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Abstract: Neurodegenerative diseases are the result of progressive dysfunction of the neuronal activ-
ity and subsequent neuronal death. Currently, the most prevalent neurodegenerative diseases are by
far Alzheimer’s (AD) and Parkinson’s (PD) disease, affecting millions of people worldwide. Although
amyloid plaques and neurofibrillary tangles are the neuropathological hallmarks for AD and Lewy
bodies (LB) are the hallmark for PD, current evidence strongly suggests that oligomers seeding the
neuropathological hallmarks are more toxic and disease-relevant in both pathologies. The presence
of small soluble oligomers is the common bond between AD and PD: amyloid β oligomers (AβOs)
and Tau oligomers (TauOs) in AD and α-synuclein oligomers (αSynOs) in PD. Such oligomers appear
to be particularly increased during the early pathological stages, targeting synapses at vulnerable
brain regions leading to synaptic plasticity disruption, synapse loss, inflammation, excitation to
inhibition imbalance and cognitive impairment. Absence of TauOs at synapses in individuals with
strong AD disease pathology but preserved cognition suggests that mechanisms of resilience may be
dependent on the interactions between soluble oligomers and their synaptic targets. In this review,
we will discuss the current knowledge about the interactions between soluble oligomers and synaptic
dysfunction in patients diagnosed with AD and PD, how it affects excitatory and inhibitory synaptic
transmission, and the potential mechanisms of synaptic resilience in humans.
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1. Introduction

Alzheimer’s disease (AD) and Parkinson’s disease (PD) are among the most prevalent
neurodegenerative diseases that shares the misfolding of proteins and synaptic dysfunction
as part of their neuropathology. The World Health Organization estimates that 55 million
people worldwide live with dementia, of which two-thirds are due to AD [1]. PD is the
second most common age-related neurodegenerative disorder after AD with an estimated
of up to 10 million people worldwide [2]. Due to the large prevalence of these disorders,
the economical and psychological costs on society, caregivers and individuals affected is
extremely high. Although large advances in understanding the potential causes of the
clinical symptoms at different levels of analysis has been made, there is still the need of
effective disease-modifying treatments that can help people with a diagnosis and those
at high risk. In this review we will discuss recent studies about the role of oligomers of
misfolded proteins on the vulnerability of the distinct types of synapses and the potential
mechanisms of synaptic resilience in humans.

AD is a slowly progressive neurological disease, clinically characterized by a decline in
memory, language, and other cognitive skills [3,4]. The diagnosis as recommended by the
National Institute on Aging-Alzheimer’s disease Association (NIA-AA) research framework
requires the presence of extracellular amyloid plaques and intracellular neurofibrillary
tangles under a microscopic examination of several brain regions [5]; thus, the definitive
diagnosis of AD is made after death. Alive people with amnestic dementia are usually
diagnosed with AD clinical syndrome [6].
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The pathological hallmarks of AD are the final expression of a molecular chain of
events, including misfolding of proteins that form large polymers of aggregates. Amyloid-
beta (Aβ) deposits are the consequence of abnormal cleavage of the Aβ precursor protein
(APP), a cell surface receptor thought to regulate neuronal migration during develop-
ment [7]. APP cleavage can generate amyloidogenic (pathogenic) and non-amyloidogenic
(non-pathogenic) Aβ forms. The β-site APP cleaving enzyme I (BACE1) cleaves APP
close to its N-terminus between residues M671 and D672 and is responsible for generat-
ing the amyloidogenic Aβ form [8]. Abnormal aggregation of Aβ monomers (Aβ40 and
Aβ42 with 40 and 42 amino acids) leads to the formation of Aβ oligomers (AβOs) and
the establishment of extracellular amyloid plaques that promote neuronal synaptic and
cell loss [7]. Additionally, but not necessarily in parallel, tau proteins (ranging from 352
to 421 amino acids in AD), which are part of the cytoskeleton and critical for intracellular
transport mechanisms [9–11], become hyperphosphorylated causing their detachment from
the microtubules and leading to cytoskeletal destabilization. Tau monomers are normally
found unfolded and do not form filaments. However, abnormal aggregation into straight
and paired helical filaments may occur; this process is driven by a shift from random coil
to a β-sheet structure of regions within the second and third repeat domains [12]. When
tau monomers detach from the microtubules, they form oligomers (TauO), which are the
foundation of the intracellular neurofibrillary tangles that disrupt the synaptic transmission
and lead to neuronal death [7]. Interestingly, there is no clear association between the
number of Aβ and tau deposits with the severity or duration of the disease; moreover, there
are adults with normal cognition and remarkable amounts of those proteins, particularly
Aβ [13–15].

