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Abstract

Roughly one third of the proteome is initially destined for the eukaryotic endoplasmic reticulum or 

the bacterial plasma membrane1. The proper localization of these proteins is mediated by a 

universally conserved protein targeting machinery, the signal recognition particle (SRP), which 

recognizes ribosomes carrying signal sequences2–4 and, via interactions with the SRP receptor5,6, 

delivers them to the protein translocation machinery on the target membrane7. The SRP is an 

ancient ribonucleoprotein particle containing an essential, elongated SRP RNA whose precise 

functions have remained elusive. Here, we used single molecule fluorescence microscopy to 

demonstrate that the SRP-receptor GTPase complex, after initial assembly at the tetraloop end of 

SRP RNA, travels over 100 Å to the distal end of this RNA where rapid GTP hydrolysis occurs. 

This movement is negatively regulated by the translating ribosome and, at a later stage, positively 

regulated by the SecYEG translocon, providing an attractive mechanism to ensure the productive 

exchange of the targeting and translocation machineries at the ribosome exit site with exquisite 

spatial and temporal accuracy. Our results show that large RNAs can act as molecular scaffolds 

that enable the facile exchange of distinct factors and precise timing of molecular events in a 

complex cellular process; this concept may be extended to similar phenomena in other 

ribonucleoprotein complexes.

Cotranslational protein targeting face fundamental challenges in both spatial and temporal 

coordination. Spatially, both the SRP2–4 and SecYEG (or Sec61p) translocon7 contact the 

L23 ribosomal protein and the signal sequence, raising puzzling questions about how the 

translating ribosome is transferred from the targeting to translocation machinery. 

Temporally, guanosine-5′-triphosphate (GTP) hydrolysis by the SRP-SRP receptor complex, 
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which drives its irreversible disassembly8, must be accurately timed during cargo delivery 

and unloading to avoid abortive reactions9. Such accurate spatial and temporal coordination 

is required in all protein targeting pathways, but its underlying molecular mechanism is not 

understood. Here, single molecule experiments reveal large-scale rearrangements in the 

SRP, providing a unifying molecular mechanism to explain how such coordination is 

achieved during co-translational protein targeting.

The bacterial SRP is comprised of an SRP54 protein subunit, Ffh, and a 114-nucleotide SRP 

RNA1. Ffh contains two domains connected by a flexible linker: a methionine-rich M-

domain, which recognizes the signal sequence10 and binds the SRP RNA11, and a GTPase, 

NG-domain that interacts with a homologous NG-domain in the SRP receptor, FtsY5,6 (Fig. 

1a). The SRP RNA is a universally conserved and essential SRP component, but its precise 

roles are not completely understood. Most previous work12–15 focused on the GGAA 

tetraloop that caps one end of this RNA, which accelerates the initial SRP-FtsY assembly by 

electrostatically interacting with FtsY13. These findings, however, do not explain why the 

SRP RNA has a conserved elongated structure16. Valuable clues come from a recent crystal 

structure that found the Ffh-FtsY GTPase complex at another docking site near the 5′,3′-

distal end of this RNA, where mutations disrupt GTPase activation17 (Fig. 1a, distal state). 

This posits an attractive hypothesis in which the Ffh-FtsY GTPase complex, after initial 

assembly near the tetraloop12–15, can relocalize to the distal site of the SRP RNA ~100Å 

away17. Nevertheless, no functional evidence for the relocalization is available, nor are the 

importance, timing, mechanism, and regulation of such a large-scale movement understood.

To address these questions, we used single molecule fluorescence resonance energy transfer 

(smFRET) and total internal reflection fluorescence (TIRF) microscopy to directly detect 

conformational dynamics of individual SRPs18,19. Migration of the SRP-FtsY GTPase 

complex on the SRP RNA was tracked using FRET between a donor (Cy3) attached to the 

FtsY NG-domain and an acceptor (Quasar670) labeled near the RNA distal end (Fig. 1a). 

Stable SRP-FtsY complexes, formed with the non-hydrolyzable GTP analogue 5′-guanylyl-

imidodiphosphate (GMPPNP), displayed rapid transitions among multiple FRET states (Fig. 

