements of intelligibility. Cubist models generally give better

results than those produced by simple techniques such as multivariate linear regression, while

also being easier to understand than neural networks.

The cubist algorithm stands out from the RF in time of processing, requiring a shorter time

to model the ETo variable. Frondana [69] evaluated the processing time of 16 regression algo-

rithms and 59 datasets sizes. The author found that the larger is the dataset, the better is the
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performance of the Cubist model in relation to the RF. Thus, the next results refer to the Cub-

ist model, as it showed the best result in modeling the ETo.

Fig 4 shows the comparison of the residues of the MOD16 PET and ETo products modeled

by the Cubist algorithm in all the years analyzed. The residual represents the difference of the

product modeled by the Cubist algorithm and the MOD16 PET product, in comparison to the

estimated ETo (PM-FAO56) from meteorological station data.

Residuals from MOD16 PET (X-axis) have a high dispersion when compared to the disper-

sion of the product residual modeled by the Cubist algorithm (Y-axis). The red line is the 1:1

line and shows that the accuracy of the ETo modeled by the Cubist algorithm is much higher

than those of the MOD16 PET over the years and the images analyzed.

Table 3 shows the difference between the residuals of the ETo Cubist product and the

MOD16 PET product compared with meteorological station.

The disparity between the ETo Cubist data versus MOD16 PET data is observed in Table 3.

The values can also be observed in the box plot of Fig 5, which shows the distribution of all

errors in the MOD16 PET and the ETo Cubist product. As expected, the error of prediction of

ETo (Cubist) is smaller when compared to the error of the MOD16 product (Fig 5), demon-

strating the need to correct the MOD16 product before use in Brazil, for ETo applications.

Fig 6 shows the deviations of MOD16 PET and ETo Cubist, according to Köppen’s classifi-

cation in Brazil. For this analysis, ten climatic classifications were considered, according to

Alvares et al. [31]. This analysis was critical to assess the trends of residual distribution, to see

if they were being influenced by some aspect of the landscape that was prevalent in each cli-

mate. There was a strong tendency to reduce residues for the Cubist model in the C classifica-

tions (temperate or hot temperate), where the temperate region begins.

The differences between MOD16 PET product and ETo cubist are explicit when analyzed

in Fig 7, which shows the differences in an annual base during the 15 years. The Cubist is a

‘tree’ model and is considered to be a “black box”, where regressions are made at the end

Fig 4. Yearly residual of MOD16 PET compared to the yearly residual of ETo modeled by Cubist algorithm.

https://doi.org/10.1371/journal.pone.0245834.g004

Table 3. Residuals of MOD16 PET and the values predicted by Cubist model in relation to the observed data

(weather stations).

Quartiles MOD16 (mm per month) Cubist Model (mm per month)

Minimal residual 0.00 (0.00%) 0.00 (0.00%)

First quartile 39.30 (32.83%) 2.16 (1.80%)

Median 58.50 (48.86%) 4.77 (3.98%)

Mean Residual 58.62 (48.96%) 6.36 (5.31%)

Third quartile 76.30 (63.73%) 8.80 (7.35%)

https://doi.org/10.1371/journal.pone.0245834.t003
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Fig 5. Box plot of the residuals observed in the MOD16 PET product and the ETo modeled by Cubist.

https://doi.org/10.1371/journal.pone.0245834.g005

Fig 6. Residual of MOD16 PET x residual of ETo (Cubist model) according to Köppen’s classification. The figure

was elaborated using the R software, according to the Köppen climate classification for each season.

https://doi.org/10.1371/journal.pone.0245834.g006
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nodes. The use of this model is justified in the search for more precise values, which have bet-

ter fit in their use. The ETo modeled by Cubist improved the accuracy, reducing the error by

4.15 mm per month when compared to linear regression, demonstrating a significantly higher

quality compared to other models already used to improve MOD16 performance [30] and

algorithms used to model ETo.

It can also be seen in Fig 7 that the difference between MOD16 ETP and ETo Cubist values

varied between 160 and 1345 mm per year. The difference was greater in the central part of

Brazil, where Aw (Tropical savanna climate with dry-winter characteristics) predominates

according to the Köppen classification.

It is also notice that the biggest differences between MOD16 ETP and ETo Cubist (Fig 7)

coincided with areas that had the highest altitudes (Fig 1). However, we do not find support in

the literature to explain such behavior.

The results found in the present research are highly relevant, since the use of the MOD16

product to estimate ETo allows the consideration of the surface dynamics and is the guarantee

of a more accurate estimate of this variable for regions with no meteorological stations.

Data sharing and distribution

The monthly ETo data set was stored online in a free repository under the CC BY 4.0 license at

https://www.zenodo.org/record/3934663 (Dias et al., 2020). It was named as Monthly refer-

ence evapotranspiration for Brazil. The spatial resolution of the data is between 30 seconds (~

1 km2) and temporal resolution of 1 month. The data set grid is in GeoTIFF format, and corre-

sponds perfectly to WorldClim. It uses the WGS84 coordinate reference system (EPSG: 4326).

Conclusions

Penman-Monteith is the standard method to estimate ETo and there is a great demand for this

information all over the Brazilian territory, in sites often distant from weather stations. Thus,

free products of remote sensing should be used for this purpose.

The potential evapotranspiration made available by the MOD16 product, in its original

form, has values higher than those of ETo for different periods and climatic regions of Brazil.

Fig 7. Difference between the annual values of MOD16 ETP and ETo obtained by the Cubist model over the 15

years. The figure was elaborated with the TIFF files processed in the paper, and using the free software QGIS [35].

https://doi.org/10.1371/journal.pone.0245834.g007
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However, the MOD16 product together with the WorldClim covariates can be used to estimate

ETo with the aid of machine learning models.

Among the eight models tested and validated, Cubist and Random Forest were the models

that obtained the best results in general, and therefore, are the most suitable models for repre-

senting the ETo in space and time for the Brazilian territory. However, linear regression is also

recommended, since the results found for this simple model were also useful, and the equation

was shown in the present article.

The ETo product was created and evaluated in a monthly temporal resolution and spatial

resolution of 30 seconds (~ 1 km2) in Brazil. The ETo created in this study enables the execu-

tion of many other research studies, related to hydrological modeling and water use manage-

ment, since it showed a strong reliability in comparison with the ETo estimated from the

weather stations in all the national territory.

The proposed method improves the ability to use products derived from satellite data with

global coverage, in compliance with the PM-FAO standard used locally.
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S1 File. Classification of the climate according to Köppen, by Alvares et al. [31].

(TIF)

S2 File. Monthly average of ETo for 15 years of the MOD16 product and ETo by the Cubist

model. With these maps it was possible to construct the differences between MOD16 PET and

ETo Cubist shown in Fig 7.

(TIF)

S3 File. Average, standard deviation and variation coefficient of annual evapotranspiration

values for ETo cubist and MOD16 PET.

(TIF)

S4 File. Average, standard deviation and coefficient of variation of the monthly evapo-

transpiration values for the cubist ETo.

(TIF)

S5 File. Average, standard deviation and coefficient of variation of the monthly evapo-

transpiration values for MOD16 PET.

(TIF)
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