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Abstract: Breast cancer (BC) is globally the most frequent cancer in women. Adherence to endocrine
therapy (ET) in hormone-receptor-positive BC patients is active and voluntary for the first five years
after diagnosis. This study examines the impact of adherence to ET on 10-year excess mortality (EM)
in patients diagnosed with Stages I to III BC (N = 2297). Since sample size is an issue for estimating
age- and stage-specific survival indicators, we developed a method, ComSynSurData, for generating
a large synthetic dataset (SynD) through probabilistic graphical modeling of the original cohort.
We derived population-based survival indicators using a Bayesian relative survival model fitted to
the SynD. Our modeling showed that hormone-receptor-positive BC patients diagnosed beyond
49 years of age at Stage I or beyond 59 years at Stage II do not have 10-year EM if they follow the
prescribed ET regimen. This result calls for developing interventions to promote adherence to ET in
patients with hormone receptor-positive BC and in turn improving cancer survival. The presented
methodology here demonstrates the potential use of probabilistic graphical modeling for generating
reliable synthetic datasets for validating population-based survival indicators when sample size is
an issue.

Keywords: breast cancer; excess mortality; adherence; endocrine therapy; synthetic dataset; graphical
modeling
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1. Introduction

Breast cancer (BC) is the most common cancer and the leading cause of cancer death
in European women [1]. A decrease in BC mortality is correlated with improvements in
survival [2,3], an indicator of the success of cancer control efforts in a population-based
setting. Conditional five-year survival is an outcome that measures the efficacy of cancer
management, since it responds to the question of “once a patient survives for T years,
what is the probability of surviving another five years?” [4]. Most population-based cancer
survival indicators are derived from relative survival (RS), defined as the ratio between
the overall survival (OS) and expected survival of the cohort with respect to the general
population [5]. RS is as an estimate of the patients’ cancer-specific survival compared to the
survival of the general population, and one can also assess the conditional RS(CRS) at five
additional years after surviving T years [5]. On the basis of the CRS(T), one can determine
the five-year excess mortality as EM(T) = 1-CRS(T), which is used to assess whether patient
mortality surpasses the mortality of the general population, that is, when EM(T) > 0 [6].

These conditional survival or mortality indicators provide very relevant information
on the prognosis of BC over time, as they are a starting point to identify prognostic factors
related to long-term survival [6–9]. For instance, the BC cohort’s mortality is not different
from the general population’s mortality when EM equals 0 beyond a certain time interval
T [6]. Moreover, population-based cancer registries can define the time to cure of cancer
as “the number of years after cancer diagnosis when the EM, expressed as a percentage,
becomes negligible” [4,8]. That situation occurs when the EM remains clearly below 5%
for more than 10 years, and CRS consequently surpasses 95% [8]. A recent study using
European cancer registry data showed that an EM of 5% could persist for at least 15 years
in BC patients [9]. However, the EM in that study was an overall indicator that could
only be adjusted for age because other prognostic factors could not be retrieved from all
participating cancer registries.

Stage, molecular subtype, and adherence to endocrine therapy (ET) are key predic-
tors for providing population-based BC survival estimates [10]. Indeed, tamoxifen and
aromatase inhibitors are pillars of adjuvant therapy for patients with hormone receptor
positive (HR+) BC diagnosed at Stages I–III [11]. Randomized clinical trials showed that
five years of adherence to ET positively impact BC survival [11]. In a previous study, we
found that nonadherence to ET is significantly and independently associated with recur-
rence and all-cause mortality at Stages I–III of hormone receptor positive BC after adjusting
for age [12]. A question arises regarding the impact of ET adherence on long-term survival
and risk of death in patients with BC versus the general population [9].

The sample size of the cohort could be an issue when trying to estimate age-specific
survival according to stage and molecular subtype; however, generating a large cohort
of simulated survival data on the basis of observed cohort data could help overcome
this limitation [13]. This simulation could be achieved in two ways: (1) only simulating
survival times [14,15] or (2) generating a set of cohort covariates as a function of survival
times [13,16]. For the latter, oversampling techniques such as SMOTE [17], Borderline
SMOTE [18], and MWMOTE [19] can also be used to generate balanced subsets of data,
where the efficiency of these methods in simulating new datasets must be assessed with
the observed survival patterns of real data [19]. However, if we are interested in detecting
new patterns of survival, the specific modeling of probabilistic dependencies between the
variables of the observed data is needed, which requires estimating a joint probability
distribution of the variables [13,20–22]. For that purpose, our research team developed
Modelling Graphical Probabilistic Dependencies (ModGraProDep) and suggested that
future work should be oriented toward selecting data subsets across several synthetic
datasets (SynD) that better mimic the cohort’s survival pattern [13].