1b,c). A low FRET (~0.1) state, L, was assigned to the proximal state in which the GTPase 

complex resides near the SRP RNA tetraloop13. A high FRET (~0.8) state, H, was attained 

~20% of the time and assigned to the distal state in which the GTPase complex stably docks 

at the distal site, as verified below. Cy3 attached to the Ffh NG-domain showed similar 

transitions but with a lower FRET value in the H-state (Supplementary Fig. 2a,b), consistent 

with Ffh being further from the distal site than FtsY17. These results directly demonstrate 

dynamic movements of the SRP-FtsY GTPase complex on the SRP RNA that span over 

100Å.

We used Hidden Markov Modeling (HMM)-based statistical analyses to determine the most 

likely sequence of FRET transitions20. This revealed an ensemble of additional states with 

intermediate FRET values (0.3–0.6; M1 and M2) and extremely short lifetimes (Fig. 1b–d 

and Supplementary Fig. 2b–g, 3a–c), representing alternative binding modes of the GTPase 

complex on the SRP RNA. The transition information was pooled into a transition density 

map (TDP) that describes the number of distinct FRET states, their FRET values, and their 

transition frequencies (Fig. 1e and Supplementary Fig. 2h). Additionally, the kinetics of 
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FRET transitions was obtained from dwell time analyses (Fig. 1f–g and Supplementary Fig. 

2i–o,3d–h). While molecules leaving L rapidly transitioned to all the other states, the H state 

had a longer lifetime than M1 and M2 and was hence more populated (Fig. 1d), indicating 

more stable docking of the GTPase complex in this state. 58% of transitions to H occurred 

directly from L, whereas molecules in the intermediate FRET states transitioned primarily 

back to L (Fig. 1e and Supplementary Fig. 2h). Thus, correct docking at the RNA distal site 

requires extensive searching that involves frequent trial-and-error.

To test whether the H state is responsible for GTPase activation, we isolated mutant RNAs 

that specifically perturb the distal docking site. The 82mer RNA, which lacks this site17, 

reduced GTPase activation 6-fold, whereas a ‘superactive’ mutant, 99A, enhanced GTP 

hydrolysis 2.5-fold (Fig. 2a, green bars and Supplementary Figs. 1b,4a). The GTPase 

activity of these mutants quantitatively correlated with their efficiency of reaching the H 
state (Fig. 2a and Supplementary Figs. 5,6), strongly suggesting that activated GTP 

hydrolysis occurs at the RNA distal site.

To test the importance of the RNA distal site in protein targeting, we measured the ability of 

SRP and FtsY to deliver a model substrate, preprolactin (pPL), to ER microsomes21. 

Translocation of pPL results in cleavage of its signal sequence, allowing the targeting and 

translocation efficiency to be quantified (Supplementary Fig. 4b). Further, the specificity of 

targeting was tested using pPL variants in which the signal sequence is systematically 

varied9 (Supplementary Fig. 4d). Mutant 82mer RNA significantly reduced the targeting of 

correct substrates (wildtype-, 8L- and 7L-pPL; Fig. 2b,c and Supplementary Figs. 4c,e). In 

contrast, the superactive 99A RNA targeted these substrates more efficiently than the 

wildtype SRP, without compromising the discrimination against incorrect substrates (Figs. 

2b,c and Supplementary Figs. 4c,e). Thus the SRP RNA distal site, though not essential for 

cell survival11, does enhance efficient and accurate co-translational protein targeting.

SRP and FtsY undergo an unusual GTPase cycle, driven by multiple conformational 

rearrangements in their heterodimer that culminate in GTPase activation (Figs. 3a–d, 

cartoon)22–24. We asked how these rearrangements within the GTPase complex drive its 

global movements on the SRP RNA, using conditions that block the GTPase cycle at 

distinct stages22,23. SRP by itself exhibited no movements on the RNA (Fig. 3a and 

Supplementary Fig. 7a). Recruitment of FtsY begins with a transient early intermediate, 

which lacks close contacts between the G-domains and hence can be isolated by leaving out 

GTP analogues12,24. No GTPase movement was observed at this stage either (Fig. 3b and 

Supplementary Fig. 7b). Subsequently, GTP-dependent rearrangements give a stable closed 

complex, which lacks optimal positioning of the catalytic loops and can be isolated by a 

mutation, FtsY(A335W), in the catalytic loop (Fig. 3c,d)22,23. Although GTPase movements 

were observed in the closed complex, most of them only reached M1 and M2 but did not 

significantly populate the H state (Figs. 3c–e and Supplementary Figs. 7c,d). Thus, GTP-

induced rearrangements within the NG-domain complex drive its global movements on the 