The ‘core’ of the neuronal lesions in PD is the progressive degeneration of dopamine
neurons in the central nervous system (CNS), which accounts for most of the prominent
symptoms (slowness of movement, rest tremor, and rigidity) [16–18]. The neurodegenera-
tion of PD is driven by accumulation of α-synuclein (αSyn) and the presence of Lewy bodies
and dystrophic neurites, in the central and peripheral nervous systems [19,20]. α-syn is an
unfolded protein of 140 amino acids that lacks a distinct secondary or tertiary structure, and
whose conformational changes generate the insoluble neurotoxic species of PD [8]. The first
association between Aβ and AD was suggested by Glenner and Wong [21], while the one
between αSyn and PD was done by Goldberg and Lansbury [22]. There is strong evidence
of co-occurring pathologies across these neurodegenerative diseases. For example, αSyn
accumulation is frequently observed in AD, whereas amyloidosis and tauopathy are also
observed in PD, indicating protein-protein interactions and cross-seeding between Aβ, tau
and αSyn proteins which promote aggregation and accelerate cognitive impairment [23].
Importantly, the generation and release of all these oligomers to the extracellular space is
highly interdependent on the electrical activity of neurons [24,25] and has strong effect on
synaptic plasticity.

2. Neurodegeneration Driven by Small Soluble Oligomers

Oligomers are small, soluble protein aggregates which possess unique structural and
functional properties. They are intermediary between soluble monomeric proteins and
insoluble mature fibrils [26]. For several years, therapeutic research in AD and PD was
centered in targeting insoluble fibrillar aggregates of Aβ, tau and αSyn, but recent studies
have shown that soluble oligomers are the most toxic species that induce neuronal damage
and dysfunction in neurodegenerative disorders [27–36], suggesting that anti-oligomeric
therapeutic strategies would be a better approach to antagonize cognitive deficit symptoms.

