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ABSTRACT
Genetic changes affect embryogenesis, cardiac and extracardiac
phenotype, development, later onset conditions, and both short- and
long-term outcomes and comorbidities in the increasing population of
individuals with tetralogy of Fallot (TOF). In this review, we focus on
current knowledge about clinically relevant genetics for patients with
TOF across the lifespan. The latest findings for TOF genetics that are
pertinent to day-to-day practice and lifelong management are high-
lighted: morbidity/mortality, cardiac/extracardiac features, including
neurodevelopmental expression, and recent changes to prenatal
screening and diagnostics. Genome-wide microarray is the first-line
clinical genetic test for TOF across the lifespan, detecting relevant
structural changes including the most common for TOF, the 22q11.2
microdeletion. Accumulating evidence illustrates opportunities for ad-
vances in understanding and care that may arise from genetic diag-
nosis at any age. We also glimpse into the near future when the
multigenic nature of TOF will be more fully revealed, further enhancing
possibilities for preventive care. Precision medicine is nigh.
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R�ESUM�E
Dans la population croissante des personnes atteintes de la t�etralogie
de Fallot (TF), des modifications g�en�etiques influencent
l’embryogenèse, le d�eveloppement, le ph�enotype cardiaque et
extracardiaque, les complications tardives ainsi que les issues de
sant�e et les �etats comorbides, à court et à long terme. Notre article de
synthèse pr�esente l’�etat des connaissances sur les renseignements
g�en�etiques cliniquement utiles pour les patients atteints de la TF tout
au long de leur vie. Nous soulignons les d�ecouvertes r�ecentes sur les
aspects g�en�etiques de la TF qui sont pertinentes pour la pratique
clinique quotidienne et la prise en charge lors des diff�erentes �etapes
de la vie : la morbidit�e et la mortalit�e, les caract�eristiques cardiaques
et extracardiaques (y compris l’expression neurod�eveloppementale) et
les changements r�ecents touchant le d�epistage et les diagnostics
pr�enataux. La technologie de puce à ADN pour le g�enome entier
constitue le test g�en�etique clinique de première intention pour les
personnes de tout âge atteintes de la TF, et elle permet la d�etection de
modifications structurelles pertinentes dont celle le plus fr�equemment
associ�ee à la TF, la microd�el�etion 22q11.2. L’utilit�e d’un diagnostic
g�en�etique pour am�eliorer la compr�ehension de la situation des
patients de tous les âges et les soins qui leur sont offerts est de plus en
plus mise en �evidence. Nous entrevoyons �egalement un avenir pas si
lointain dans lequel la nature multig�enique de la TF sera entièrement
connue, ce qui ouvrira la voie à des soins pr�eventifs bonifi�es. La venue
de la m�edecine de pr�ecision est imminente.
As the most common of the cyanotic cardiac lesions,
comprising 7%-10% of the congenital heart disease (CHD)
population, tetralogy of Fallot (TOF) is an important condi-
tion that arises early in development, involving a complex
spectrum of anatomically defined anomalies (nonrestrictive
ventricular septal defect, over-riding aorta of less than 50%,
infundibular, valvular, and supravalvular stenosis of the right
ventricular outflow tract, and right ventricular hypertrophy),
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with substantial genetic etiology.1 Advances in CHD surgery
and lifelong specialized care have improved outcomes such
that TOF is considered a chronic disease, with >90% of in-
dividuals with TOF surviving to adulthood and adults vastly
outnumbering children.2 This has led to an increasing focus
on improving long-term outcomes, given substantive
morbidity risks, especially for heart failure and arrhythmias
including sudden cardiac death, and reduced longevity.3-5

Guidelines recognize the importance of molecular genetic
diagnosis for CHD, including adult CHD (ACHD).6-11 For
TOF, parallel to the technological advances in clinical cardi-
ology, congenital cardiac surgery, cardiac congenital anaes-
thesia, and multimodality imaging, advances in genetics
(Fig. 1A) have driven substantial improvements in our un-
derstanding of etiology and management. However, the po-
tential impact of genetic diagnosis on management and related
clinically relevant issues has had limited attention, and there is
relatively little practical guidance available for, and accessible
to, busy clinicians.

In this review, we highlight current knowledge around
issues of primary clinical relevance to cardiologists who care
for patients with TOF. We emphasize the genetic causes of
TOF that are currently detectable by broadly available clinical
genetic testing. The focus is therefore on major structural
variants (deletions and duplications) that account for the
largest proportion of known molecular genetic causation.
Familiar chromosomal anomalies, such as trisomy 21, are
included but not emphasized.

We first provide a brief overview of the genetics of TOF
and outline the rationale for and practical guidance on clinical
genetic testing of patients with TOF. We summarize issues of
active relevance to clinical care of patients with TOF,
including testing opportunities across the lifespan (Fig. 1B),
with an emphasis on how genetics can help inform risk
stratification and outcomes. We outline limitations of the
available literature, including genetics-informed outcome data.
We nonetheless touch on research that may soon reach clinical
relevance as genetic technologies are more broadly imple-
mented and knowledge evolves. As part of a data-driven
approach, we rely on the international and domestic litera-
ture that is most relevant to current Canadian clinical practice.
We also draw on experience with genetic testing and out-
comes of the population with TOF followed for decades by
Canadian paediatric and ACHD teams, and informed by a
geneticist with expertise in TOF genetics.