In the present study, we developed a method to validate the survival estimates of the
original cohort by using a synthetic cohort that combines the “best” subsets of simulated
data derived from graphical models. Survival indicators are generated by fitting the cohort
data and the simulated SynD to a Bayesian RS model developed for that purpose.
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2. Materials and Methods
2.1. Data: BCStage Dataset

BC data were obtained from the population-based cancer registries of Girona and
Tarragona (northeastern Spain) covering an average annual population of 560,120 women
from 2005 to 2009 [23]. During this time period, 4053 women under the age of 75 years were
diagnosed with invasive BC (code C50 of the 10th edition of the International Classification
of Diseases, ICD-10). A total of 352 women (8.7%) were excluded from the analyses due to
missing data on estrogen and progesterone status, and another 1215 (30.0%) were excluded
due to missing data on stage, Stage IV at diagnosis, or diagnosis of HER2-enriched or
triple-negative BC tumors, and we could not retrieve follow-up status (if the patient died
or not at the end of follow-up) in N = 189. Each woman with BC diagnosed from 2005
to 2009 was followed up to 31 December 2019; we considered a maximal follow-up of
10 years. Of the patients eligible for ET (N = 2297), information could only be retrieved for
BC patients diagnosed from 2007 to 2009 who met the inclusion criteria: patients presenting
positivity for estrogen and/or progesterone receptors diagnosed at Stages I, II, or III, who
were eligible for ET (N = 1243). Survival times for patients not found to be dead at the
end of follow-up were censored. Stage classification was based on the TNM classification
system, as described in the 6th edition of the American Joint Committee on Cancer staging
manual [24], classifying patients at Stage I, II, or III when TNM was available at the moment
of diagnosis.

Adherence to ET for patients with HR+ BCs was tracked during the first five years
after BC diagnosis. Any switch to tamoxifen or aromatase inhibitor was considered to be a
continuation of treatment. Adherence was estimated as “the proportion of days covered by
a filled drug prescription over the treatment period (up to five years from the date of first
prescription)”, deeming a cumulative adherence rate of 80% or more as satisfactory [12].
Data on ET prescription refills for BC were collected for the entire study period (2007–2015)
from the community pharmacy database, which is mandatory for drug reimbursement in
Catalonia.

Collected variables were: age (26, 27, . . . , 73, 74), stage at diagnosis (I, II, or III),
adherence to ET (yes: adherence rate > 80% vs. no: adherence rate ≤ 80%), follow-up years
(1, . . . , 10) and exitus (died vs. survived). Age was also considered to be a categorical
variable with three age groups: ≤49, 50–59, and 60–74 years. Patients were additionally
classified according to the tumor positivity of the human epidermal growth factor receptor
(HER2) expression (HER2+ vs. HER2−).

2.2. Synthetic Data Simulation
2.2.1. Fitting Graphical Models through ModGraProDep

Four synthetic datasets were simulated by modeling the probabilistic dependencies be-
tween variables using ModGraProDep [13]. In brief, let Γ be the set of cells in a contingency
table, where cash is a cell of the table with indices a(age) − s(stage) − h(adherence). Let
p(cash) be the cell probabilities of the contingency table Γ. Using a hierarchical expansion
of log (p(cash)) we considered a saturated log-linear model, a model including the main
effects, and all interactions between these, that is

log(p(Cash)) = α + βa + βs + βh + γI
2 + γI

3 (1)

where parameter α is an intercept, β refers to main effects, and γI
q refers to the set of

interaction parameters of order q, where q ∈ {2, 3}. We can also specify a model with
fewer interaction terms by setting higher-order interaction to zero.

Assuming that there is a set of candidate models M(j)|j ∈ {1, . . . , J} , ModGraProDep
uses a heuristic search based on penalized log-likelihood

H(j,k) = −2log(p(cash)) + k∗z(j) (2)
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where z(j) is the number of model parameters, and k is a penalty factor. Changing the
value of k can result in several models using backward stepwise elimination of graph arches.
Starting from the saturated model, ModGraProDep fits four models: three by using the
k penalty factor, GMK1 for k = 1, GMAIC for k = 2 (Akaike information criterion [25]),
and GMBIC for k = log (N) (Bayesian information criterion [25]), and another by testing
the arch’s conditional independence, GMTEST. Once these four models had been fitted,
we first imputed adherence in the BC cases with missing adherence, and then generated
the synthetic datasets. We used the junction-tree simulation algorithm implemented in
ModGraProDep for simulating four datasets of size N = 1,000,000 from each of the four
models and according to the probabilistic relationships between variables (see Vilardell
et al. (2020) for technical details [13]).

2.2.2. ComSynSurData: Combining Synthetic Survival Datasets

Figure 1 presents the scheme for generating a combined synthetic dataset that selects
the best subsets of data that better mimic the survival pattern of the cohort. These are
summarized as follows:

Step 0. Use ModGraProDep for generating the four SynDs.
Step 1. Produce a partition of the cohort dataset into L subsets according to A age groups

and S levels of a stratification variable, such as stage at diagnosis; then, L = A × S.
For instance, if strata were stage at diagnosis with levels {I, II, III}, and three age
groups were considered, then L = 3 × 3 = 9 subsets (one for each age group and
stage combination). In the same line, the same partition is made for each SynD.