Neurodegeneration driven by AβOs has been experimentally proven using human
postmortem brain tissue from subjects clinically diagnosed with AD. AβOs extracted from
these subjects have shown to alter long-term potentiation, enhance long term depression,
and reduce the dendritic spine density of pyramidal neurons in the hippocampus of control
mice [37]. The reduction of spine density is consequence of the loss of spine cytoskeletal
proteins, a phenomenon that implicates impairment of memory-related receptors such as
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NMDA receptors [37,38] (See below for effects of oligomers on synaptic receptors). AβOs
also contribute to loss of synaptic markers such as synaptic vesicle-associated membrane
protein 2 and post-synaptic density protein 95 [39] indicating reduction of synapses and loss
of communication between neurons. The synaptic deterioration manifests with memory
and learning impairment as observed in control rats after injection of AβOs from human AD
brains [37]. Further, levels of AβOs in fractionated brain homogenates from patients with
AD correlate with the severity of cognitive impairment (assessed by Blessed Information-
Memory-Concentration and the Mini-Mental State Examination scores) [39]. Nevertheless,
AβOs are found in subjects without cognitive impairment; they increase physiologically in
old age [40]. The fact that both demented and non-demented patients have increased levels
of oligomers does not necessarily mean they have the same oligomeric structure. AβOs
organize into dimers, trimers, tetramers, and higher order structures. Three oligomeric
structures amyloid-β trimers, Aβ*56 and amyloid-β dimers—have been identified in AD
mouse models and humans [40,41]. In a cross-sectional analysis of the Religious Orders
Study, two important observations were done: first, although all three AβOs increase in
old age, they are always significantly higher in demented compared to cognitively intact
patients; and second, the oligomeric form Aβ*56, but not Aβ dimers nor Aβ trimers,
correlate positively with soluble pathological tau proteins and negatively with postsynaptic
proteins in intact subjects [40]. These results propose different planes of participation of the
three oligomeric structures in physiological and pathological processes [40]. For instance,
Aβ*56 (56-kDa oligomer) appears to be a major oligomer forming complexes with NMDA
receptors and mediating Ca2+ influx and activation of Ca2+-dependent calmodulin kinase
IIα, which in turn induces disarrangement and phosphorylation of tau [40,42]. Interestingly,
control subjects or Non-Demented with AD Neuropathology (NDAN)—subjects with
histopathological, but not clinical AD—lack binding of AβOs to NMDA receptors or other
synaptic structures [37,43], strongly suggesting that binding of AβOs to synapses is an
important trigger of synaptic degeneration.

The relation between oligomer formation and disease state remains controversial.
Most studies support the pathogenic role of oligomers in neurodegeneration as mentioned
above. For example, elevated levels of plasma AβOs have shown a strong correlation with
the cognitive performance in patients with AD (assessed by Mini-Mental State Examination,
Cognitive Abilities Screening Instrument, Alzheimer’s Disease Assessment Scale–cognitive
portion, and common objects memory test) [44]. Other studies have shown correlation with
severity [45,46]. Additionally, in transgenic mice (PS1V97L), inhibition of AβOs showed to
improve the memory function [47]. However, a few other groups have found contradictory
results. AβOs were not able to induce memory deficit in mutant mice with loss of APP,
suggesting that either APP is a key component of cognitive decline or that Aβ aggregates
affect cognition by a yet unknown mechanism [48]. Another study showed cognitive
improvement in mice with amyloid pathology after lowering the APP/Aβ production,
while the amount of AβOs remained unchanged [49]. Altogether, evidence points out that
oligomers play a role in the pathophysiology of neurodegenerative disorders; however, at
what time of the AD continuum they become clinically significant, and whether they are
the unique and most important target still needs to be determined.

TauOs are present in neurons and astrocytes at early stages of neurodegeneration, they
are increased even before the formation of neurofibrillary tangles and clinical manifestations
of AD [50–52]. As with AβOs, human brain derived TauOs injected in mice impair synaptic
plasticity in the hippocampus, and clinically manifest with anterograde memory storage
dysfunction [53]. TauOs are not only increased in senile and AD brains, but also, they
have been detected in high levels in animal models and brains of individuals with PD,
suggesting that TauOs are neurotoxic mediators in synucleinopathies [54,55]. TauOs have
been associated with stress granules and molecular markers such as eIF3η, TIA1, PABP and
HNRNPA2B1, inducing a translational stress response [56,57]. Moreover, TauOs form a
complex with m6A and HNRNPA2B1, which is increased up to 5-fold in subjects with AD,
meaning that this complex contributes to neurodegeneration [57]. Transactive response-
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DNA binding protein 43 (TDP-43), has been found in stress granules of patients with
frontotemporal dementia and amyotrophic lateral sclerosis, and now it was shown that
TDP-43 forms oligomeric assemblies that associate with AβOs and TauOs, suggesting
co-partnerships in the pathogeneses of neurodegenerative diseases [58]. Further, TauOs
interact with the Musashi family of RNA-binding proteins in AD brains to form nuclear
aggregates and induce reduction of LaminB1, leading to nuclear instability and thus,
neuronal dysfunction [59].