Overview of the Genetics of TOF

Given the anatomic complexity of TOF and its severity, it
is not surprising that genetic factors play a major role in
causing TOF and that the genetic architecture is complex and
overlaps with, but, to some extent, is distinct from, that of
other CHD.1,12 In general, TOF, like most human condi-
tions, is characterized by genetic heterogeneity (multiple ge-
netic variants that cause the same clinical condition) and less
than full penetrance for any individual genetic variant (TOF is
not always part of clinical expression).1,6,13 At the population
level, causation can include multiple types of genetic variants,
multiple genes, and nongenetic factors. TOF is therefore often
described as “multifactorial.”
For an individual patient, even where a clinically relevant
variant has been identified, background and other factors are
likely to be contributory. Such “modifiers” can increase or
decrease the risk of the expression of TOF, other cardiac-related
risks, and neurodevelopmental and other associated phenotypes
(Figs. 2 and 3). Modifying factors include lower impact vari-
ants, polygenic background risk, and nongenetic factors.1

Whether or not there is a molecularly and/or clinically
diagnosable genetic condition present, standard genetic con-
siderations are important. These include a family history of
CHD and pregnancy/early loss, ancestral origins, and whether
or not there is consanguinity.1,14,15 Reproductive fitness is
somewhat reduced given the severity of the condition, and
families segregating TOF in a Mendelian fashion are un-
common,6 even when taking into account broadly defined
CHD.16 Consanguinity, or originating from a genetic isolate,
are features that are discernible from history and/or through
advanced genomic methods (Fig. 1A). Both are associated
with increased risk of autosomal recessive conditions.

The likelihood of clinically relevant results with any form
of genetic testing will vary, depending on associated features.
A “spectrum” approach tailored to TOF that considers
complexity across the lifespan (Fig. 2) may be more pragmatic
than a dichotomy, such as “isolated/nonsyndromic” and
“syndromic.” Nonetheless, clinically relevant genetic variants
are associated across this TOF spectrum, including many in
the “baseline” subset. Although the complexity of the genetic
architecture means that for the majority of individuals, the
main causal factors of their cardiac condition remain to be
identified, even on a research basis,1,17 the most common
currently diagnosable causes of TOF are detectable using a
genome-wide microarray; thus this is recommended as a first-
line clinical genetic test (Fig. 1).
Microarray as First-Line Clinical Genetic Testing
for TOF

Since about 2010, genome-wide microarray technology has
come into standard practice recommendations, including for
TOF, to detect clinically relevant genetic variants.18 As
applied clinically, microarray identifies pathogenic copy
number variations (CNVs) now known to be common causes
of human diseases, particularly those related to developmental
abnormalities such as CHD and neurodevelopmental disor-
ders.19 CNVs are structural genetic changes involving copy
number loss (deletions) and gain (duplications), the vast
majority of which are not detectable by karyotype (Fig. 1A).
Microarray also supersedes targeted methods, for example,
fluorescence in situ hybridization, that required ordering a
probe for a specific locus (Figs. 1B and 3). A recent Ontario
estimate approximated the cost of clinical microarray to that
of magnetic resonance imaging.20

Although microarray may be offered and performed more
during the prenatal/neonatal period than at any time post-
natally, overall uptake at the clinic level remains spotty.19

Opportunities for testing abound across the entire lifespan
(Fig. 1B). Recent data reinforce the rationale, clinical rele-
vance, and relative ease of implementation of genetic testing in
the clinic for patients with TOF and other major CHD.21,22

For example, in Indiana, since 2015, most newborns requiring
cardiac surgery for CHD had a clinical genome-wide
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microarray, with over 20% found to have a clinically relevant
genetic abnormality.22 Conotruncal defects such as TOF have
particularly high yield.21

Indeed, a genome-wide microarray exploits the multigenic
and innate developmental complexity of TOF (Fig. 2).19,23 Box
1 outlines the rationale for clinical genetic testing. Multiple
studies show that yields of clinically relevant CNVs are high
even in “isolated” TOF, here termed “baseline” (Fig. 2).22

Determining the presence of additional features that further
increase the expected yield of pathogenic CNVs, or of other
genetic anomalies, will depend on the developmental stage or
age of the patient, availability of the information, and the
expertise, interest, and time constraints of the clinician.

Provision of pretest information (genetic counselling) in-
cludes basics of the test itself, approximate likelihood of a
clinically relevant finding that will help in understanding the
etiology of TOF and its management, and the possible im-
plications for other family members (eg, offspring and parent)
(Box 1; Figs. 1 and 2). The consent process is comparable to
that for any medical test ordered, for example, cardiac mag-
netic resonance imaging, where the test capacity is circum-
scribed and there is a possibility of “incidental” findings
unrelated to the patient’s main condition(s). Though rare with
a microarray, a reportable example requiring separate genetic
counselling would be a CNV that disrupts a known cancer
gene, for example, BRCA1.24

Individuals with a positive finding on microarray will
usually require referral to a genetics expert for genetic coun-
selling and recommendations regarding work-up and follow-
up. Information about care implications and prognosis may
be available, as may be connection to an international com-
munity of others with the same finding (Box 1). Just knowing
about a concrete cause, unrelated to pregnancy issues, can
come as a relief to a family at any life stage.