SRP RNA. Moreover, stable GTPase docking at the RNA distal site requires optimal 

positioning of the catalytic loops, explaining why mutants that block GTPase activation, 

such as FtsY(A335W), severely impair protein targeting21.
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If the GTPase complex only transiently reaches the SRP RNA distal site where GTPase 

activation occurs, previous ensemble measurements8 would have significantly 

underestimated the hydrolysis rate. We therefore performed real-time GTPase assays using 

the smFRET setup. If GTP hydrolysis at the distal site, which drives irreversible SRP-FtsY 

dissociation, occurred faster than their return to the proximal state, we would observe high 

FRET ‘bursts’ with GTP instead of the reversible transitions with GMPPNP. This was 

indeed observed (Fig. 3f). The duration between these bursts has a rate constant (0.59s−1; 

Supplementary Fig. 8b) expected for rearrangement to the activated complex (~1s−1)12 and 

is similar to the ensemble GTPase rate (0.7s−1)8, strongly suggesting that the latter is rate-

limited by GTPase movement to the RNA distal site. The duration of the high FRET bursts 

includes GTP hydrolysis and subsequent SRP-FtsY disassembly and exhibits a rate constant 

of 7.1s−1 (Supplementary Fig. 8a), providing a lower limit for the actual hydrolysis rate and 

is at least 10-fold faster than ensemble measurements8.

These results also show that GTP drives almost irreversible movement of the GTPases to the 

RNA distal site, necessitating accurate control of the timing of this movement. Indeed, 

ribosome-nascent chain complexes (RNC or cargo) delay GTPase activation in the SRP-

FtsY complex9,23 (Fig. 4a, wt). This effect, termed ‘pausing’, prevents premature GTP 

hydrolysis and is essential for ensuring the efficiency and specificity of the SRP pathway9. 

We asked whether the RNC negatively regulates the GTPase movement to the SRP RNA 

distal site. RNCFtsQ, which carries an obligate SRP substrate FtsQ, completely abolished the 

GTPase movements on the RNA (Fig. 4b and Supplementary Figs. 9a–e). This is specific to 

the correct cargo, as RNCLuciferase, which contains no signal sequence, exerted no effects 

(Fig. 4c and Supplementary Fig. 9f). Further, GTP hydrolysis in the presence of RNC is no 

longer affected by mutations in the RNA distal end (Fig. 4a and Supplementary Figs. 10a,b), 

but is still reduced by a mutation in FtsY active site22 (Supplementary Figs. 10d,e). These 

results demonstrate that correct cargos stabilize the GTPase complex in the proximal state 

and prevent its relocalization to the RNA distal site, thus exerting the ‘pausing’ effect.

On the target membrane, RNC must be transferred from the targeting to the translocation 

machinery. The mechanism of this transfer and its timing have remained long-standing 

challenges. To test whether the translocon helps regulate these events, we added the 

SecYEG complex to the RNCFtsQ-SRP-FtsY complex (Supplementary Fig. 11a). SecYEG 

restored the high FRET state (Fig. 4d,e). It also reversed the cargo-induced ‘pausing’ and 

restored efficient GTP hydrolysis (Fig. 4a and D.A. & S.S., manuscript under revision). 

Neither effect was observed with DDM alone (Supplementary Fig. 11b) nor with mutant 

82mer RNA (Fig. 4f and Supplementary Fig. 10c) or FtsY(A335W) (Supplementary Fig. 

11c). Thus, SecYEG drives productive docking of the GTPase complex at the RNA distal 

site and thus re-activates GTP hydrolysis.

