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Abstract: It is said that image segmentation is a very difficult or complex task. First of all,
we emphasize the subtle difference between the notions of difficulty and complexity. Then, in this
article, we focus on the question of how two widely used color image complexity measures correlate
with the number of segments resulting in over-segmentation. We study the evolution of both the
image complexity measures and number of segments as the image complexity is gradually decreased
by means of low-pass filtering. In this way, we tackle the possibility of predicting the difficulty of
color image segmentation based on image complexity measures. We analyze the complexity of images
from the point of view of color entropy and color fractal dimension and for color fractal images and
the Berkeley data set we correlate these two metrics with the segmentation results, more specifically
the number of quasi-flat zones and the number of JSEG regions in the resulting segmentation map.
We report on our experimental results and draw conclusions.
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1. Introduction

By definition, image segmentation is the process of dividing an input image into regions called
segments according to the application goal and specific criteria and choice of the parameter values.
Segmentation is considered to be at the border between image processing and image analysis, as the
segmentation map is often used for consequent object detection or recognition tasks. It is said that
segmentation is one of the most difficult or complex operations performed on images [1]. What makes
it difficult or complex? Is this difficulty or complexity strictly related to the segmentation approach
or to the choice of parameters for an embraced segmentation approach? Does the complexity of the
color image correlate with the number of segments in the segmentation map? In this article, we aim
at bringing some arguments for the fore-mentioned questions and trying to answer the last one in
an over-segmentation scenario. Over-segmentation still constitutes a current trend, dating back from
the SuperPixels [2] and TurboPixels [3] approaches. The philosophy behind over-segmentation is to
obtain a dense segmentation map which offers more flexibility to the consequent tasks, such as object
detection and recognition [4].

First of all, we should recall the definitions of the two main concepts mentioned so far: difficulty
and complexity, as very often we are tempted to consider that the two concepts are overlapping, or as
exactly the same concept. However, they do not represent the same concept [5,6]: difficulty refers
to the amount of effort needed to answer a question, address a problem or accomplish a task, while
complexity refers to the kind of thinking, action or knowledge that is necessary for solving the same
question, problem or task. In other words, a difficult task is hard to be performed, where a complex
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task refer to the degree of intricacy, entanglement, analysis, and evaluation which is required to solve
the task. More specifically, a complex problem requires more creative and strategic thinking whereas
difficultly relates to the effort or time necessary for solving the problem. In education and learning [7,8],
difficulty and complexity are usually presented as completely orthogonal terms. In mathematics,
higher difficulty can refer e.g., to higher precision for the floating points in a mathematical calculation,
while higher complexity would refer to solving a linear equation system with complex numbers.
In gaming, higher difficulty could mean e.g., when passing an obstacle requires more time or more
player skills, while a higher number of rules or game elements that the player must understand
and interact with, would refer to higher complexity. Considering an image segmentation scenario,
the question is what can be viewed as complex and difficult, and if the two intersect or are orthogonal.

For color image segmentation, complexity could refer to the number of possible alternatives
for solving the image segmentation problem, or strictly to the degree of entanglement within the
approaches itself. In computer science, the complexity of an approach, more specifically of an
algorithm for solving a specific problem, is expressed by the computational complexity or the order
of complexity (the so-called Big O notation introduced by Paul Bachmann in 1894—see section 1.2.11
Asymptotic Representations in [9])—which indicates how many simple or elementary computations
must be performed for solving the problem. For example, in order to apply a point-operator to
an image of size M × N pixels, the order of complexity is O(M × N) as for each pixel it takes
one computation; for a filtering operator with a filter mask of size m × n on the same image,
the order of complexity is O(m× n×M× N). For pyramidal image segmentation approaches [10] the
number of levels in the pyramid will increase the order of complexity proportionally. The order
of complexity for image segmentation is very rarely reported by authors, but it is evident that
active contours for image segmentation [11] exhibit a far more larger complexity compared to a
contour extraction (edge detection) approach, for instance. For a given image segmentation approach,
the difficulty could relate to the amount of contours or number of regions or the time necessary for
the algorithm to accomplish the segmentation. Other researchers attempted to estimate the difficulty
of image segmentation, as in [12] who uses different image features, including gray tone, color,
gradient, and texture to predict the difficulty of a segmentation algorithm, considering the linear
multiple regression prediction method. All the fore-mentioned image features are related to the image
complexity itself. Consequently, image complexity impacts the segmentation difficulty—a complex
image may be difficult to segment using a specific segmentation approach, either by taking more time
to finish or by generating more segments.