Genetics is an ever-advancing area of medicine. For all
genome-wide clinical molecular genetic-based tests, including
microarray, there are recommendations for periodic reinter-
pretation of results with updated data, particularly for negative
results or variants of uncertain significance (Fig. 1B).25

Advancing to second-line, higher resolution genetic testing
(Fig. 1A) usually involves referral to a clinical geneticist.19
What Information Can a Clinical Microarray
Provide?

Multiple studies have demonstrated that structural genetic
changes, CNVs and chromosomal abnormalities, are the most
common of identifiable causes of TOF and related
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conotruncal anomalies.1,26-29 Most are multigenic,26 that is,
involve a gene dosage decrease (deletions) or increase (dupli-
cations) of several to many genes. These changes may occur as
a de novo (spontaneous) event or may be inherited from a
parent who often has a different, usually milder, clinical
expression than the affected offspring. All inherited and the
vast majority of spontaneous genetic changes are present in
the germ cell (sperm or egg) before conception (ie, before
pregnancy). Notably, unlike chromosomal anomalies such as
trisomies, most CNVs have no relationship to parental
age.30-32

Several CNVs are recurrent, that is, arise as a new (de novo)
occurrence in unrelated families. Often this is due to the
innate structure of the human genome that in many regions
involves low copy repeat (LCR) sequences that predispose to
these events.30-32 Multiple such genomic disorders are now
known,33,34 though why some are more prevalent than others
is unknown.

The most common molecularly definable causes of TOF,
found on average in approximately 10% of all patients, are
recurrent chromosome 22 microdeletions associated with
22q11.2 deletion syndrome (22q11.2DS).30,35 Targeted
testing began in the mid-1990s, detecting the most prevalent
22q11.2 microdeletions, with microarray recently adding far
more knowledge (Fig. 3). Thus, substantial outcome infor-
mation has accrued, providing an example for both the
rationale for contemporary clinical genetic testing and the
potential advantages afforded by molecular genetic diagnosis
(Figs. 1 and 3; Box 1). Much new information can accrue
from identifying a homogeneous genetic group (Tables 1 and
2).

Molecular screening of a contemporary newborn Ontario
sample, for example, provided an estimate that 1 in every
2148 live births has a typical 22q11.2 deletion, far higher
than previous estimates.36 Even higher prevalence is docu-
mented in prenatal and pregnancy-related data, likely related
to disproportionate pregnancy loss associated with the dele-
tion, as for other CNVs.15,37-40 However, despite its prev-
alence and its familiarity to many clinicians, the 22q11.2
deletion remains relatively underdetected, even in individuals
with CHD. After excluding those with a known diagnosis of
22q11.2DS, research studies using systematic genetic testing
continue to identify many previously undetected individuals
with the 22q11.2 deletion, even among paediatric cohorts.41

Although CHD such as TOF may lead to earlier diagnosis, a
prolonged diagnostic odyssey remains the norm for most
individuals with a 22q11.2 deletion.42 Reasons include a
lack of systematic genome-wide testing (Fig. 1A), limitations
of fluorescence in situ hybridization (Fig. 3), and variable
expression that includes absence of readily recognizable
clinical features.

Variability of expression is the norm for CNVs, as for
virtually all genetic variants. Notably, most individuals with a
22q11.2 deletion do not have the severe congenital phenotype
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formerly termed “DiGeorge syndrome,” nor do they neces-
sarily present with other features classically considered
“syndromic.”30-32 Indeed, only about half have a clinically
actionable CHD. Though TOF or other conotruncal anom-
alies are often associated, the range of cardiac anomalies is
vast, including (rarely) left-sided lesions; septal defects
(including those with early spontaneous closure) are the most
common.30-32 Studies are underway to inform reasons for
such variability. These include reduced gene dosage of several
genes of known importance in early cardiac development
(Fig. 3)32 and apparent effects of additional genome-wide
variants, though there is no evidence that a second 22q11.2
region variant within the intact chromosome 22, for example,
in TBX1, is needed to affect CHD/TOF expression
(Fig. 3).43,44

Broader consideration and implementation of clinical
genetic testing will enable our ability to observe the rele-
vance of molecular diagnosis to key outcomes, and person-
alized care, for TOF. Tables 1 and 2 summarize what is
currently known about the features and outcomes for spe-
cific CNVs and chromosomal anomalies, including those
most likely to be clinically reported for patients with TOF.
For other, individually rarer reported genetic abnormalities,
there will be some clinically relevant information available,
with references to these often provided by the reporting
clinical genetics lab.



Box 1. Rationale for clinical genetic testing
using standard genome-wide microarray.

Potential benefits
� Can improve understanding about the root cause of the te-

tralogy of Fallot, and other developmental/health issues that
are present

� Can help plan for short- and long-term management
� Can help inform what other investigations and care may be

helpful now and in the future
� May provide new support opportunities for patients and

families
� Could provide important new information about recurrence

risk (likelihood that a child/pregnancy may be affected)

Likelihood of a clinically relevant copy number variation
(CNV) to be reported
� For about 5%-25% of individuals (Fig. 2), a clinically rele-

vant CNV will be reported
� Thus, the most likely result is that no structural imbalance

variation is detected that is currently known to be clinically
relevant

B Note: This does not mean there is no genetic abnor-
mality/explanation present (eg, there may be a clinically
relevant single nucleotide variation (“point mutation”)
that this test cannot detect)