Step 2. For each of the L subsets of the cohort data, find its “best” counterpart among the
4 × 9 = 36 subsets of SynDs by comparing survival estimates between the observed
cohort and that derived from the SynDs through a scoring method.

Step 3. Once L subsets of SynD are selected in each age stratum, generate a combined
synthetic cohort by merging these L subsets, from which Kaplan–Meier survival
estimates according to stage and corresponding age groups can be derived.
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2.2.3. Scoring Method for Comparing Observed versus Predicted Survival in Step 2

ComSynSurData uses the integrated Brier score (IBS), a scoring method to detect
inaccuracies in the prognostic classification scheme, that is, disagreement between the
survival curves of cohort and simulated data at a certain time T [26]. Let Ŝ(T) be the
predicted survival function, and Ĝ(T) the censoring distribution, both functions estimated
using the Kaplan–Meier method and using the SynD. Here, we used the following definition
of the Brier score at time T for censored data [27]:

BSC(t) =
1
n

 n

∑
i=1


(

0− ˆS(t)
)2

ˆG(t)
I(ti ≤ t) +

(
1− ˆS(t)

)2

ˆG(t)
I(ti > t)


 (3)

where ti is the follow-up of the i-th patient in the cohort, and I(·) are indicator functions,
such that I(ti ≤ t) = 1 and I(ti > t) = 0 if the i-th patient dies before t, and I(ti > t) = 1 and
I(ti ≤ t) = 0 if the i-th patient does not die before t.

IBS is an overall measure up to a certain time target t∗, which uses weights defined as
W(t) = t/t* [27]. Here, we used maximal follow-up t∗ = 10 years. The IBS was calculated as

IBSC(t∗) =
∫ t∗

0
BSC(u)dW(u) =

1
10

∫ t∗

0
BSC(t)dt (4)

For each age and stage stratum, the selected subset of SynD would be that with the
smallest IBS score, which could lie between 0 and 1, where IBS = 0 shows a perfect match
between observed and predicted survival [26,27]. The Supplementary Material file includes
the R code for running ComSynSurData.

2.3. Statistical Modeling of Excess Mortality

We used an RS model to derive the survival indicators. Let λO(T) be the overall
hazard of death in the cohort at a specific time T, and λP(T) is the expected hazard in
the cohort using the general population mortality [28]. Applying additive modeling, the
excess hazard of death in the cohort due to BC is λX(T) = λO(T) − λP(T) [29], where
OS(T) =

∫ T
0 exp(−λO(T)dt) is the observed survival in the cohort at time T, and ES(T) its

expected survival in the cohort, ES(T) =
∫ T

0 exp(−λP(T)dt). Relative survival (RS) at time t
is calculated as [28]:

RS(T) =
OS(T)
ES(T)

(5)

RS(T) could reach (or even surpass) 1 when OS(T) is equal to the survival of the general
population [28]. From RS(T), one can derive the five-year conditional relative survival at T
years of follow-up as [5]

CRS(T) =
RS(T + 5)

RS(T)
(6)

From this, the five-year conditional excess mortality (EM) at T years of follow-up [5,6].

EM(T) = 1 − CRS(T) (7)

Using (7), one can assess temporal changes in the EM by monitoring this quantity
during follow-up [5]. Moreover, it is of interest for both the patient and clinician to estimate
the probability of death due to cancer in the presence of other causes at time T, PCa(T) and
the crude probability of death due to other causes in the presence of cancer mortality at
time T, POC(T) [6]. These quantities can be derived from the RS(T) by using competing
risks modeling as

PCa(T) =
∫ T

0
OS(u)λX(u)du (8)
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POC(T) =
∫ T

0
OS(u)λP(u)du (9)

where the sum of these two probabilities gives the probability of death from any cause at
time T [6]. Since all these indicators are related to λX(t) and λO(t), these last two risks
can be estimated by λ̂O(T) = O(T)/Y(T) and λ̂P(T) = E(T)/Y(T), where O(T) is the
observed number of deaths at T and E(T) is the expected number of deaths at T, which
is calculated from applying the age-specific mortality rates of the general population to
each one of the individuals at risk within the T interval, and finally, Y(T) is the number of
individuals at risk in T.