The complexity of a color image may be defined in various ways. In [13] the complexity is
defined as the effort of attention required for the act of perception. In [14] the complexity was defined
as the irregularity of the arrangement for some binary patterns, heterogeneity of their elements,
asymmetry and randomness. In [15] the link between the complexity of images and the measure
of information, thus the entropy, is made. In [16] a complexity measure is proposed based on the
number of components (lines, arches, objects) which required, in advance, the segmentation of the
symbol/icon image of interest. In [17] the complexity is considered to be the amount of detail or
intricacy of a symbol in a set of predefined symbols and icons. According to [18] the visual complexity
of a color image could be a function of object variety or surface variety. More recently, in [19], the image
complexity was modelled by using the independent component analysis (ICA), but ICA was used for
the image entropy approximation. In [20] the image complexity is linked to the visual attention and
based on maps generated by a computational model of human attention. In [21] the complexity of an
image was linked to the fractal dimension. A particular set of approaches define image complexity
based on image compression ratio, such as the approach presented in [22], where complexity is based
either on the inverse of lossless compression ratio or on lossy compression and distortion. In [23] the
complexity is defined as a linear combination of image features based on spatial, frequency and color
properties and the optimal set of weights is determined using particle swarm optimization. In [24]
three main factors that affect the human perception of visual complexity were identified to be the
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distribution of compositions, colors and contents and the authors designed 29 global, local and salient
region features that represent those three factors.

In this article, we investigate the correlation between the intrinsic image complexity and the
number of segments resulted in image over-segmentation. We also study the evolution of the chosen
image complexity measures when the complexity of the color images is decreased by means of
low-pass filtering. For our experiments we considered two types of images: color fractal images
and natural images from the Berkeley image data base, as described later on. For the assessment
of complexity of a color image, we embraced two widely used measures, the one of color entropy
and the one of color fractal dimension. We considered for our experiments the over-segmentation
approach entitled quasi-flat zones which is based on the concept of flat zones defined in [25] and
the definition of connected components proposed in [26]. The motivation comes from the trend of
using over-segmentation approaches, usually followed by a detection step based on machine learning
approaches. A second image segmentation approach considered for our experiments was JSEG [27,28].

2. Materials and Methods

2.1. Image Data Bases

2.1.1. Color Fractal Images

A subset of the color fractal image set we used is depicted in Figure 1. The images were generated
using the midpoint displacement approach, with independent color components as described in [29].
The most complex image has a Hurst factor of 0.1, while the least complex image is obtained for
H = 0.9. The complete data set is available for download [30], along with the Matlab script for
estimating the color fractal dimension, as described also in [29].

(a) H = 0.1 (b) H = 0.3 (c) H = 0.5 (d) H = 0.7 (e) H = 0.9

Figure 1. Color fractal images.

2.1.2. Berkeley Segmentation Dataset

The Berkeley Segmentation Dataset (BSDS500) [31] is a data base of natural images developed for
research on image segmentation and boundary detection algorithms. The data base contains 500 color
images of size 481 × 321 pixels, split into two groups: 300 images for training segmentation algorithms
and 200 for testing. Each image has between four and seven associated reference segmentation maps.
Figure 2 presents eight images from the data base.