The microarray test is limited to chromosomal imbalances (deletions
or duplications), usually those over a certain size (e.g., >10,000 base
pairs, Fig. 1A), and those for which sufficient information is available to
warrant their clinical reporting.
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Further information about clinically relevant implications
of microarray testing for TOF appears below, including the
special circumstances of reproduction/recurrence risk and
prenatal/perinatal considerations, and key paediatric and adult
morbidity- and mortality-related outcomes. We begin how-
ever by summarizing limitations of the current literature.
Prevalence Estimates and Limitations of the
Available Literature

Knowledge about the genetics of TOF, including estimates
of overall prevalence and mortality/morbidity of specific ab-
errations, is affected by the research design, including cohort
studied, birth/surgical era, and methods used. Data are almost
always more complete for cardiac anatomy than for genetic or
other parameters. To our knowledge, there are no studies that
have applied uniform genetic testing of all individuals with
TOF, without a priori excluding individuals with “syndromic”
features or known syndromes such as 22q11.2 deletions and/
or more recognizable and severe autosomal anomalies.

Parallel to considering the CHD “surgical era” will be
consideration of the “genetic testing era” (Fig. 1A). One can
reasonably assume that most individuals with trisomy 21, 13, or
18 would be clinically recognizable, and thus the vast majority
would be molecularly diagnosed at birth (by karyotype for the
past 60þ years). On the other hand, many with pathogenic
CNVs or sex chromosome aneuploidies would be expected to
have no or long delayed (eg, into late adulthood) molecular
diagnosis.30,42 Although this is especially likely for the majority
of individuals with TOF who are now adults, it may include
several in the paediatric age range (Fig. 1A).Molecular diagnosis
postmortem is also rare (Fig. 1B).

Other limitations of available research relate to whether
genetic diagnoses were recorded at all, or recorded accurately,
in medical records, let alone in health administrative data
where even Down syndrome documentation and/or Interna-
tional Classification of Disease codes are known to be sub-
par.45 Consistent with this, for individuals with a confirmed
22q11.2 deletion, we have unpublished data showing that
only a minority were ever domiciled with an International
Classification of Disease code for a 22q11.2 deletion related
syndrome in health administrative data. This, in addition to
expected inadequate clinical genetic testing and other factors,
may help explain reported low prevalence of those with a
recorded diagnosis of 22q11.2DS in some recent population-
based studies of TOF.46,47
Clinical Genetic Results and Relevance to
Clinical Care of Individuals with TOF

Reproduction and recurrence risk

Over time, more and more individuals with TOF are in the
reproductive age range and are having children.48,49 This is in
the context of overall reduced reproductive fitness of TOF
recently reported in a Canadian study (70%) that excluded
individuals with 22q11.2 deletions and major chromosomal
anomalies,48 and in a Danish study of conotruncal anomalies
(71%-77%).50 Within individuals with a 22q11.2 deletion,
while there is little evidence of infertility, reproductive fitness
is somewhat reduced for those with major CHD such as TOF,
and for men, and there are more substantial reductions in
those with severe intellectual disability or psychotic
illness.30,40

For individuals without a 22q11.2 deletion or other major
chromosomal anomaly, family history data on recurrence risk
indicate a general increased risk of CHD, encompassing a
broad spectrum of associated conditions, in offspring of in-
dividuals with TOF.48 In general, the reported risk to
offspring is low (<5%) and may be somewhat lower for
affected fathers than for affected mothers with TOF.48,50

Background heritable susceptibility to CHD related to fam-
ily history has also been observed in families of individuals
with 22q11.2DS as a likely modifier of the baseline risk
imparted by the 22q11.2 deletion.51

Importantly, for individuals with a pathogenic variant, who
are at a 50% a priori risk of transmitting the variant at every
pregnancy, an affected parent’s clinical expression does not
predict the breadth of expression (cardiac, neuro-
developmental, or otherwise), or its severity, in the
offspring.30 Rather, expression in an offspring who inherits a
major genetic variant will be influenced by the (variable) ef-
fects of that variant itself and by other genetic and nongenetic
factors. This includes transmitted alleles from the affected
parent’s partner who may have a different genetic condition
and/or neurodevelopmental disorder (assortative mating).40

General guidelines are available for genetic counselling
and management, preconception, and during pregnancy,
delivery, and postpartum for individuals with CHD.6,8

There are new prenatal guidelines available specifically for
22q11.2DS that provide further information about both



Table 1. Clinically relevant copy number variation (CNV) and aneuploidies in TOF that are detectable by microarraydGenetic-, prenatal-, and reproduction-related features

Genetic variant

Estimated
prevalence
within TOF

(%)* Inherited

Prenatal
genetic

screeningy

Clinically
recognizable at/
before birth

Advanced
parental age
associated Parental testing Perinatal findings

Cardiac
features

Reproduction
affected

Offspring
affected (%)z

Typical
22q11.2
deletion

10 5%-10% Yesy Some No Recommended SGA/low birth
weight

Prematurity

PA
MAPCAs
RAA
ASA

Rarely 50

1q21.1
duplication
or deletion

1 Often No e No Recommended No 50

8p23.1
deletion

<1 Rarely No e No Recommended IUGR No 50

22q11.2
duplication

<1 Often No e No Recommended No 50

Distal 22q11
deletion

<1 Rarely No No No Recommended Prematurity, IUGR 50

45, X0 (Turner
syndrome)

<1 e Yes e No Not usually IUGR Usually e

47, XXY
(Klinefelter
syndrome)

<1 e Yes e Maternal Not usually e Usually e

Trisomy 21
(Down
syndrome)

6 e Yes Yes Maternal Not usually Prematurity, IUGR Usually e

For several of the emerging genetic conditions in the table, there is insufficient information as yet; thus boxes are left blank. Many other recurrent genetic variants detectable on clinical microarray that may be relevant
to TOF are not included here, for example, 15p11.2 deletion, a CNV that may be considered a variant of uncertain significance or “risk” variant. Also not included are the many very rare variants that are pathogenic and
clinically relevant to the individual patient but so rare that little is yet known about them, whether CNVs or single nucleotide variants (SNVs) of individual genes.