Since O(T) is usually considered to be a Poisson-distributed random variable with
mean µT , we used a Bayesian autoregressive modeling of order 1 to estimate λ̂O, assuming
a prior precision (inverse of variance) of 0.001 [30], defined as

O(T) ∼ Poisson(µT)log(µ1) = log(Y(1)) + δ1 δ1 ∼ N(0, 0.001) (10)

log(µT) = log(Y(T)) + δT |T >1 δT ∼ N(δT−1, 0.001)|T >1

Posterior distributions and the corresponding 95% credible intervals of aforementioned
survival indicators (5)–(9) were calculated through posterior estimates of µT , and fixed
quantities E(T) and Y(T). The model was implemented using WinBUGS [31] (see the
program code in supplementary material file), which was run within R (http://www.R-
project.org, accessed on 5 December 2021) through the R2WinBUGS library [32].

2.4. Analysis Scheme

First, the GM was fitted to the original dataset, and adherence was imputed in cases
with missing information. Second, four SynDs were generated using ModGraProDep,
and from these SynDs, ComSynSurData selected the best L age-stage subsets of synthetic
data that were used to generate the combined synthetic dataset. Survival indicators were
derived from fitting the Bayesian relative survival model to this combined cohort, and
these were also validated with those obtained using the original cohort. Lastly, age-specific
survival indicators for epidemiologic or clinical use were calculated.

3. Results

Table 1 presents the clinical and pathological characteristics of the observed cohort
in Girona and Tarragona in 2005–2009, stratified according to HER2+/HER2− expression.
Main differences were detected in the distribution of BC stage: stages II and III were more
frequent in patients with HER2+ compared to HER2− tumors. Mean age at diagnosis was
55.3 years: 32.7% of the patients were diagnosed with BC before 50 years of age, 29.6%
were diagnosed at age 50 to 59 years, and 37.7% were 60 years or older. Most patients were
diagnosed at early stages, whereas only 17.5% were diagnosed at Stage III. Mean follow-up
was 8.2 years, and 11.7% of patients died during that period. Of these, information about
adherence could be retrieved in those diagnosed from 2007 to 2009 (N = 1243), 75% of
whom showed a cumulative adherence rate of 80% or higher during the first five years
after the BC diagnosis. In cases with missing adherence data, a value for adherence was
imputed making use of ModGraProDep.

Table 1 also shows the distribution of the number of BC cases according to adherence
and HER2 status after the imputation of these four models. We did not find any difference
in the distribution of the percentages according to adherence status when comparing the
observed frequencies in the cohort (the N = 1243 BC patients) with those obtained after
using each of the four models implemented in ModGraProDep (see Table 1, Distribution
of BC cases in the cohort after the imputation of adherence to ET when missing). However, the
distribution of adherence status in the cohort was identical when GMAIC and GMBIC
models were used, indicating that the probabilistic graphical pattern of the dependencies
between variables in the observed data (N = 1243) was likely to be identical when fitting
these two graphical models to the cohort data.

http://www.R-project.org
http://www.R-project.org
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Table 1. Characteristics of patients diagnosed with breast cancer from 2005 to 2009 in Girona and
Tarragona. Of the 2297 BC patients, complete data for endocrine treatment (ET) were available
for 1243 in 2007–2009. Imputation of adherence through ModGraProDep was performed for the
remaining 1054 BC patients.

HER2− (N = 1736; 75.6%) HER2+ (561; 24.4%) Total (N = 2297; 100%)

Registry Girona 876 (50.5%) 301 (53.6%) 1176 (51.2%)
Tarragona 860 (49.5%) 260 (46.4%) 1121 (48.8%)

Age

Mean (SD) 55.6 (10.6) 54.3 (10.7) 55.3 (10.6%)
≤49 years 556 (32.0%) 196 (35.0%) 751 (32.7%)

50–59 years 502 (28.9%) 178 (31.7%) 680 (29.6%)
60–74 years 678 (39.1%) 187 (33.3%) 866 (37.7%)

Stage at
diagnosis

I 769 (44.3%) 195 (34.7%) 997 (43.4%)
II 641 (36.9%) 257 (45.9%) 898 (39.1%)
III 326 (18.8%) 109 (19.5%) 402 (17.5%)

Deceased (%) 11.9 10.9 11.7

Follow-up in years, mean (SD) 9.2 (1.7) 9.3 (1.5) 9.2 (1.6)

Adherence to ET

No: ≤80% 234 (13.4%; 24.9% b) 75 (13.5%; 24.8% b) 309 (13.5%; 24.9% b)
Yes: >80% 706 (40.7%; 75.1% b) 228 (40.6%; 75.2% b) 934 (40.6%; 75.1% b)

Total a 940 (54.1%; 100.0% b) 303 (54.0%; 100.0% b) 1243 (54.1%; 100.0 b)
Missing c 796 (45.9%; - ) 258 (45.9%; - ) 1054 (45.9%; - )

Distribution of BC Cases in Cohort after Imputation of Adherence to ET when Missing
Adherence to ET HER2− (N = 1736; 75.6%) HER2+ (N = 561; 24.4%) Total (N = 2297; 100%)

GMK1 d
No: ≤80% 426 (24.5%) 126 (22.4%) 552 (24.0%)
Yes: >80% 1310 (74.5%) 435 (77.6%) 1745 (76.0%)