Neurodegeneration driven by αSynOs depends on their interaction with cell mem-
branes. Similar to AβOs and TauOs, αSynOs can perforate the membrane and hence alter
the membrane conductance; therefore, formation of ion-permeating pores seems to be a
general mechanism to destabilize the cell membrane shared by some oligomeric forms of
misfolded proteins. Moreover, perfusion of αSynOs onto hippocampal neurons induce
an increase of intracellular calcium level, which supports the idea of strong membrane
interactions [60,61]. The elevation of calcium levels is in accordance with the calcium home-
ostasis dysregulation observed in PD subjects [62–65]. Importantly, αSynOs contribute
significantly to dopaminergic loss and neuronal cell death, which is not observed to be
caused by αSyn fibrils, indicating once again that oligomers, but not insoluble fibrils, are
the most toxic species in PD and other neurodegenerative disorders [61,66].

3. Synaptic Dysfunction Leading to Cognitive Impairment
3.1. Synapse Loss

It has been well established that synaptic dysfunction occurs in AD and PD. Less
synapses are found in postmortem brains of patients with AD and PD in brain regions un-
derlying clinical manifestations of both diseases [67,68]. However, only recently it became
possible to evaluate synaptic alterations in alive people by using synaptic positron emission
tomography (PET) imaging. Specifically, the PET tracer [11C]UCB-J for the synaptic vesicle
glycoprotein (SV2A), expressed in all synapses and located in synaptic vesicles at presy-
naptic terminals, was recently used to detect synaptic alterations in vivo of patients with
early AD and PD. In AD, PET imaging of SV2A showed prominent reduction synapses
in the hippocampus, followed by the entorhinal cortex, parahippocampal cortex, amyg-
dala, lateral temporal cortex, PCC/precuneus, and lateral parietal cortex, but not in the
prefrontal cortex, lateral occipital cortex, medial occipital cortex, or pericentral cortex [69].
The synaptic density reductions were maintained after partial volume correction of the PET
images, meaning that the effect is not entirely attributed to loss of gray matter tissue. Im-
portantly, there was a correlation between the reduction of SV2A and cognitive impairment.
PET studies correlate with accumulated literature that has consistently shown evidence of
synaptic loss across brain regions in AD and other neurodegenerative disorders [70]. In
PD, PET imaging showed lower SV2A in the substantia nigra, followed by red nucleus and
locus coeruleus as well as other clinically relevant areas [71]. Interestingly, neurocognitive
assessment in PD did not correlate with SV2A levels likely because cognitive impairment is
milder than that observed in AD and thus the range for correlation is narrower.