ASA, aberrant subclavian artery; IUGR, intrauterine growth retardation; LCR, low copy repeat; MAPCAs, major aortopulmonary collateral arteries; PA, pulmonary atresia; RAA, right aortic arch; SGA, small for
gestational age; TOF, tetralogy of Fallot.

* Rough estimates that will vary by age (eg, due to mortality) and availability of high-quality prevalence data.
y Prenatal diagnostic genetic testing is available for all CNVs and anueploidy (by chorionic villus sampling or amniocentesis, and microarray), in contrast to current noninvasive prenatal screening (NIPS, see text);

beyond large chromosomal anomalies, NIPS is currently reliable only for LCR22A-LCR22D 22q11.2 deletions (Fig. 3).
zLikelihood of genetic affected status, with variable expression in the offspring that is expected to be unrelated to the clinical expression of the affected parent. (Occurence of offspring in individuals with sex

chromosome anomalies and trisomies is very rare due to reduced fertility in these conditions; otherwise recurrence risk would be up to 50%.)
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Table 2. Clinically relevant detectable copy number variants and aneuploidies in TOFdExtracardiac features* likely to affect the management of TOF

Genetic variant
Intellectual/learning
disability (ID/LD)y Psychiatricy Neurologicy Respiratory

Endocrine
Metabolic

Skeletal, renal,
other

Typical 22q11.2
deletion

LD, mild ID (moderate-severe-rare)
(average-some)

Anxiety
Schizophrenia
ADD
Autism spectrum

Seizures, any age/
typez

Epilepsy (5%)
Early onset

Parkinson
disease

Other movement
disorders

Neural tube defects

Asthma
OSA
Small airways
Laryngomalacia

Hypocalcaemia (70%)
Hypothyroidism (25%)
Obesity
Type 2 diabetes mellitus
Hyperlipidaemia

Velopharyngeal
insufficiency

Hearing loss
Scoliosis (40%)
Single kidney (rare)
Other urogenital
Thrombocytopenia

(ITP rare)

1q21.1 duplication Mild-moderate ID, LD Anxiety
Schizophrenia
Autism spectrum
ADHD

Seizures (rare)
Carpal tunnel

syndrome
Hypoplasia of

corpus callosum

e Obesity
Hypercholesterolaemia
Type 2 diabetes mellitus

Macrocephaly
Hypospadias
Scoliosis
Benign cysts

8p23.1 deletion Mild-moderate ID, LD ADHD Seizures (rare)
Hypoplasia of

corpus callosum
Hypotonia

Asthma Low birth weight
Feeding difficulties in infancy

Microcephaly
Congenital

diaphragmatic
hernia

High palate
Hypospadias,

cryptorchidism
22q11.2
duplication

Mild or no LD Behavioural difficulties Hypotonia e e Velopharyngeal
insufficiency

Hearing loss
Growth delay
Gastro-oesophageal

reflux
Distal 22q11.21
deletion

Variable Behavioural difficulties Hypotonia e e Growth delay

45,X0 (Turner
syndrome)

Normal IQ Anxiety
Schizophrenia

e e Gonadal dysgenesis (delayed
puberty, infertility)

Obesity
Hyperlipidaemia
Type 2 diabetes mellitus
Hypertension
Autoimmune disorders
Thyroid disease

Short stature
Hearing loss
Vision problems
Urinary tract

malformations

47,XXY
(Klinefelter
syndrome)

Normal IQ or mild LD Anxiety
Schizophrenia
ADD

Hypotonia
Intention tremors

e Gonadal dysfunction (delayed
puberty, infertility)

Tall stature

Trisomy 21 (Down
syndrome)

Mild-severe ID Autism spectrum Seizures
Hypotonia
Alzheimer disease

Narrow trachea
Recurrent
infections

Pulmonary
hypertension

Obesity
Hypothyroidism
Type 1 diabetes mellitus

Short stature
Umbilical hernia
Hearing loss
Vision problems
Leukaemia

ADD, attention deficit disorder; ADHD, attention deficit hyperactivity disorder; ITP, immune thrombocytopenia; OSA, obstructive sleep apnea; TOF, tetralogy of Fallot.
*Detection of extracardiac features will depend on the age/developmental stage of the affected individual and to a lesser extent the rigour of examination. For example, prenatal detection would be limited to anatomic

features detectable on fetal ultrasound, neonatal features to obvious congenital anatomic anomalies; important neurodevelopmental features may not be evident until school age and neuropsychiatric and metabolic/
endocrinological associations not until adolescence or adulthood. In all cases, specific extracardiac features may or may not be present given variable expression.

yOn brain magnetic resonance imaging, findings associated with typical 22q11.2 deletions include increased prevalence of white matter hyperintensity signals, regardless of congenital heart disease presence or severity,
and developmental findings such as cavum septum pellucidum/cavum vergae, enlarged ventricles and/or sulci, and disordered neuronal migration, for example, neuronal heterotopias, polymicrogyria.

z Including neonatal seizures/cyanosis often related to hypocalcaemia; generalized, focal, absence, myoclonic, febrile, etc.
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screening and diagnostic methods and related findings, as
well as details about genetic counselling and reproductive
options for individuals with this condition.52 These com-
plement practical recommendations with respect to genetic
counselling, reproductive, and sexual health-related is-
sues.30,40 Such guidelines would be helpful for all TOF-
related genetic conditions.