Total 1736 (100.0%) 561(100.0%) 2297 (100.0%)

GMAIC e
No: ≤80% 420 (24.2%) 120 (21.4%) 540 (23.5%)
Yes: >80% 1316 (74.8%) 441 (78.6%) 1745 (76.5%)

Total 1736 (100.0%) 561(100.0%) 2297 (100.0%)

GMBIC f
No: ≤80% 420 (24.2%) 120 (21.4%) 540 (23.5%)
Yes: >80% 1316 (74.8%) 441 (78.6%) 1745 (76.5%)

Total 1736 (100.0%) 561(100.0%) 2297 (100.0%)

GMTEST g
No: ≤80% 424 (24.4%) 121 (21.5%) 545 (23.7%)
Yes: >80% 1312 (74.6%) 440 (78.5%) 1752 (76.3%)

Total 1736 (100.0%) 561(100.0%) 2297 (100.0%)
a Cases with available information on endocrine therapy in 2007–2009, N = 1243; b percentage with respect to
a; c cases with no available information on endocrine therapy; d–g distribution of cases according to adherence,
imputing adherence status in BC cases with missing information by applying ModGraProDep models.

Figure 2 shows the graphical modeling of the data, which encodes a factorization
of the joint probability distribution of the dataset. Three probabilistic schemes can be
distinguished: one obtained using GMK1 (Figure 2a), another using GMTEST (Figure 2b),
and another, as noted above, obtained through GMAIC and GMBIC (Figure 2c). Figure 2a
shows that the model GMK1 considered that all variables were related (connected). The
GMTEST model considers age as related to exitus, but this is conditional on adherence or
stage at BC diagnosis, and HER2 as directly related to the other variables through stage.
Lastly, GMAIC and GMBIC models consider that age could be independent from the data
structure, and all remaining variables are conditionally independent once exitus is known.
Stage was related to the remaining variables, conditional on others, regardless of the model
used.
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Figure 2. Undirected acyclic graphs generated from fitting the best graphical models to observed data
(N = 1243) using different criterions: (a) GMK1 model: k-penalty factor of penalized log-likelihood
set to 1; (b) GMTEST: testing for statistical significance of arches; (c) GMAIC: Akaike information
criterion (BIC) and GMBIC: Bayesian information criterion (BIC).

3.1. Data Simulation

After the imputation of the missing data, ModGraProDep was used for simulating
the four SynDs, and from these, ComSynSurData was applied to generate the combined
dataset. Four datasets were considered, and on their basis, four SynDs were simulated.
Once these models were fitted, the four SynDs were introduced into ComSynSurData, and
the combined dataset was generated. Table 2 shows the matrix of internally generated IBS
scores by ComSynSurData from which to select the L = 9 subsets. From these, seven data
subsets were selected from the SynD dataset derived from GMK1, two from the SynDs
derived from GMAIC and GMBIC, and none from GMTEST.

3.2. Comparing Observed Survival in the Cohort with Survival in the Combined Cohort

To assess the reliability of these simulated datasets, OS in the cohort with real data
(N = 1243) was compared with the estimated survival using the combined cohort (Figure 3).
Using the posterior distribution of the survival derived from the combined cohort, its
median survival overlapped with the 95% credible intervals of observed survival in the
original cohort in almost all age groups. In some, however, the median of the survival’s com-
bined cohort was slightly lower than the observed survival, but close to the lower bound
of the 95% credible interval of the survival in the original cohort: age group ≤ 49 years at
Stages I and II, and for the age group of 59–74 years at Stage III.
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Table 2. Integrated Brier score at up to 10 years of follow-up by age and stage, comparing the cohort’s
absolute survival with the absolute survival estimated using each one of the synthetic datasets
derived from the Graphical Models (in bold: minimal integrated Brier score for each age group
according to stage of breast cancer at diagnosis).

Synthetic Dataset

Derived
from

GMk1

Derived
from

GMTest

Derived
from

GMAIC

Derived
from

GMBIC

Stage I
≤49 years 0.0149 0.0146 0.0142 0.0143

50–59 years 0.0432 0.0433 0.0433 0.0433
60–74 years 0.0471 0.0485 0.0482 0.0482

Stage II
≤49 years 0.0484 0.0486 0.0485 0.0485

50–59 years 0.0703 0.0707 0.0706 0.0706
60–74 years 0.0943 0.0986 0.0982 0.0984

Stage III
≤49 years 0.1183 0.1188 0.1185 0.1185

50–59 years 0.1437 0.1431 0.1427 0.1426
60–74 years 0.1722 0.2020 0.1960 0.1965
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Figure 3. Comparison of 95% credible interval of observed survival derived from original cohort
(black) and median survival (red) of combined cohort across stages at diagnosis and stratified by age
group.