2.2. Color Image Complexity

2.2.1. Color Entropy

In information theory, Shannon [32] used the notion of entropy as a measure of the disorder in
signals (see Equation (1) for a signal with N quantization levels, where pi is the probability of having a
certain level present in the signal evolution). Based on this seminal definition, various other existing
definitions developped: Rényi entropy (1961) was introduced as a generalization of the Shannon
entropy (see Equation (2)), Hartley entropy, collision entropy and min-entropy, or the Kolmogorov
entropy, which was presented in [33] as another generic definition of entropy.
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H = −
N

∑
i=1

pi × log2(pi) (1)

R =
1

1− α
log2

(
∑

i
pα

i

)
, α 6= 1, α > 0 (2)

(a) 105027 (b) 157055 (c) 69007 (d) 299086

(e) 196062 (f) 59078 (g) 300091 (h) 8143

Figure 2. Examples of images from the BSDS500 data base.

The same definition of Shannon entropy was embraced in [34] as one of his thirteen features
proposed for texture characterization. The extension to multidimensional case of Shannon definition of
entropy is straightforward, and that question was addressed in [35]. In the same paper, the limitations
of both entropy and the current probabilistic box-counting fractal dimension estimator were shown,
which lead to a saturation of the measure for the most complex color fractal images. In addition,
from the definition of entropy itself it is known that the entropy can only underestimate the
complexity of the object, i.e., the color texture in our case, by not taking into account the spatial
arrangement of pixels.

2.2.2. Color Fractal Dimension

Multi-scale approaches or measures are used for the analysis of color texture images. The most
representative is the fractal dimension from fractal geometry [36]. Fractals are self-similar objects,
independent of scale. Fractal dimension, the fundamental measure in fractal geometry, was defined
to assess the complexity of fractal objects. The fractal or similarity dimension is a quantitative
measure of the variations, irregularities or wiggliness of a fractal object [37]. The fractal dimension
of an object is comprised in the interval [E, E + 1], where E is the topological dimension of that
object. In practice, the fractal dimension has been used for the discrimination between various
signals or patterns exhibiting fractal properties, such as textures [38]. Often, the application of texture
classification is image segmentation [1].

The theoretical fractal dimension is the Hausdorff dimension [39], also called
Hausdorff-Besicovitch dimension. Because of its definition for continuous objects and its intrinsic
complexity, the Hausdorff dimension is not used in practice, but equivalent fractal dimension
estimates were defined and used. There are various approaches for the estimation of fractal
dimension for digital signals/images exhibiting the property of self-similarity. The now classical
approaches include: the probability measure [40,41], the Minkowski–Bouligand dimension, also
known as Minkowski dimension or box-counting dimension [39], the δ-parallel body method
(also called covering-blanket approach), morphological covers or Minkowski sausage [42], the gliding
box-counting algorithm based on the box-counting approach [43] etc.



J. Imaging 2020, 6, 16 5 of 15

Several attempts were made to extend the fractal dimension estimation techniques to the color
image domain. The initial approaches which link the fractal measures to colour images were marginal
colour analysis [44]. The probabilistic box-counting approach was extended for the assessment of the
complexity of color fractal images with independent color components and its validity was proved
both mathematically and experimentally [29]. To the best of our knowledge, it was the first fully
vectorial approach for estimating the probabilistic box-counting fractal dimension for color digital
images. However, in [35] the limitations of this approach in estimating the color fractal dimension
for the very high complexity color fractal images were emphasized. Other attempts in defining
the fractal dimension for color images do exist. In [45] authors propose an approach inspired from
the box counting paradigm, by dividing the image in non-overlapping blocks and defining the
counting in the RGB color domain, for both synthetic and natural images. In [46,47] extensions of the
differential box counting approach are proposed for color images in RGB color space. The experiments
were performed both on generated images or images from the colored Brodatz texture data base
(https://multibandtexture.recherche.usherbrooke.ca/colored_brodatz.html).