Prenatal and perinatal considerations

Diagnosis of complex CHD such as TOF in a fetus requires
special considerations for pregnancy management, including
consideration of a potential genetic diagnosis.7,9-11 Genetic
testing options include diagnostic testing of fetal cells or tissue
(eg, chorionic villous sampling or amniocentesis), and prenatal
cell-free DNA screening (noninvasive prenatal screening).
Prenatal cell-free DNA screening is now available from the first
trimester for all pregnancies (at a cost). Recently published
clinical guidelines by the American College of Medical Genetics
and Genomics53 recommend that prenatal cell-free DNA
screening be offered to all pregnant patients to screen for the
main autosomal trisomies (21, 13, and 18), sex chromosome
anomalies, and conditionally for 22q11.2 deletions (meaning
that most patients would request this and most clinicians would
offer noninvasive prenatal screening for this purpose, after
discussing the benefits and limitations). It is important to
recognize that screening does not take the place of prenatal
genetic diagnosis. For example, in cases of indications such as
fetal ultrasound anomalies (including CHD), diagnostic testing
with genome-wide microarray should be offered.54

If a fetus is diagnosed with a particular genetic disease,
pregnancy, delivery, and postpartum monitoring for associated
conditions can help elucidate and prevent potential complica-
tions (Table 1).30,52,55 For fetuses with a 22q11.2 deletion, for
example, there is an elevated risk for prenatal growth abnor-
malities (small for gestational age at birth) and other conditions
(eg, polyhydramnios), regardless of the presence/absence of
CHD or the affected status of parents.36,55,56 Reproductive
outcomes may also include increased risk of pregnancy loss at
any stage, including stillbirths, related to a fetus with a path-
ogenic variant,15,37-39 emphasizing the importance of genetic
diagnosis at these developmental stages (Fig. 1B). Specialist care
and delivery at a tertiary care facility are often recommended,
regardless of the presence or absence of CHD or of the parental
affected status.30,31,52

In contrast to prenatal genetic screening, there is no
comparable newborn screening as yet for TOF-relevant ge-
netic conditions (many not clinically recognizable at birth),
including the 22q11.2 deletion.36 Newborn pulse oximetry
screening is however expected to increase early diagnosis of
TOF in liveborn infants,57 which could possibly trigger
clinical genetic evaluation.

Surgical and other cardiac-related outcomes

Multiple studies have shown that perioperative complica-
tions, though usually not immediate postoperative survival of
congenital cardiac surgery, are adversely affected in individuals
with CHD who have 22q11.2 deletions.58 These complica-
tions encompass infections, bleeding, seizures, atelectasis,
airway issues, vocal cord paralysis, need for dialysis, and so on.
In TOF, individuals (median age 17 years) with pulmonary
atresia (PA) and recorded as having a 22q11.2DS diagnosis
had significantly more cardiovascular interventions.46 22q11.2
deletions also affect patient-reported outcomes and exercise
tolerance.59,60 In a US study, CNVs of de novo origin at
22q11.2, but also at 15q25.2 and 3p25.2, were associated
with prolonged time to final extubation.41 For individuals
with 22q11.2DS, for example, attention to increased risk of
hypocalcaemia (and thus seizures), especially at surgery,
childbirth, or serious infection, may be clinically relevant.61

Tables 1 and 2 provide multiple examples of associated fea-
tures pertinent to clinical care for this and other genetically
defined conditions. Collectively, these data suggest that some
tailoring of management according to genetic etiology could
improve cardiac outcomes.

Neurodevelopmental and related outcomes

Neurodevelopmental disabilities that are relatively com-
mon in individuals with TOF are highly related to the un-
derlying genetic etiology.62 These include developmental
delays and intellectual disability/learning disabilities. For
example, the 22q11.2 deletion lowers IQ on average by 30
points, regardless of CHD, though the outcome may be
modified somewhat by additional factors, including the in-
tellectual level of unaffected parents.30-32,63 Many other
CNVs also affect the cognitive outcome and the likelihood of
developing treatable illnesses such as attention-deficit disor-
der, anxiety, and depression.62,64-66 Anxiety and depression
are common in TOF.59,67 Severe neurodevelopmental dis-
orders such as psychotic illness (eg, schizophrenia) are far
rarer, but, for example, the 22q11.2 deletion increases the
risk by 20- to 25-fold.30-32,63 Genetic diagnosis can thus
help with appreciating risk and accessing early treatment
(Table 2).30,68

Collectively, neurodevelopmental/neuropsychiatric condi-
tions may complicate care in the cardiac clinic, as patients may
be less able to independently make and keep appointments,
communicate, and follow recommendations.30 This is espe-
cially the case for patients who have treatable but untreated
neuropsychiatric conditions and/or those without family or
other tangible support systems. Families, too, are often over-
burdened, further complicating the situation.69 Likewise,
dropout at transition and transfer from paediatric to adult care
may be more likely.70 Genetic diagnosis may help identify
those needing additional supports.