How does SecYEG restore the GTPase movements? Although SecYEG could simply 

remove the RNC from the SRP-FtsY complex, the following strongly suggests that this is 

not the case. Compared to the SRP-FtsY complex alone, GTPase movements in the presence 

of RNCFtsQ and SecYEG displayed a distinct pattern, characterized by fewer transitions to 

intermediate FRET states, more frequent docking (Figs. 4g,h) and longer dwell times in the 

H state (Figs. 4d,i). These SecYEG-induced changes were not observed without RNC 
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(Supplementary Figs. 11d,e). To directly test if RNC remains on the targeting complex, we 

labeled the RNC with Alexa647, which was found to colocalize with labeled SRP 

(Supplementary Fig. 12). These colocalized spots remain after incubation with SecYEG 

(Supplementary Figs. 12c,d), indicating that RNC was not displaced by SecYEG. These data 

imply that SecYEG forms a quaternary complex with RNC, SRP, and FtsY; which could 

represent a transient intermediate in the targeting and translocation reaction. These results 

also suggest that SecYEG drives the GTPase movement via two mechanisms: (i) displacing 

the GTPase complex from the proximal site, as indicated by the reappearance of H state 

even with RNC present (cf. Fig. 4d vs. Supplementary Fig. 9b); and (ii) prolonging 

productive docking at the RNA distal site (Fig. 4i). Finally, nonproductive movements to 

intermediate FRET states are minimized with RNC and SecYEG present (Fig. 4g,h). 

Considering the size of SRP RNA relative to the ribosome, the RNC possibly masks 

nonproductive GTPase docking sites on the SRP RNA, which could also explain the 

conserved length of this RNA.

In summary, we demonstrate that the SRP RNA provides a molecular scaffold that mediates 

large-scale movements of the SRP-FtsY complex, which are tightly regulated by the GTPase 

cycle of SRP and FtsY, the translating ribosome, and the SecYEG translocon. Together with 

previous studies, we propose a molecular model for co-translational protein targeting (Fig. 

4j). Upon cargo recognition (step 1), the SRP RNA tetraloop is optimally positioned 

adjacent to the Ffh NG-domain, allowing efficient recruitment of FtsY near the ribosome 

exit site12–15 (step 2). GTP-induced rearrangements primes23,25 but is insufficient to release 

the SRP-FtsY GTPase complex from the vicinity of ribosome due to the RNC’s ‘pausing’ 

effect. SecYEG is required to drive GTPase relocalization to the SRP RNA distal site (step 

3). This vacates the ribosome exit site and allows SecYEG to initiate contacts with L23, thus 

enabling the coordinated transfer of RNC from the targeting to translocation machinery (step 

4). Concomitantly, GTPase docking at the RNA distal site triggers rapid GTP hydrolysis, 

driving the disassembly and recycling of SRP and FtsY (step 4–5). This provides an 

attractive mechanism to allow the concerted exchange of SRP and SecYEG at the ribosome 

and the precise timing of GTP hydrolysis, thus minimizing abortive reactions due to 

premature SRP-FtsY disassembly or nonproductive loss of cargo.

Nucleic acid-mediated protein movement is a widespread phenomenon and has been 

observed with the spliceosome26, helicases27,28, and type I restriction endonucleases29,30. 

Our results here enrich these findings and further suggest that large RNA molecules can 

provide useful molecular scaffolds to coordinate multiple protein interactions and large-

scale protein rearrangements, thus enabling productive exchange of different factors and 

precise timing of molecular events in a cellular pathway. This may provide general 

principles for understanding similar phenomena in other ribonucleoprotein particles.

Methods

Plasmids

Plasmids for in vivo expression of Ffh, full-length FtsY, and SRP RNA and for in vitro 

transcription of FtsQ, luciferase, and pPL and its signal sequence variants have been 

described8,9,31. The pEK20 construct for SecYEG expression was a kind gift of Arnold 
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Driessen32. Plasmids for mutant SRP RNAs and mutant proteins were constructed using the 

QuikChange mutagenesis protocol (Stratagene) following manufacturer’s instructions. The 

plasmid for in vitro transcription of Hammerhead-SRP RNA-HDV was a generous gift from 

Adrian Ferre-D’Amare33. The hammerhead coding sequence was removed and the 5′-end of 

SRP RNA was extended using the QuikChange mutagenesis protocol (Stratagene) to make 

in vitro transcription constructs for smRNA.