3.2. Inflammatory Response Effects on Synapses

Although AD and PD were not originally considered inflammatory disorders, neu-
roinflammation is a critical component in the pathogenesis and progression of cognitive
impairment. Neuroinflammation involves activation of microglia and astrocytes, and the
subsequent release of cytokine radicals which lead to synaptic loss and damage [72,73].
Particularly, microglia are pivotal in the control of synapse activity by establishing direct
contact with neurons, meaning that an inflammatory process at this level has a negative
impact on synaptic surveillance and thus, cognitive function. However, whether neuroin-
flammation is caused by soluble oligomers, the most toxic components in the pathology of
AD and PD, is not clear yet. Here we present current studies addressing the association
between soluble oligomers and synaptic dysfunction due to neuroinflammation.
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Distinct Aβ conformations seem to trigger different magnitudes of microglial activa-
tion. As mentioned before, oligomeric (rather than fibrillary) forms of Aβ, are the most
neurotoxic aggregates in AD [37,38,74–76]. Thus, it has been investigated in vitro and
in vivo whether AβOs are also stronger promoters of glial activation. An in vitro glial cell
culture exposed to AβOs and fibrillar-Aβ, demonstrated not only that the pro-inflammatory
response of the oligomeric form of Aβ was stronger than its fibrillary counterpart, but
also that the response was an M1-like phenotype [77]. Complementarily, a murine study,
where brain inflammation was induced by different Aβ42 conformers, showed that the
lightest AβOs can activate microglial cells and promote a violent inflammatory response,
whereas heavier oligomeric and fibrillary Aβ conformations induced less glial activation
and poorer inflammatory responses [78]. Another in vivo model demonstrated AβOs
promoted stronger neurotoxicity and inflammatory response mediated by NF-κB, when
compared to fibrillar-Aβ [79]. All these studies reinforce the idea that AβOs are the most
potent activators of microglial cells, and following studies display how this inflamma-
tory response leads to synaptic disruption and sequential neuronal dysfunction. The
inflammatory response followed by synaptic disruption and neuronal loss can be clinically
translated as memory, language, and visual perception decline, among other forms of
cognitive impairment [80]. In animal models AβOs induce inflammatory signaling leading
to this cognitive decline manifestations [81–83]. For instance, in an acute experimental
model in C57BL/6 mice, memory impairment and inflammation were observed after an
intracerebroventricular injection of AβOs, suggesting that oligomers interfere with synaptic
transmission necessary to establish new memories; again, the fibrillar-Aβ did not produce
this effect [32]. The molecular link between cognitive deficit and neuroinflammation lies
in the release of cytokines by microglial cells. In one study, purified AβOs from human
AD brain tissue were injected in wild type mice to induce microglial inflammation. The
inflammatory response of this model was demonstrated when several cytokines at mRNA
and protein levels were identified, including Ccl3, CCl4, and Tnf [84]. Other mechanism
underlying AβO-induced microglial activation is explained by TLR-4, which likely induces
aberrant TNF-α signaling [85,86]. In support of this deleterious role of the inflammatory re-
sponse, the cognitive decline, induced by the intracerebral injection of AβOs, was reversed
by the administration of anti-inflammatory drugs, doxycycline, and TLR-4 antagonists [87].
In another study of intracerebroventricular injection of AβOs in wild type mice, the com-
plement factors C1q, which initiates the classic complement pathway, and C3, were found
elevated at the synapse level, which would explain the synapse loss through microglial
activation [88]. In addition to inflammation induced by microglia, astrocytosis is another
early phenomenon in AD development, but whether AβOs induce astrocytosis remains to
be determined.

TauOs are the most neurotoxic tau species involved in the development of cognitive im-
pairment [89,90]. They induce neuroinflammation in AD and frontotemporal lobar demen-
tia through interaction with astrocytes and microglia [91]. A model for the toxic relationship
between TauOs and inflammation has been proposed, where TauOs through astrocytes
and microglia trigger the release of cytokines, RAGE receptors and their ligand HMGB1.
Activation of RAGE signals NF-κB and p38-MAPK pathways, which in turn promote
hyperphosphorylation of Tau and subsequent aggregation of more oligomers, and thus,
neuronal damage or death and a vicious cycle of chronic neuroinflammation [51,91]. Levels
of IL-1β and TNF-α increase significantly when microglia cells are exposed to TauOs [92].