Other extracardiac features / multimorbidity

TOF is among the most likely CHD to be associated with
extracardiac features that are increasingly evident as patients
age and are pertinent to potential personalizing of care
(Table 2).71

One example relates to lung function, of known impor-
tance to outcomes in adults with CHD.72 Recently, the
22q11.2 microdeletion was found to be enriched in adults
with TOF and abnormal spirometry, even when accounting
for complex CHD, scoliosis, and asthma.73 The findings
suggested both restrictive and obstructive defects, supporting
the potential value of early pulmonary function testing.73

Possible broader relevance is suggested by a recent report of
increased risk for chronic obstructive pulmonary disease in
otherwise healthy individuals with mild forms of CHD.74
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Also, scoliosis, like early neurodevelopmental outcomes, was
originally believed to be secondary to the effects of congenital
cardiac surgery. Genetically informed studies have revealed
that the prevalence of scoliosis is predominantly related to the
presence of a 22q11.2 deletion.75

Multimorbidity is prominent in 22q11.2DS, including
conditions highly relevant to cardiac care and functioning,
with many only evident later in life, for example, intellectual/
learning disability, hypothyroidism, hypoparathyroidism, and
metabolic conditions (obesity, type 2 diabetes, and
dyslipidaemia).76-78 Evidence outside of the TOF context
suggests that each clinically relevant CNV will have its own
multimorbidity profile.34

Mortality

There are replicated findings that genetic causation is
relevant to early and late mortality and longevity expectations
for TOF, though the limitations of current clinical genetic
testing data are also evident.

Mortality in the first year of life for liveborn infants with
TOF in North Carolina identified neonatally to have a
22q11.2 deletion (n ¼ 34) was reported to be 27% (vs 15%
mortality overall for the total 496 infants).79 There may be
some parallels with infant mortality findings in a Qu�ebec
TOF birth cohort study. Nearly half of all-cause mortality (at
median age 17 years) occurred in infancy before surgical repair
or in those for whom such repair was unavailable; in those
without PA, this infant mortality was associated with genetic
conditions, including a recorded diagnosis of 22q11.2DS.46

In a recent US study of patients with TOF, in a subset
without a documented extracardiac anomaly, a genetic ab-
normality (most discovered on microarray) was independently
associated with increased infant operative mortality.22 Another
US study reported that CNVs at 15q25.2 and 15q11.2 that
arose as de novo events were associated with worse transplant-
free survival compared with the rest of a large general, mostly
paediatric, CHD sample.41 Also potentially pertinent to early
mortality is a report showing high yield of CNVs in infants
with sudden unexplained death (none with CHD).23

With respect to late outcomes, in a Canadian study of adults
(average age approximately 30 years) with TOF, the 22q11.2
microdeletion was found to be a significant predictor of adult
all-cause mortality, even after accounting for the higher prev-
alence of PA, compared with other (mostly unknown; Down
syndrome was excluded) etiologies; the probability of survival
to age 45 years in those without PA was 72% and 98%,
respectively.80 Excess mortality in those with a 22q11.2 dele-
tion was evident only after age 30 years and was primarily
related to cardiovascular causes.80 Findings were comparable in
a European study of similarly-aged individuals with TOF or
PA/ventricular septal defect.81 Adolescent/young adult mor-
tality was also reported to be elevated in a multicentre US
study82 and in a Swedish population-based study,47 even
though the prevalence of those with a recorded diagnosis of
22q11.2DS was low (2.2% and 4.1%, respectively). An inde-
pendent Qu�ebec TOF birth cohort study (average age 17 years)
found excess lifetime mortality in the 71 individuals with a
recorded diagnosis of 22q11.2DS but only for the subset of 27
with PA.46 No adult mortality data are yet available outside of
major chromosomal anomalies and 22q11.2DS.
Another means of examining the outcome is to look within
a molecularly defined genetic subgroup. Within 22q11.2DS,
for example, longevity of adults is significantly reduced when a
major CHD such as TOF is present (survival to age 45 years:
72%, vs those with no such CHD 95%).83 Late adult mor-
tality is reported to be elevated in the presence of several other
recurrent CNVs, compared with their absence, in a relatively
healthy, that is, without major CHD, elderly sample (UK
Biobank).34 At the other end of life, within 22q11.2DS,
paediatric mortality is estimated at 5%-15%, with most deaths
occurring during the first year of life, the majority related to
complex CHD.31

Collectively, these studies suggest that patients with pre-
mature mortality are likely to be enriched for potentially
identifiable genetic causation, whether or not there is detect-
able cardiac or extracardiac complexity (Fig. 2). Further
research, including postmortem genetic analysis at all life
stages (Fig. 1B), is needed in this important area.
Variants at the Individual Gene LeveldPotential
Clinical Implications

The genetic architecture of TOF, where pathogenic CNVs
discoverable by clinical microarray dominate, clearly differs
from that of cardiomyopathy where deleterious variants in
defined, functionally related genes are at the forefront of
causation.84 Although the advent of genome-wide sequencing
with systematic adjudication of variants with respect to
pathogenicity has substantially increased our knowledge about
individual genes for TOF, there remains no standard recom-
mendation for clinical genetic testing in this regard.85 Clinical
geneticists will use American College of Medical Genetics and
Genomics criteria to adjudicate second-line (usually exome
sequence-based) testing for patients with TOF, relying on the
literature, beyond genes for known TOF/CHD syndromes,
and updated guidance for secondary findings.24