Protein preparations

Wildtype and single cysteine mutants of Ffh and FtsY were expressed and purified as 

described previously8. Briefly, Ffh expression was induced in logarithmically growing 

BL21(DE3)pLysE cells with 1 mM IPTG. The soluble fraction from lysed cells were 

purified by cation-exchange chromatography on the SP Sepharose Fast Flow resin (GE 

Healthcare) using a gradient of 0.25–1 M NaCl, and was further purified by gel filtration 

chromatography on the Superose12 column (Amersham Biosciences). His6-tagged full-

length FtsY was expressed in BL21(DE3)pLysS cells by induction with 0.5 mM IPTG in 

logarithmically growing cells. The soluble fraction from lysed cells was purified by anion 

exchange chromatography using Q Sepharose Fast Flow resin (GE Healthcare) with a 

gradient of 150–500 mM NaCl, followed by affinity purification using Ni-NTA resin 

(Qiagen). For GTPase assays, FtsY was further purified by anion exchange chromatography 

on the MonoQ column (Amersham Biosciences) using a gradient of 150 –350 mM NaCl. All 

proteins were exchanged into SRP buffer (50 mM KHEPES, pH 7.5, 150 mM KOAc, 2 mM 

Mg(OAc)2, 2 mM DTT, 0.01% Nikkol) before use.

Detergent-solubilized SecYEG was expressed in BL21(DE3) cells with 0.5 mM IPTG and 

was purified following published procedures32,34,35. Cells were lysed by sonication and the 

membranes were collected by ultracentrifugation. SecYEG was extracted and purified by 

cation exchange chromatography on the SP-Sepharose Fast Flow resin (GE Healthcare) 

followed by affinity purification with Ni-NTA (Qiagen). DDM (Affimetrix) was used for 

purification of solubilized SecYEG, which has been shown to be fully functional in binding 

RNC (D.A. & S.S. manuscript)36, in mediating nascent peptide translocation36, and 

stimulating SecA ATPase activity37.

Fluorescence labeling

Single cysteine mutants of Ffh and FtsY were labeled with Cy3-maleimide (GE Healthcare) 

as described12. Protein concentration during labeling was 50 – 100 μM, and the dye was in 

10-fold molar excess. Labeling reaction was carried out in buffer A (50 mM KHEPES, pH 

7.0, 300 mM NaCl, 2 mM EDTA, 10% glycerol) with gentle shaking at room temperature 

for 2 hours. Unconjugated dyes were removed by gel filtration chromatography using 

Sephadex G-25 resin (Sigma). Mass-spectrometry confirmed >95% labeling efficiencies. 

Fluorescence labeling and modifications of the SRP RNA for surface immobilization (Fig. 

1a and Supplementary Fig. 1b) did not affect the activity of SRP and FtsY (Supplementary 

Fig. 1d).

Fluorescent DNA probes for hybridization with the mRNA on RNC were prepared by 

incubating NH2-modified DNA oligo (IDT) with a 10-fold excess of Alexa Fluor 647 
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carboxylic acid succinimidyl ester (Invitrogen) for an hour at 37 °C. Excess dyes were 

removed by HPLC.

RNA preparation

Wildtype SRP RNA was expressed in vivo and purified as described8. SRP RNAs for 

smFRET experiments (smRNA; Supplementary Fig. 1b) were prepared by in vitro 

transcription using T7 polymerase according to the Megascript protocol (Ambion). The 3′-

end of SRP RNA coding sequence was fused to that of an HDV ribozyme (sequence: GGG 

CGG CAT GGT CCC AGC CTC CTC GCT GGC GCC GCC TGG GCA ACA TTC CGA 

GGG GAC CGT CCC CTC GGT AAT GGC GAA TGG GAC C). Self-cleavage of the 

HDV ribozyme occurred during in vitro transcription to generate a homogeneous 3′-end of 

the SRP RNA. Purified smRNA was annealed to a complementary DNA splint by the 

following procedures: (1) heat the TE buffer (10 mM Tris-HCl, pH 7.0, 2 mM EDTA) 

containing 10 μM DNA and 20 μM smRNA for 5 minutes at 75 °C. (2) Gradually cool to 50 

°C over a period of 30 minutes. (3) Add 12 mM MgCl2 to the mixture. (4) Gradually cool to 

room temperature over a period of 30 minutes. The annealed DNA-smRNA hybrids were 

stored at −80 °C.

Messenger RNAs for in vitro translation were generated by in vitro transcription using T7 

(for RNC prep) or SP6 (for targeting assays) polymerase following the Megascript protocol 

(Ambion).