2.3. Color Image Segmentation Approaches

2.3.1. Quasi-Flat Zones

Quasi-flat zones (QFZ) are morphological segmentation operators derived from the concept of
flat zones [25]. Flat zones represent connected sets of pixels with the same gray value; this restrictive
connectivity relation usually produces an extreme over-segmentation of the image. As a result, various
definitions that use more relaxed connectivity rules have been introduced [26].

For instance, in the case of gray-scale images, the α-connectivity rule is defined as follows: two
pixels are connected if there is a path of pixels linking them such that the difference between the values
of two successive pixels is smaller than the local threshold value α. Thus, the definition for the QFZ of
type Cα containing the pixel p from the gray-scale image f is [26]:

Cα(p) = {p} ∪ {q|∃ a path P = (p = p1, ..., pn = q), n > 1,

such that | f (pi)− f (pi+1)| ≤ α, ∀1 ≤ i < n} (3)

Cα generates a unique partitioning of the image for a value of α, due to the equivalence relation
imposed on the set of image pixels. An important issue with the Cα definition is the under-segmentation
of the image, which can result even when using small values of α. As a consequence, several QFZ
definitions based on supplementary connectivity rules have been developed, such as QFZs of the type
Cα,ω, which besides the local threshold α, also use a global threshold ω [26]:

Cα,ω(p) =
∨{

Cα′(p)|α′ ≤ α and R(Cα′(p)) ≤ ω
}

(4)

where the range function R computes the difference between the maximal and minimal values of the
set given as its argument.

A straightforward strategy for extending the definition of Cα,ω QFZs to color images, based on
the definition in Equation (4), is also given in [26]:

Cα,ω(p) =
∨{

Cα′(p)|α′ ≤ α and R(Cα′(p)) ≤ ω
}

(5)

where in this instance, α and ω are vector parameters and ”≤” is the marginal ordering of vectors:

∀v, v′ ∈ Rn, v ≤ v′ ⇔ ∀i ∈ {1, ..., n}, vi ≤ v′i (6)

https://multibandtexture.recherche.usherbrooke.ca/colored_brodatz.html
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The possible values of the parameters are restricted to vectors with the same value across all dimensions
(for instance, for color RGB images: [0, 0, 0], [1, 1, 1], ...). All the definitions presented above still induce,
in most cases, some over-segmentation of the image [48].

2.3.2. JSEG

The JSEG color image segmentation approach proposed by Deng [27,28] uses the J-factor as
a criterion for the identification of heterogeneity zones. The J-factor was defined as a measure
of local similarity between colors within an analysis window. The aim is to identify region
homogeneity/heterogeneity considering a color texture perspective, based on the assumption that
the color information in a region of the image can be reduced to the information provided by few
representative colors. The J-factor represents the normalized variance of spatial distances with respect
to class centers, given that image colors are classified.

For a set Q of N pixel locations Pi, the mean position m of all pixels is computed as m = 1
N

N
∑

i=1
Pi.

If Q is classified into C classes Qi based on the color values at those locations, then mi be the mean
position of the Ni points of class Qi: mi =

1
Ni

∑
Pi∈Qi

Pi. Then the total spatial variance is defined as

ST = ∑
q∈Q
||q−m||2, and the spatial variance relative to the Qi classes as SW =

C
∑

i=1
Si =

C
∑

i=1
∑

q∈Q
||q−

mi||2, the measure J is defined as:

J =
SB
SW

=
ST − SW

SW
(7)

where J basically measures the distances between various classes SB over the distances between
the members within each class SW : a high value of J indicates that the classes are more separated from
each other and the members within each class are closer to each other, and vice versa. Consequently,
the resulting J-image is a gray-scale pseudo-image whose pixel values are the J values calculated over
local windows centered on each pixel position. The higher the J value is, the more likely that the pixel
is close to a region boundary.