Inflammatory reaction induced by αSyn can take place in the microglia and astrocytes
or have a direct effect on neurons. Upon activation of microglia by αSyn, the microglia
release neurotoxic factors, including pro-inflammatory cytokines which may lead to neu-
ronal dysfunction [93,94]. As in Aβ and Tau, αSyn self-aggregates to generate αSynOs,
protofibrils and fibrils. It is also well established that αSynOs are the main responsible
form for cognitive decline in Lewy body dementia and PD. Whether αSynOs contribute
more than fibrillar α-syn to neuroinflammation in PD, in the same way as AβOs and TauOs
in AD has been a recent area of interest. One study showed, injection of αSynOs in the
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brain ventricles of wild type mice caused memory impairment through a TLR-2 dependent
mechanism, which is closely associated with activation of glial cells in the hippocampus;
and contrary to AβOs, TLR-4 was not involved in memory impairment [95,96]. On an
age-depending study in mice, αSynOs induced an inflammatory response in microglia
cells through release of TNF-α in adult, but not young mice, mimicking the inflammatory
response in PD pathology [97]. Besides TLR-2 [95,98], αSynOs has also been implicated
in the TLR-1 pathway, in either case, the pro-inflammatory microglial phenotype leads
to translocation of NF-κB and increased production of TNF-α and IL-1β through MyD88
dependent mechanisms [99]. The monomeric and fibrillary forms of αSyns are not able
to produce an inflammatory response of microglial cells [95,96,98] nor impair memory
of tested mice [95]. The cognitive deficit induced by αSynOs is antagonized with pre-
treatment of anti-inflammatory drugs [95]. In astrocytes, αSynOs induce neuronal cell
death in a TLR-4 dependent mechanism by triggering the production of TNF-α and other
cytokines by astrocytes [96]. Neurons alone are also directly susceptible to αSynOs in-
duced TLR4-independent toxicity [96]. Additionally, αSynOs can induce the production
of reactive oxygen species (ROS) on the presence of free metal ions, resulting in neuronal
death [100]. At the peripheral level, neuroinflammation induced by αSynOs also enhances
and aggravates cognitive deficits in mice [101].

Gamma-aminobutyric acid (GABA) plays an important role in the communication
between neurons and microglia. Microglia and other CNS cells through altered GABA
receptors may lead to impaired signaling and thus, lose communication with neurons [102].
GABAergic signaling in microglia decreases the activity of inflammatory mediators NF-κB
and p38 MAP kinase and suppress the release of TNF-α and IL-6 outside synapses [103].
This suggests that GABA receptors may be a potential target to reduce the deleterious
effects of oligomers on synaptic dysfunction. In support, enhancement of GABAA receptors
through drugs such as carbamazepine, phenytoin, and valproic acid have been found to
stabilize intracellular Ca2+ levels and thus ameliorate the neurotoxic effects of AβOs [104].
GABAergic signaling across neurons and glial cells that modulate homeostatic plasticity is
an area that has been understudied and requires more multidisciplinary efforts from the
research community.

3.3. Receptors Involved in Synaptic Dysfunction

Accumulated evidence indicates that AβOs directly activates AMPA receptors [105].
AMPA receptors are complex proteins made by the combination of four principal subunits
(GluA1-GluA4) [105,106], and co-assembled auxiliary proteins [107,108], that modulate
the gating, permeability, and pharmacology of the channel [108–112]. GluA2-lacking
AMPA receptors are permeable to Ca2+ and its excessive activation leads to Ca2+ over-
load, excitotoxicity, and neurodegeneration [113–117]. Recent evidence from Reinders
et al., demonstrated that AβOs cause synaptic failure only in neurons expressing GluA3
subunits [118], and mice with severe AD neuropathology but deficient in GluA3 were cog-
nitively resilient [118], strongly indicating that synaptic vulnerability to AβOs may depend
on the stoichiometry of synaptic receptors. This is consistent with human postmortem
studies where lower gene expression levels for GluA3 correlated with better cognitive
performance in prodromal AD [119]. Similarly, it is increasingly acknowledged that AβOs
directly activate heterologously-expressed receptors composed by GRIN1/GluN2A and
GRIN1/GluN2B subunits [105,120], which are the most abundant NMDA receptors in
mammals’ cortical synapses; however, only the activation of receptors containing GluN2B
subunits (GluN2B-NMDA receptors) leads to acute activity-dependent postsynaptic fail-
ure [121], Ca2+ dysregulation [122], synaptic depression [123,124], and neurotoxicity in
in vitro systems [125,126]. Most likely due to the high Ca2+ permeability of GluN2B-NMDA
receptors [127] and their downstream signaling [128]. The clinical significance of GluN2B is
reinforced by a multisite postmortem study showing that lower cortical gene expression of
GluN2B correlates with better cognitive performance in people diagnosed with prodromal
AD [119]. These parallel lines of evidence strongly suggest that levels of expression of
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GluN2B-NMDA receptors are correlated with synaptic and neuronal vulnerability. Al-
though little is known about the mechanism by which αSyn produce synaptic dysfunction,
Trudler at al., recently showed that αSynOs induce Ca2+-dependent release of glutamate
from astrocytes leading to a chronic increase of glutamate that activates extrasynaptic
NMDA receptors and inducing synaptic loss [129]. αSynOs also bind to NMDA receptors,
increasing the synaptic transmission and resulting in membrane damage and LTP impair-
ment [130]. Also, by targeting GluN2A NMDA receptors, αSynOs can induce visual spatial
memory impairment [131].