Preparation of RNCs

Synchronized RNCs with defined nascent chain length and sequence were prepared as 

described previously31. In short, mRNAs encoding a Strep3 tag at the N-terminus, the first 

74 amino acids of FtsQ or luciferase, and a SecM translation stall sequence at the C-

terminus were translated by S100 extract as described31. RNC from the translation mixture 

was purified by affinity chromatography using the streptactin resin (IBA), collected by 

ultracentrifugation, and re-dissolved in SRP buffer and stored at −80 °C. RNCs used for 

GTPase assay were further purified by ultracentrifugation and fractionation on a 10 – 50% 

sucrose gradient as described31.

RNCFtsQ was fluorescently labeled by incubation with fluorescent DNA probes 

complementary to the mRNA for 3 hours at room temperature. Labeled RNC was isolated 

by ultracentrifugation and re-dissolved in SRP buffer.

Single molecule instrument

Objective-type TIRF microscope was home-built based on an Olympus IX-81 model as 

described19. Green (532nm) and red (635nm) lasers were focused in a 100x oil immersed 

objective. Scattering light was removed by 560 nm and 660 nm long pass filters (Chroma) 

for the green and red lasers, respectively. Cy3 and Quasar670 signals were split by a 

dichroic mirror and simultaneously focused onto the Ixon 897 camera (Andor) through DV2 

Dualview (Photometrics). Data were recorded at 30 ms time resolution.
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PEGylated slides and coverslips

PEGylated slides and coverslips were prepared based on an existing protocol19. Briefly, 

quartz slides and coverslips were treated sequentially with 10% alconox, acetone, and 10 M 

KOH. The surfaces were then burnt with a propane torch to remove autofluorescence. 

Aminosilation reactions were carried out in methanol with 5% (v/v) HOAc and 1% (v/v) 

aminopropylsilane. PEGylation reactions were carried out in 100 mM NaHCO3 buffer 

containing 20% (w/v) PEG and 0.6% (w/v) biotin-PEG. PEGylated slides and coverslips 

were stored in vacuum at −20 °C and assembled into flow chambers before use.

Single molecule assay

To remove aggregates, all protein samples were ultracentrifuged at 100,000 rpm (Optima 

TLX, Beckman Coulter) for an hour before use. PEGylated slides and coverslips were 

assembled to form a flow chamber. 0.2 mg/ml neutravidin was applied to the chamber and 

incubated for 10 minutes before flowing in molecules of interest.

SRP complexes were assembled in SRP buffer under the following conditions. SRP-FtsY 

complex with labeled Ffh: 1 μM DNA-smRNA hybrid, 2 μM Ffh-Cy3, 5 μM FtsY, 100 μM 

GMPPNP. SRP-FtsY complex with labeled FtsY: 1 μM DNA-smRNA hybrid, 2 μM Ffh, 3 

μM FtsY-Cy3, 100 μM GMPPNP. RNC-SRP-FtsY complexes: 200 nM DNA-smRNA 

hybrid, 400 nM Ffh-Cy3, 500 nM RNCFtsQ or 1 μM RNCLuciferase, 1 μM FtsY, 100 μM 

GMPPNP. SecYEG solubilized in 0.02% DDM was added to RNCFtsQ-SRP-FtsY complex 

at 10 μM. The samples were then diluted to 50 pM in imaging buffer (SRP buffer 

supplemented with 0.4% glucose and 1% Gloxy in Trolox), flowed onto the sample chamber 

and incubated for 5 minutes before imaging. Movies were recorded at 30 ms intervals for up 

to 3 minutes until most fluorescent molecules were photobleached. A red laser was applied 

at the end of the movie to confirm the presence of immobilized SRP.

Data analysis

Single molecule data were processed by scripts written in IDL and Matlab. Briefly, 

fluorescent peaks in the images were identified and traced throughout the trajectory. Traces 

that showed a single donor bleaching event were used for data analysis. Hidden Markov 

Modeling was calculated using the HaMMy program20. Transition density map was 

generated by TDP program20 using the output from HaMMy. FRET histograms were 

generated using home-written script in Matlab19. Transition kinetics between different states 

was obtained by exponential fits to dwell time histograms. Two-dimensional scatter plots of 

the average dwell time of individual molecules during transitions were generated using the 

home-written script in Matlab.