3.3. Survival Indicators Derived from Combined Dataset

Figure 4 compares the EM observed in the original cohort with that estimated using
the combined dataset. Median EM between these datasets did not differ, since the 95%
credible intervals derived from the observed cohort overlapped with the estimates derived
from the combined cohort. In this line, the patients diagnosed in stages I and II who were
adherent to endocrine therapy did not show EM with respect to the general population.
However, we found that patients diagnosed in these early stages who were not adherent to
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ET had an EM with a median ranging from 5% to 10%, which usually suggests a significant
EM. For patients diagnosed at Stage III, the effect of nonadherence to ET might double the
EM with respect to adherence.
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Figure 4. Comparison of 5-year conditional excess mortality (in percentage) between original cohort
(black) and combined cohort (red) across stage at diagnosis and stratifying by adherence to endocrine
therapy: (a,d) Stage I; (b,e) Stage II; (c,f) Stage III.

Table 3 presents the age-specific epidemiological survival indicators derived from the
combined cohort across age groups and stage at diagnosis. The adherence group showed
higher OS (+ 6% at 5 years and +15.2% at 10 years) and lower 10-year PCa (−18.7%) and
5-year EM (−14.5%) compared to the nonadherent group.

Table 3 also shows that, at Stage I, adherent patients diagnosed before 50 years of
age may present a small but non-negligible 1.1% EM when compared to the general
population. In contrast, no EM was detected in patients diagnosed beyond that age.
Nonadherent patients present 4.6% to 9% higher EM, depending on the age group. I Stage
II, adherent patients diagnosed beyond 59 years did not show EM during the follow-up.
The largest differences in survival indicators between adherent and nonadherent patients
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were observed in the Stage III group, with better prospects of survival in adherent compared
to nonadherent patients, independently of age at BC diagnosis.

Table 3. Survival indicators derived from synthetic cohort comparing breast cancer patients adherent
vs. nonadherent to endocrine therapy across age groups and stage at diagnosis.

OS(5) (%) OS(10) (%) PCa(10) (%) POC(10) (%) EM(5) (%)

Adherent N * Me(95% CI) Me(95% CI) Me(95% CI) Me(95% CI) Me(95% CI)

Stage I
≤49 years 72,817 98.3 (98.2; 98.4) 95.7 (95.5; 95.9) 1.8 (1.6; 1.9) 2.5 (2.5; 2.5) 1.1 (1.0; 1.3)

50–59 years 92,526 98.4 (98.3; 98.5) 96.0 (95.9; 96.2) 0.2 (0.1; 0.3) 3.8 (3.6; 3.9) 0.0 (−0.1; 0.1)
60–74 years 167,001 97.3 (97.2; 97.3) 92.9 (92.7; 93.1) 0.2 (0.1; 0.3) 6.9 (6.7; 7.1) 0.0 (−0.1; 0.1)

Stage II
≤49 years 98,722 95.9 (95.7; 96.1) 89.0 (88.8; 89.3) 8.7 (8.4; 8.9) 2.3 (2.0; 2.6) 5.8 (5.5; 6.2)

50–59 years 92,612 96.5 (96.4; 96.6) 90.6 (90.4; 90.9) 3.4 (3.1; 3.6) 6.0 (5.9; 6.1) 2.3 (2.1; 2.6)
60–74 years 92,919 91.9 (91.7; 92.1) 78.6 (78.3; 79.0) 0.6 (0.4; 0.9) 20.8 (20.3; 21.1) 0.0 (−0.4; 0.4)

Stage III
≤49 years 40,968 87.8 (87.5; 88.1) 69.6 (69.1; 70.1) 27.9 (27.3; 28.4) 2.5 (2.5; 2.6) 19.7 (19.1; 20.2)

50–59 years 36,659 88.0 (87.7; 88.3) 69.5 (68.9; 70.1) 24.8 (24.2; 25.4) 5.7 (5.7; 5.8) 17.9 (17.3; 18.6)
60–74 years 41,335 78.8 (78.4; 79.2) 47.3 (46.7; 47.9) 28.1 (27.5; 28.8) 24.6 (24.5; 24.7) 25.4 (24.5; 26.3)

Overall 735,559 94.5 (94.4; 94.6) 85.7 (85.6; 85.8) 0.9 (0.8; 1.0) 13.5 (13.3; 13.6) 0.5 (0.4; 0.7)

Nonadherent

Stage I
≤49 years 34,356 96.5 (96.3; 96.7) 90.8 (90.4; 91.2) 7.1 (6.7; 7.5) 2.2 (2.2; 2.2) 4.6 (4.3; 5.0)

50–59 years 29,888 92.8 (92.5; 93.1) 81.5 (80.9; 82.0) 13.1 (12.6; 13.7) 5.4 (5.4; 5.4) 9.0 (8.5; 9.6)
60–74 years 33,313 87.7 (87.3; 88.0) 68.8 (68.2; 69.5) 7.4 (6.8; 8.0) 23.9 (23.2; 24.1) 5.4 (4.6; 6.1)