First of all, an adaptive color quantization step is performed in order to reduce the number of
colors in the image, which influences the segmentation result. The segmentation approach continues
with a computation of the J-image at various scales, followed by the segmentation of the J-image
starting at the coarsest level. Relatively uniform regions are identified by low J values. A region
growing step is then performed, starting from the areas around valleys, which are local minima in the
pseudo J image. The J values are averaged in the unsegmented part of a region, then the pixels with
values below this average are included in the growing region. If a growing region is adjacent to one
and only one valley, it is assigned to that valley. The process is iteratively repeated for the lower scales,
ensuring that the segmentation approach determines the final localization of contours. The result of
this iterative scheme is an oversegmented image and usually a region fusion step is performed to
reduce this undesired effect.

3. Experimental Results

We performed a set of initial experiments with a set of nine images representing synthetic color
fractal textures of varying complexity as a function of the Hurst parameter H (small H values are
linked to high complexity and vice-versa). We chose this specific type of images as they do not exhibit
any particular content, but instead a noise with properties of statistical self-similarity. For color image
complexity we embraced the color entropy (CE) and the color fractal dimension (CFD). The chosen
segmentation approaches were quasi-flat zones (QFZs) and JSEG, which were all detailed in the
previous section.

In Table 1 and Figure 3 one can see that, as the fractal image complexity is increasing, the number
of quasi-flat zones (# QFZs) and the number of regions segmented using JSEG increase as well, for the
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same choice of input parameters of the segmentation algorithms. This initial conclusion enabled the
next set of experiments described in this article.

Table 1. Color entropy, color fractal dimension, number of quasi-flat zones and number of regions
segmented using JSEG for the nine color fractal images from the data set at [30].

H = 0.1 H = 0.2 H = 0.3 H = 0.4 H = 0.5 H = 0.6 H = 0.7 H = 0.8 H = 0.9

CE 17.7429 17.772 17.7727 17.7532 17.7015 17.5768 17.3444 16.6938 16.5423

CFD 3.9926 3.8637 3.5655 3.2269 2.9002 2.6137 2.3791 2.1456 2.0757

# QFZs 63694 61597 56191 44503 23829 3755 437 101 20

# JSEG regs. 63 66 66 62 60 47 34 34 22

(a) # QFZs vs CE (b) # QFZs vs CFD

(c) # JSEG regs. vs CE (d) # JSEG regs. vs CFD

Figure 3. Plots of the number of QFZs and JSEG regions versus color entropy and color fractal
dimension, respectively, for the fractal images in Figure 1.

Further on, we investigate the possible existing correlation between the two previously described
complexity measures—color entropy and color fractal dimension—and the number of quasi-flat zones
(QFZs) and number of JSEG segments, for the Berkeley image data set. We calculated the histograms
of CE, CFD, number of QFZs and JSEG segments, computed on the BSDS500 data set, in order to see
how all these measures are distributed over the data set. The resulting histograms are depicted in
Figure 4 and it can be noticed that they exhibit more or less a Gaussian shape, characteristic to natural
phenomena. In Table 2 we show the CE, CFD, number of QFZs and JSEG segments for the eight images
in Figure 2. We studied the existence of a linear dependence between the image complexity, expressed
as CE or CFD, and the image segmentation difficulty, expressed as number of QFZs or JSEG segments.
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For the computation of the correlation coefficient we used the default Matlab implementation of the
Pearson, Spearman and Kendall correlation coefficient computation. In this article we report only the
results obtained for the Pearson correlation, as it provides the best results compared with the other
two types.

Table 2. Color entropy and color fractal dimension, number of quasi-flat zones and number of regions
segmented using JSEG for the eight images depicted in Figure 2, from the BSDS500 data set.

Image 105027 157055 69007 299086 196062 59078 300091 8143

CE 12.7748 14.4893 13.0638 12.9328 13.0152 11.0511 12.6644 15.3425

CFD 2.9631 3.1163 3.1132 2.9468 2.9502 3.1163 2.7797 3.2685

# QFZs 26164 24641 27389 31982 29882 16025 18951 36335

# JSEG regs. 81 98 93 38 61 112 69 159

(a) CE (b) CFD

(c) Number of QFZs (d) Number of JSEG segments

Figure 4. Histograms of CE, CFD, number of QFZs and number of JSEG segments on the BSDS500
data base.