GTPase assay

GTPase rate constants were determined using a well-established GTPase assay8. In general, 

reactions contained 100 nM Ffh, 200 nM SRP RNA, 100 μM GTP (doped with γ-32P-GTP), 

varying concentrations of FtsY, and 250 nM RNCFtsQ and 10 μM SecYEG where 

applicable. Reactions were quenched with 0.75 M KH2PO4 (pH 3.3) at different time points, 

separated by thin layer chromatography (TLC), and quantified by autoradiography.
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Translocation assay

Assays for co-translational protein targeting and translocation were carried out as 

described21,38. Reactions contained 10 μL in vitro translation mixtures synthesizing 35S-

methionine labeled pPL or pPL signal sequence variants, to which 200 nM Ffh, 333 nM 

wildtype or mutant SRP RNA, 300 nM FtsY and 0.5 eq/μL of salt washed, trypsin digested 

microsomal membrane was added to a total volume of 15 μL. Reactions were analyzed by 

SDS-PAGE followed by autoradiography.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. smFRET-TIRF microscopy reveals dynamic movements of the SRP-FtsY complex on 
the SRP RNA
a, smFRET setup for the SRP-FtsY complex. FtsY C345 is labeled with Cy3. The 5′-end of 

the DNA splint (2 nt from the 3′-end of SRP RNA) is labeled with Quasar670. b, 

Fluorescent signals (upper) and FRET trajectory (lower) of the SRP-FtsY complex in 

GMPPNP. Hidden Markov Modeling (HMM) of the FRET trajectory is in navy. The arrow 

denotes the bleaching of Cy3, after which Quasar670 was excited using a 635nm laser to 

confirm the presence of the complex. c, Magnification of the grey box in b to depict the four 

FRET states resolved by HMM. d, smFRET histogram depicting the distribution of 

molecules in different states. In M state, the M1 and M2 states are binned together. e, 

Transition density plot (TDP) for the GTPase movements. f, Analysis of the transition 

kinetics between L and H states. Exponential fits of the data gave the transition rate 

constants in g.
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Figure 2. The distal site of SRP RNA is crucial for GTPase activation and protein targeting
a, Correlation between GTPase rate constants in the SRP-FtsY complex (green bars) and the 

frequency of reaching the high FRET state (purple bars) for wildtype (red), 82mer (blue), 

and 99A SRP RNA (orange). Data represent mean±s.d. (n=5). b–c, Co-translational 

targeting and translocation of pPL (b) and its signal sequence variants (c) mediated by the 

wildtype and mutant SRPs. Color codings are the same as in a. Reactions in the absence of 

SRP RNA are in black. Data represent mean±s.d. (n=3).
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Figure 3. Conformational rearrangements within the SRP-FtsY GTPase complex drive its 
movement to the RNA distal site
a–d, smFRET histograms of free SRP in the open state (a) and of the SRP-FtsY complex in 

the early (b), closed (c), and activated (d) states. Conditions for isolating each 

conformational state are described in the text and Methods. e, Summary of the FRET 

distributions. f, A representative smFRET trajectory of the complex incubated in GTP. The 

arrow denotes a burst of high FRET that results from GTPase docking at the distal site 

terminated by rapid GTP hydrolysis driving complex disassembly. Δτ denotes the duration 

of the high FRET burst.
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Figure 4. RNC and SecYEG regulate GTPase movements on the SRP RNA
a, Effect of RNCFtsQ (grey bars) and SecYEG (purple bars) on the GTPase activity of the 

SRP-FtsY complex assembled with the wildtype, 82mer, and 99A SRP RNA. Data represent 

mean±s.d. (n=3). b–c, smFRET histograms of the SRP-FtsY complex bound to RNCFtsQ (b) 

or RNCLuciferase (c). d, Fluorescent signals (upper) and FRET trajectory (lower) of the 

RNCFtsQ-SRP-FtsY complex in the presence of SecYEG. Color coding is the same as in Fig. 

1b. e–f, smFRET histograms of the RNCFtsQ-SRP-FtsY complex in the presence of SecYEG 

with the wildtype (e) or 82mer (f) SRP RNA. g, TDP of the GTPase movements in the 

presence of RNCFtsQ and SecYEG. h, Summary of the percentage of molecules that exhibit 

the specified transitions. In the presence of RNCFtsQ and SecYEG, transitions to 

intermediate FRET states are significantly reduced. i, Scatter plot of the transition dwell 

times of individual molecules in the absence (grey circles) and presence of RNCFtsQ and 

SecYEG (red crosses). j, Model for the role of the SRP RNA-mediated GTPase 

relocalization in co-translational protein targeting.
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