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Tumor stemness has been reported to play important roles in cancers. However, a
comprehensive analysis of tumor stemness remains to be performed to investigate the
specific mechanisms and practical values of stemness in soft tissue sarcomas (STS).
Here, we applied machine learning to muti-omic data of patients from TCGA-SARC and
GSE21050 cohorts to reveal important roles of stemness in STS. We demonstrated
limited roles of existing mRNAsi in clinical application. Therefore, based on stemness-
related signatures (SRSs), we identified three stemness subtypes with distinct stemness,
immune, and metabolic characteristics using consensus clustering. The low-stemness
subtype had better prognosis, activated innate and adaptive immunity (e.g., infiltrating B,
DC, Th1, CD8+ T, activated NK, gamma delta T cells, and M1 macrophages), more
enrichment of metabolic pathways, more sites with higher methylation level, higher gene
mutations, CNA burdens, and immunogenicity indicators. Furthermore, the 16 SRS-
based stemness prognostic index (SPi) was developed, and we found that low-SPi
patients with low stemness had better prognosis and other characteristics similar to those
in the low-stemness subtype. Besides, low-stemness subtype and low-SPi patients could
benefit from immunotherapy. The predictive value of SPi in immunotherapy was more
accurate after the addition of MSI into SPi. MSIlowSPilow patients might be more sensitive
to immunotherapy. In conclusion, we highlighted mechanisms and practical values of the
stemness in STS. We also recommended the combination of MSI and SPi which is a
promising tool to predict prognosis and achieve precise treatments of immunotherapy
in STS.

Keywords: stemness subtypes, soft tissue sarcoma, prognosis, immunotherapy, multi-omic study
INTRODUCTION

Soft tissue sarcomas (STS) are a sort of mesenchymal malignancies which are considered rare and
invasive, accounting for less than 1% of malignant tumors (1). Despite lower incidence, STS can be
involved in patients with different ages and occur in any anatomical site (2). STS are composed of at
least 100 different histological subtypes, each of which has its own biological characteristics and
org April 2022 | Volume 13 | Article 7966061
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prognostic outcomes (3). Furthermore, patients receiving
treatments also had a high probability of recurrence (4).
Therefore, the complexity and high heterogeneity present great
challenges in the management of STS. Currently, limited efficacy
was received in STS, and more effective approaches were required
to ameliorate the present predicament. Immunotherapy with a
breakthrough in management of tumors might also be suitable
for STS. However, individual responses to immunotherapy vary
greatly, leading to treatment failure in STS (5). Therefore, it is
imperative to comprehensively study mechanisms leading to
different responses to immunotherapy and develop tools to
identify patients who are more sensitive to immunotherapy.

Tumor stemness plays important roles in tumors and could
assess characteristics of the cancer stem cells (CSCs) (6). CSCs, a
small subgroup of cancer cells found in primitive tumor cells,
possess stem cell-like characteristics, such as self-renewal and
differentiation (7). The stem cell-like characteristics also lead to
the generation of tumor cells from CSCs (8) and guarantee the
close relationships of CSCs with tumor growth, metastasis,
recurrence, and drug resistance. In STS, various studies
identified CSCs (9–11), with the ability to produce different cell
types and facilitate the heterogeneity (12), which are responsible
for the development of resistance to various oncologic treatments,
such as chemotherapy and radiotherapy (13). Besides, aberrant
stemness gene expression and stemness-related biological
pathways (Hedgehog pathway, Hippo pathway, and Notch
pathway) were also found in STS (14). It has also been shown
that the poor prognosis of patients was associated with the high
expression of molecular characteristics related to tumor stem cells
(15). Despite the harmful roles of stemness or CSCs in tumors, the
reversibility and plasticity of SCSs provide potentials in anticancer
therapy. It is well accepted that multiple cells including relatively
differentiated tumor cells, CSCs, infiltrating immune cells, tumor-
associated fibroblasts, endothelial cells, and other cell types
participate in the formation of tumors (6). The common
microenvironment may contribute to the close communication
and relationships of CSCs with immune cells. In acute myeloid
leukemia, compared with tumor cells, CSCs with the absence of
NKG2D ligands were more likely to escape immune killing (16). A
study focusing on bladder cancer demonstrated that immune
checkpoint molecule PD-L1 was significantly upregulated in
patients with high stemness (17). This molecule inhibits the
proliferation and differentiation of T lymphocytes and promotes
the differentiation of regulatory T cells, thereby suppressing the
immune response (18). Similar results were found in prostate
cancer (19). In addition, tumor stemness was also associated with
poor immune response in STS (20, 21). Therefore, interfering
with disordered CSCs or stemness may remodel the immune
microenvironment to promote the application of immunotherapy
in STS. However, compared with other tumors, little is known
about the detailed relationship between stemness or CSCs and the
immune-infiltrating environment, and the mechanisms and
practical values of stemness in STS, which needs to be fully
analyzed and understood.