Figure 5a,b depict the plots of the number of QFZs versus color entropy and color fractal
dimension, respectively, computed on the BSDS500 data base. The QFZs applied on the dataset
were of type Cα,ω, with α = ω = 100. Figure 6a,b depict the plots for the number of JSEG segments
versus color entropy and color fractal dimension, while Figure 7a,b depict the same type of plots for
the number of colors in the JSEG segmentation after color quantization. A transform of the type sqrt(z)
was applied to all the data as a pre-processing step [12] in order to render a more Gaussian shape
to the histograms of the data based on an analysis of the quantile-quantile plots. Also various log
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function-based transformations were tested, inspired from [12], in order to check if another type of
correlation may apply, different from linear, but the best results are the ones reported below.

(a) # QFZs vs CE (ρ = 0.67) (b) # QFZs vs CFD (ρ = 0.5)

Figure 5. The number of QFZs versus color entropy (a) and color fractal dimension (b) for the BSDS500
data base. The corresponding Pearson correlation coefficient is given in brackets for each case.

(a) # JSEG segments vs CE (ρ = 0.58) (b) # JSEG segments vs CFD (ρ = 0.31)

Figure 6. The number of JSEG segments versus color entropy (a) and color fractal dimension (b) for the
BSDS500 data base. The corresponding Pearson correlation coefficient is given in brackets for each case.

For color entropy versus the number of QFZs, the Pearson correlation coefficient ρ = 0.67 indicates
a considerable correlation between the two and the cloud of points tends to have an elliptical shape.
For the fractal dimension versus the number of QFZs, the Pearson correlation coefficient is ρ = 0.5
practically indicating there is no significant correlation, which is confirmed by the shape of the cloud
of points. More or less the same observations may apply for the correlation between the color entropy
and color fractal dimension on one hand and the number of JSEG segments, on the other hand, only
even lower values are obtained (ρ = 0.58 and ρ = 0.31, respectively). Moreover, the number of reduced
colors after the adaptive color quantization step in JSEG was chosen for the results in Figure 7 as
this first step affects significantly the final segmentation result. As expected, there is a significant
correlation between the color entropy and the number of JSEG colors (ρ = 0.77) as the color entropy
is defined on the initial set of colors for the image and there should be still some link to this color
complexity after the color quantization step in JSEG. The Pearson correlation between CFD and the
number of JSEG segments is low (ρ = 0.5).

Furthermore, we wanted to assess how the variation in complexity of an image may affect
the number of segments. It is known that low-pass filtering of an image reduces its complexity:
e.g., blurring due to out-of-focus [49]. We are interested to quantify the drop in complexity as a
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consequence of low-pass filtering and to correlate the variation in complexity to the variation of the
number of regions obtained by image segmentation. In our experiments we employed a low-pass
Gaussian filter with a mask of size 11× 11 and a standard deviation of 0.9 on the eight images in
Figure 2 for several 9 iterations. Figure 8a depicts the evolution of the color entropy as a function of
the number of filtering iterations. It can be noticed that, for all the eight images, there is an increase in
the color entropy for the first iteration; this is caused by the fact that the filter induces additional false
colors besides the original colors in the images. This increase in the number of colors naturally causes
an increase in the entropy of the image. After the first iteration, the color entropy follows a decreasing
tendency, as expected. The CFD curves are depicted in Figure 8b; it can be noticed that they follow
a strictly decreasing tendency for all the images under consideration, more evident compared to the
CE case. At the limit, as the number of low-pass filtering iterations goes to infinity, the image should
become uni and consequently the image complexity should be null (this would correspond to CE = 0
and CFD = 2.0).