In contrast to AβOs or αSynOs, TauOs have not been demonstrated to directly interact
with synaptic receptors. However, tau participates in Aβ mediated toxicity by interacting
with Fyn kinase via its amino-terminal projection domain facilitating the NMDA receptors-
mediated synaptotoxicity [132]. The role of tau in Aβ toxicity via Fyn-kinase modulation is
further supported by studies reporting that absence of tau in dendritic spines prevented the
toxic effects of AβOs mediated by GluN2B-NMDA receptors [133], and whereas a reduction
in tau levels prevented the cognitive impairment in AD transgenic mice overexpressing
Aβ, overexpression of Fyn can enhance their cognitive impairment [134]. Taken together,
these results strongly suggest that AβOs and αSynOs may initiate their toxic effects by
binding to specific subtypes of AMPA and NMDA receptors and/or the proteins they
form complexes with; and tau is an important element for downstream signaling of the
neurotoxicity. It follows that, differential expression of those particular targets may provide
synaptic protection and underlie cognitive resilience in humans.

3.4. Impaired Excitatory/Inhibitory Ratio

Hyperexcitability of cortical and hippocampal circuits and 87-fold increase in seizures
incidence in the AD population is well documented [135], particularly in early-onset
familial AD [136]. Convulsive seizures occur in approximately 7–21% of sporadic AD
patients [137,138], 31% of patients with PS2 mutations [139] and 56% of patients with
APP duplications [140]. These data do not account for hidden hyperexcitability status
that occurs early in AD pathogenesis [141]. Since oligomers act mostly on excitatory
synapses leading to dysfunction first and synaptic loss later, a large question in the field
is how, overall reduction of excitatory inputs leads to hyperexcitability in the AD brain.
Although the causes of network hyperactivity are still under investigation by many labs;
early studies in animal models suggest that impaired inhibition is a potential mechanism
for network hyperactivity [142,143]. Impairment of interneuron activity with changes
in their intrinsic properties have been reported in the mice models of amyloidosis [144].
Interneuron deficits reduces neurogenesis and neuronal maturation in the hilus of the
hippocampus [145] and leads to age and tau-dependent learning and memory deficits [146].
Potentiation of GABA receptors by pentobarbital restores some of the deficits observed
by GABAergic impairment [145]. Our initial studies transplanting human receptors and
recording their electrical activity observed a dramatic reduction of GABAA receptors in
AD [147]. This severe reduction of gene expression was later confirmed by other groups
using high throughput microarray technology [148] and provided evidence that in addition
to excitatory synaptic loss, inhibitory synapses were also affected in AD.