Numbers remain relatively small for individual genes or
variants, with limited data on clinical features, key outcomes,
or segregation within families. For example, multicentre
exome sequencing studies of, mostly paediatric, TOF samples
have reported a notable prevalence of deleterious variants in
the FLT4 gene, encoding vascular endothelial growth factor
receptor 3 (VEGFR3).86,87 In the US study, 6 of the 10
probands reported had inherited the FLT4 variant from an
“unaffected” parent (ie, with no serious CHD).86

The first ever whole genome sequencing study of TOF was
Canadian, using a subset of an adult cohort with TOF pre-
viously studied using microarrays, and excluding those with a
22q11.2 deletion.16 Highly damaging variants in FLT4 were
found in 5.1% of individuals, with discovery of comparable
variants in 7 other genes (including KDR), thus totalling
11.4% with variants in a VEGF signalling pathway.16 Clinical
relevance was suggested by enrichment for absent pulmonary
valve and right aortic arch, but not for PA, and with only rare
extracardiac anomalies and intellectual disability.16

Genome-wide sequencing studies place previously identi-
fied genes and variants, some for clinically recognizable rare
syndromes where referral to clinical genetics would be ex-
pected, in a broader context. Gene networks implicated for
TOF highlight VEGF/Notch dysregulation, including
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deleterious variants in FLT4, KDR, and NOTCH1, but also
rarer variants in other genes, for example, TBX1 (22q11.2
deletion region), RAF1, RASA1 (RASopathy/Noonan syn-
drome), JAG1 (Alagille syndrome), CHD7 (CHARGE syn-
drome), and genes encoding other transcription factors (eg,
NKX2-5 and GATA4).12,16,85,87-93 When TOF-associated
noncardiac phenotypes, for example, neurodevelopmental
disorders and multiple congenital anomalies, or consanguin-
eous cohorts, are considered, the spectrum of genetic findings
becomes even wider.94 Collectively, these results further
illustrate the genetic heterogeneity of TOF and support future
gene discovery efforts. The individual rarity of variants, each
potentially conveying its own risk profile, promotes the value
of international collaborative efforts to better understand their
impact and variability of expression.94

As for pathogenic CNVs, the identification of lower impact
(modifying) factors (Fig. 3) will be important. Assessing a
global common variant (single nucleotide polymorphisme
based) background effect awaits the availability of summary
statistic data to calculate polygenic risk scores for TOF.95

Some initial studies are demonstrating the potential clinical
utility of genome sequencing that can assess multiple variant
types simultaneously, including sequence-based variants and
CNVs.96,97 Genetically designated homogeneous groups also
provide the opportunity to perform clinical trials of prenatal
neuroprotective strategies, which may be able to be informed
by animal or cellular models.98

These genetic advances have led some to predict a shift
from a phenotype-first to a genotype-first approach in clinical
medicine for conditions of a large societal impact, given the
expected yields and benefits.99 Although futuristic at this
point in clinical practice, implementing the recommendation
to consider clinical microarray for all patients with TOF
(Fig. 1) could be considered a fundamental step forward in
helping prepare for the sea change that genome sequencing
will bring to medicine as a whole.
ConclusiondOpportunities for Clinical Care
TOF genetics remain a relatively young area with much

promise for cardiologists to be at the forefront of molecular
and personalized medicine that can improve patient care. The
highest impact genetic variants with the most severe cardiac
and extracardiac expression have been the first to be identified,
and their clinical relevance clearly established. Because most
are CNVs or other chromosomal imbalances, the vast majority
will be detectable using genome-wide microarray.

This standard, yet underutilized, test is available to front-
line clinicians with the recommendation that clinical micro-
array be ordered and basic information (genetic counselling/
expected outcome) about this provided (Box 1, Figs. 1 and 2,
Tables 1 and 2) ahead of referral to medical genetics.19 For the
rarest CNVs and for other genetic changes, for example, those
affecting individual genes, there is accumulating knowledge
about their role in causing TOF but less information available
yet about their associated, especially long-term, outcomes and
variability of expression. Clinical elucidation of such variants
will contribute to our understanding.

Looking ahead, in the relatively near future, genome
sequencing will come into the clinical realm, likely first in
paediatrics and later for adults, with further downstream
enhancement of understanding etiology, pathogenesis, and
clinical trajectory of TOF. Knowledge about baseline cardiac
anatomy, surgical remodelling, and cardiac functioning will
remain foundational, with genetics providing an important
“plus” for patient care, for families, and for clinicians. Ge-
netic advances promote consideration of a multidisciplinary
team approach (eg, CHD cardiologist, psychiatrist, social
worker, endocrinologist, and other specialists as necessary)
for the increasing numbers of patients with multisystem
conditions at a “hub” centre of excellence. The Dalglish
Family 22q Clinic (https://22q.ca) provides a model that is
integrated with the ACHD programme at Toronto General
Hospital.

Old ideas about restricting genetic consideration and
testing to particular phenotypes (eg, based on facial features)
or time periods (eg, perinatal) should be discarded. For all
patients with this complex CHD, regardless of age and co-
occurring conditions, identification of genetic causation
provides the opportunity for preventive care, other clinical
options, and increasing knowledge that will be meaningful for
understanding outcomes and lifelong management.
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