(a) # JSEG colors vs CE (ρ = 0.77) (b) # JSEG colors vs CFD (ρ = 0.5)

Figure 7. The number of JSEG colors after quantization versus color entropy (a) and color fractal
dimension (b) for the BSDS500 data base. The corresponding Pearson correlation coefficient is given in
brackets for each case.

Figure 9 depicts the evolution of the number of QFZs and JSEG segments as a function of the
number of iterations of the Gaussian filter, for the eight images in Figure 2. The evolution of the
number of QFZs is smooth, clearly indicating the expected monotony, while the number of JSEG
segments exhibits larger variations, though a decreasing trend can be observed.

In Figures 10 and 11 we show the results of JSEG image segmentation for two of the images
in Figure 2 as a function of low-pass filtering iteration number. One can notice the evolution of
the segmentation map, as the image complexity decreases as a consequence of low-pass filtering.
As expected, the number of segments generally decreases with iterations. Though the results in
Figure 9a are better supporting the correlation between image complexity measures and number
of segments, the segmentation results are less relevant for showing, because of the excessive
over-segmentation which is characteristic to QFZ approach.
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(a) CE vs. it. (b) CFD vs. it.

Figure 8. The evolution of color entropy (a) and color fractal dimension (b) as a function of the number
of iterations of the Gaussian filter, for the eight images in Figure 2.

(a) # QFZs vs. it. (b) # JSEG segments vs. it.

Figure 9. The evolution of the number of QFZs (a) and JSEG segments (b) as a function of the number
of iterations of the Gaussian filter, for the eight images in Figure 2.

(a) Original (b) 1 it. (c) 2 it. (d) 3 it. (e) 4 it.

(f) 5 it. (g) 6 it. (h) 7 it. (i) 8 it. (j) 9 it.

Figure 10. JSEG segmentation results for image 300091—the original and after applying the Gaussian
filter for the specified number of iterations.
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(a) Original (b) 1 it. (c) 2 it. (d) 3 it. (e) 4 it.

(f) 5 it. (g) 6 it. (h) 7 it. (i) 8 it. (j) 9 it.

Figure 11. JSEG segmentation results for image 105027—the original and after applying the Gaussian
filter for the specified number of iterations.

4. Conclusions

In this article, we investigated the correlation between the intrinsic color image complexity and the
number of segments resulting in an image over-segmentation task, for two segmentation approaches.
We also analyzed how the diminishing of image complexity affects the number of segments in the
resulting segmentation map. For experiments we considered two types of images: color fractal images
and color natural images from the Berkeley image data base. As color image complexity measures
we used the color entropy and the color fractal dimension. The embraced color image segmentation
approaches were the quasi-flat zones and JSEG. The experimental results on the complete Berkeley data
set showed some slight correlation between the color entropy and the number of the quasi-flat zones,
while for the color fractal dimension there is no significant correlation to the number of quasi-flat zones.
The same conclusion can be drawn regarding the number of JSEG segments. A more important
correlation was obtained between the color entropy and the number of reduced colors after the color
quantization step in JSEG. A possible explanation for the relatively low correlation between the color
entropy and color fractal dimension, on one hand, and the number of QFZs and JSEG segments on the
other hand, could be that the chosen complexity measures are not capable of capturing or describing
the higher-level (possibly the semantic one) content of the natural images in the Berkeley data base and
that for such images more appropriate complexity measures must be defined and used. The Pearson
correlation coefficient values we obtained in our experiments are similar to the ones reported in [24],
meaning that the image complexity and the human perception of it still require further understanding
and appropriate modelling in order to better estimate the difficulty in the image segmentation task.
However, the current preliminary study shows that, to some extent, one could predict the difficulty
of the segmentation task based on image complexity assessment, as well as define the complexity of
a color image based on the number of segments or reduce the complexity of the image by means of
low-pass filtering for the purpose of reducing the burden of the segmentation task.
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