Stage II
≤49 years 49,897 94.7 (94.5; 94.9) 85.9 (85.5; 86.3) 11.9 (11.5; 12.3) 2.1 (2.1; 2.1) 8.0 (7.6; 8.4)

50–59 years 28,269 87.2 (86.8; 87.6) 66.6 (65.9; 67.4) 28.0 (27.3; 28.7) 5.3 (5.3; 5.4) 20.8 (20.1; 21.6)
60–74 years 26,084 85.6 (85.2; 86.0) 62.7 (61.9; 63.4) 13.9 (13.0; 14.7) 23.5 (23.4; 23.6) 11.9 (10.9; 12.9)

Stage III
≤49 years 16,468 77.6 (77.0; 78.2) 46.3 (45.3; 47.3) 49.8 (48.9; 50.7) 3.9 (3.8; 4.0) 39.5 (38.3; 40.7)

50–59 years 14,953 78.0 (77.3; 78.6) 46.5 (45.5; 47.5) 47.0 (46.1; 47.9) 6.5 (6.4; 6.6) 38.0 (36.8; 39.3)
60–74 years 13,020 72.2 (71.4; 72.9) 31.3 (30.2; 32.3) 41.1 (40.1; 42.0) 27.7 (27.4; 28) 43.9 (42.1; 45.7)

Overall 246,248 88.5 (88.4; 88.6) 70.5 (70.3; 70.8) 19.6 (19.4; 19.9) 9.8 (9.6; 9.9) 14.5 (14.3; 14.8)

Overall difference
Adherent vs.

nonadherent **
6.0 15.2 −18.7 3.7 −14.0

Note: survival indicators expressed in percentage; N *: number of patients in the combined synthetic cohort; Me:
Median; 95 CI: 95% Credible Interval; OS(T): observed survival at T = 5 and T = 10 years after cancer diagnosis;
PCa(10): crude probability of death due to cancer at T = 10 years; POC(10): crude probability of death due to other
causes at T = 10 years; EM(T): 5-year conditional excess mortality at T years after cancer diagnosis; **: difference
in the median estimate Adherent minus nonadherent.

Figure 5 shows the comparison of the 3 main population-based survival indicators
across age groups and stratified by adherent and nonadherent patients: EM(5), PCa(10)
and OS(10). In Stages I and II of BC, differences in EM(5) and PCa(10) between adherent
and nonadherent patients were clearly marked and showed their maximum among BC
patients diagnosed beyond 50 years. At Stage III, the age trend of these two indicators
was similar, showing a marked rise beyond 59 years of age at BC diagnosis. Lastly, OS(10)
showed two patterns: (i) for adherent patients, survival was similar up to 59 years of age
and decrease thereafter, independently of stage at diagnosis; (ii) for nonadherent patients,
OS(10) exponentially decreased with age except in Stage III.
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4. Discussion

This study provides estimates of the most common population-based statistical indica-
tors in order to assess the impact of stage, age, and adherence to ET for survival in patients
with positive estrogen- and/or progesterone-receptor BC. We compared the estimates
from the original cohort with those derived from synthetic datasets generated through
graphical models fitted to the cancer registry cohort. Using the advantages of probabilistic
graphical modeling, we first identified the probabilistic data structure, used it to impute
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the adherence status in patients with missing data for this variable, and simulated data
for a large cohort to estimate age-specific survival indicators. We implemented the Comb-
SynSurData method in order to select the best subsets of four synthetic datasets derived
from ModGraProDep. To the best of our knowledge, this is the first study to show that
adherence to ET greatly impacts BC survival among HR+ patients with early-stage breast
cancer: no excess risk of death up to 10 years after BC in women diagnosed beyond 49
years of age. This result sheds light into curing BC for this group of patients.

The assessment of treatment response is crucial for evaluating anticancer therapies,
treatment planning, and outcomes, where patients’ OS is the baseline measure [33]. How-
ever, that evaluation requires a large sample and long-term follow-up, which are usually not
available in the same study. We used a method for generating a large sample of synthetic
data on the basis of the original cohort in order to estimate the observed survival indicators
using the original cohort data, which had the minimal required long-term follow-up of 10
years for assessing EM due to BC [8]. Using these indicators, healthcare policy planning
should be informed by the estimated prevalence of cancer deaths at a population level,
which can be calculated through RS [34]. These indicators are strongly related to the concept
of a statistical assessment of the “cure” of BC [35], which entails: (I) long survival time
beyond 10 years and equal life expectancy [9], and (II) no cancer relapses up to almost 10
years after BC diagnosis [35].