Because the abundance, activity, and strength of excitatory and inhibitory synapses in
the neocortex are highly correlated in their amplitude and time domains [149–152]. The
“global E/I ratio” defined as equal average amounts of postsynaptic AMPA and GABAA
receptor activities is essential for maintaining stability of cortical neurons [150,153] and is
tightly regulated within a narrow range by inhibitory plasticity following any excitatory
change produced by ongoing sensory experiences and activity-dependent plasticity [154].
Taking in consideration the synaptic alterations found in AD, the immediate question is
how the global E/I ratio is affected in AD? Interestingly, functional alterations in the default
mode network (DMN) correlate with cognitive impairment in AD and it is early affected in
AD [149]. The DMN spans several brain regions including the parietal cortex, importantly,
baseline DMN activity is increased in AD and fails to deactivate during cognitive tasks,
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suggesting that the DMN is abnormally and continuously hyperactive in AD [149,155]. By
using fluorescence deconvolution tomography (FDT), where automated systems are used
to quantify 30,000 immunolabeled elements within the size constraints of synapses from 3D
reconstructions of image z-stacks [156–159], it was found a larger E/I ratio (il-PSD-95 for
excitatory/il-gephyrin for inhibitory synapses), in AD compared to non-demented controls.
Therefore, our results indicate an overlooked link between increased regional synaptic
E/I ratio, cortical hyperexcitability, and a potential enhancement of activity-dependent
amyloidosis [160,161]. The pro-excitatory E/I ratio in AD was confirmed by directly
recording the activity of AMPA and GABAA receptors microtransplanted from AD parietal
cortex [162]. Importantly the E/I ratio was preserved in NDAN people indicating that
preservation of the E/I correlates with the preservation of cognition even in presence of
neuropathologic change [163].

Taken together, these data suggest that hyperexcitability in AD patients result from
impaired GABAergic inhibition which leads to cortical excess of excitatory synaptic inputs.
Notably, patients expressing the homomeric APOE4 allele are at the highest genetic risk
to develop late-onset AD, and GABAergic interneurons and synapses are also deficient
in patients with APOE4 AD. Bumetanide is a diuretic acting on chloride transporters
modulating the E/I ratio via pathways enriched in GABAergic signaling. Importantly,
bumetanide was found to be protective against AD as evaluated in mouse models, and more
importantly through an electronic health record, which showed that the prevalence of AD in
patients older than 65 years old was significantly reduced in those taking bumetanide [164].

In PD, there is also evidence of E/I imbalance, however the effects are more brain
region specific. Loss of substantia nigra pars compacta (SNpc) dopaminergic neurons lead
to hyperactivity of the globus pallidum and excessive inhibition onto the motor thalamus,
this ultimately leads to the abnormal movement manifestation of PD [165]. While it is
still not clear how aSynOs relate to the loss of SNpc, it is clear that a complex series of
pathways interact to produce early dysfunction of SNpc [166]. Recent studies in human
organoids with mutations linked to PD show that the E/I is altered in PD with lower
inhibition and reduced levels of neurosteroid allopregrananolone even before the presence
of neuropathology is observed [167]. This indicates that E/I alterations precede pathology,
and its correction may have disease-modifying effects.

4. Conclusions

Oligomeric forms of Aβ, tau and aSyn are the most toxic species affecting synapses
leading to synaptic dysfunction and altered neuronal communication in brain regions
vulnerable to the neuropathology. The effects of oligomers precede the presence of deposits
and seem to be associated to early changes in excitatory and inhibitory synapses. Therefore,
oligomers seem to produce a “double hit” on synapses (Figure 1). First, they lead to calcium
dys-homeostasis by binding directly to excitatory receptors and leading to a first wave of
hyperexcitability, then producing GABAergic dysfunction by a mechanism that is still not
understood, which leads to a second chronic wave of hyperexcitablity that ultimately leads
to neuronal loss and hypoactivity. Understanding the regional and temporal relationships
between oligomers, synaptic targets and E/I balance is a critical need in the field.
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Figure 1. Overview of major effects of toxic oligomers in synapses. Left. Neuroinflammatory and
Reactive Oxygen Species (ROS) participate in the production and the effects of toxic oligomers on
synapses. Right, Major synaptic effects on synapses. It is still not clear what is the chronological order
of events, but each one influence the others and some of them are happening simultaneously at brain
regions vulnerable to AD pathology.
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