Our study has a strong limitation in assessing the statistical cure of BC: our follow- up
cannot go beyond 10 years. Another limitation is that the simulated cohorts were based on
the observed data provided by the original cohort. Therefore, survival indicators derived
from these simulated cohorts can only internally validate the indicators estimated from
the original data. The availability of external data provided by other cancer registries with
similar information would be useful for an additional validation of the results and repro-
ducibility. Information on long-term prognosis by stage, receptor status and adherence to
ET is information not usually reported by population-based cancer registries [9]. However,
recent studies suggest the need for using these variables for population-based studies in
order to assess whether the influence of stage or BC subtype on survival lessens in the
long term, which might lead to a consideration of cancer cure in early stages [36–38]. The
impact of ET adherence on BC patient survival is significant [39], and our results, which
show differences in EM when comparing the cohort’s mortality with that of the general
population, are relevant to this. Moreover, differences between adherent and nonadherent
patients are significant across all age groups, but show different impact depending on stage
at diagnosis. This point must be accounted and further investigated, since age, stage, and
treatment play a crucial role in the clinical follow-up of BC patient. Studies regarding this
are needed.

A small but significant level of EM was detected in the adherent group of younger BC
patients (<50 years) diagnosed at Stage I. However, survival estimates for these women
using the combined cohort could be slightly lower than the observed survival in the original
cohort, and this could limit the use of this subset of data. On the other hand, a previous
study carried out on a cohort with ductal carcinoma in situ and diagnosed in Girona
also detected statistically significant EM in patients diagnosed before 50 years of age [40].
Evidence suggests that differences in biological characteristics of breast tumors could
impact patient survival [41]. Moreover, 5- and 10-year local recurrences at early stages [42]
arise depending on age and molecular subtype. Although a high proportion of BCs are HR+
and HER2−, those diagnosed in young women are likely to be more aggressive [43,44],
even in luminal-like early BC [45,46]. A study carried out using SEER data noted worse
BC-specific survival for women in the oldest age groups for every BC subtype analyzed,
with the exception of Stage IV triple-negative disease [10]. In that study and others, worse
survival was observed in patients diagnosed before 35 years of age at Stages I–III [10,46].
Other studies showed that young age is also a predictor of decreased adherence to adjuvant
ET, which in turn is associated with increased mortality [47]. Although ET is unquestionably
a therapeutic tool for HR + BC, these strategies are associated with potential side effects
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and toxicity, which may have a differential effect depending on age [48]. On the other
hand, randomized trials showed that, in premenopausal women with BC, the addition
of ovarian suppression to tamoxifen may increase 8-year rates of both disease-free and
overall survival [49]. However, diagnoses in the cohort under study predate results of
these randomized trials, so women under 49 years of age in our study could not have had
access to these improved treatments. Studies on BC survival and late adverse events due to
ET must be considered beyond 10 years of follow-up, since evidence suggests that distant
recurrences may arise from 5 to 20 years after diagnosis [49].

Studies of EM derived from small cohorts of cancer patients must be further evaluated
using larger cohorts [40]. Here, we present a procedure for simulating a large sample
dataset by fitting graphical models to cohort data and coupling a log-linear model and a
Bayesian network. Since our interest was in simulating the most reliable data, one aim
was to assess the probabilistic dependencies between variables. ModGraProDep identifies
a set of graphical models by using a heuristic search based on changing k, a penalty
factor in the partial likelihood (see Equation (2) above) [16–18,21]. Although specific
values of k such as k = 2 and log (N) equation lead to two known measures for model
choice, AIC and BIC, ModGraProDep identifies two alternative models, one using k = 1
and another testing the arch’s statistical significance at α = 0.05 [13,18]. Vilardell et al.
showed that estimating survival from one of these four models could provide reliable
survival indicators [13]. Here, we introduced a method for deriving a synthetic dataset
that provides better survival indicators by combining the best subsets of data of several
synthetic datasets. An interesting feature in ComSynSurData is that it could be adapted to
use any set of simulated data, and these could come from oversampling techniques, such
as SMOTE [17], Borderline SMOTE [18] and MWMOTE [19]. However, synthetic datasets
derived from ModGraProDep provide additional information about the data structure
and data relationship between variables. The latter can also be useful for clinicians and
epidemiologists in understanding the probabilistic patterns of the disease under study.

5. Conclusions

To sum up, coupling relative survival modeling with synthetic data simulation vali-
dated our main clinical result: patients with HR+ breast cancers diagnosed beyond 49 years
of age at Stage I and diagnosed beyond 59 years of age in Stage II do not have 10-year EM
compared to the general population if they follow the prescribed regimen of ET. These
results call for developing interventions that promote adjuvant ET adherence in eligible
BC patients given its potential benefits in improving cancer survival. The methodology
presented here demonstrates the potential use of probabilistic graphical modeling in gen-
erating reliable synthetic datasets to be used for validating population-based survival
indicators when sample size is an issue.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ijerph19063605/s1, supplementary file: R code implementation of ComSynSurData for
replicating analysis.
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