In this study, based on tumor stemness-related genes, we
obtained different stemness subtypes using machine learning
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algorithm. Muti-omic data was used to reveal different
characteristics of stemness subtypes. We also demonstrated
important roles of stemness in STS. Finally, a scoring system
was developed to guide the clinical application of stemness for
prediction of prognosis and responses of patients to
immunotherapy in STS. Our study provides new insights into
tumor stemness and helps to improve clinical management
of STS.
METHODS AND MATERIALS

Data Collection and Preprocessing
STS samples were searched through The Cancer Genome Atlas
Program (TCGA) and Gene Expression Omnibus (GEO)
databases. Normalized gene expression data (FPKM values) of
TCGA-SARC, obtained using the RNA-sequencing method, was
downloaded from the UCSC (University of California, Santa
Cruz) Xena browser (https://gdc.xenahubs.net). However, gene
expression data of GSE21050 (22) were generated from the
microarray, different from the RNA-sequencing method. We
downloaded the gene expression data of GSE21050 which had
been normalized using the GCRMA (GC-Robust Multi-Array
Analysis) algorithm by the previous study (22). We performed
the following procedures to make them more comparable
between TCGA-SARC and GSE21050 cohorts. Firstly, we
excluded samples with incomplete survival information in two
cohorts. Then, FPKM (fragments per kilobase of transcript per
million mapped reads) values of TCGA-SARC were transformed
into TPM (transcripts per kilobase million) values which were
more similar to those of GSE21050 (23). Furthermore,
normalization and removal of batch effects between two
cohorts were performed using the “sva” package (24) of R 4.0.3
software. Besides, DNA methylation data (450K), somatic
mutation data, and copy number alteration (CNA) data were
also downloaded from the UCSC Xena browser.

Identification of Stemness-Related
Signatures for STS
Across published literatures, Malta et al. (6) provided two
dependent stemness indices (mDNAsi and mRNAsi), which
work well in assessment of cancer stemness. mRNAsi
calculated based on gene expression features rather than
mDNAsi generated based on epigenetic features was
downloaded to identify stemness-related signatures (SRSs) by
application of weighted gene co-expression network analysis
(WGCNA) to gene expression data. In Malta’s work, a
predictive model using one-class logistic regression was applied
to determine stem cell signatures based on mRNA expression
from the pluripotent stem cell samples. Then, mRNAsi was
calculated as Spearman correlations between the model’s
weight vector and the new sample’s signature expression (6).
In this study, mRNAsi was chosen because gene expression data
are more common and easier to obtain than epigenetic data.
WGCNA, a systems biology approach, with unique superiority in
processing high-dimensional and large-scale data, is increasingly
April 2022 | Volume 13 | Article 796606
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used to find genes most associated with phenotypic traits
(25, 26). The identification of SRSs for STS relied on the
“WGCNA” package in R 4.0.3 software, along with its official
manual (27). Briefly, 3,622 genes associated with stem cells from
26 human stem cell gene sets were collected from StemChecker
(http://stemchecker.sysbiolab.eu/) (28). The gene expression
matrix containing 3,622 genes of TCGA-SARC was used to
calculate co-expression similarity. Based on soft-thresholding
(b), co-expression similarity was transformed into the
adjacency matrix. Then, hierarchical clustering and dynamic
tree cut methods were used to identify gene modules. To
determine interesting gene modules, we related different gene
modules to the phenotypic trait (mRNAsi). In this study, we
defined interesting gene modules as gene modules with the
highest correlation coefficient with mRNAsi. Finally, genes in
interesting gene modules were regarded as SRSs.

Molecular Subtypes Based on
Prognostic SRSs
SRSs were extracted from interesting gene modules and then were
subjected to univariate Cox regression analysis. To reveal the role
of prognostic SRSs (p < 0.01), we tried to explore potential tumor
stemness status in STS. The “ConsensusClusterPlus” package (29)
was used to perform the consensus clustering (K-means)
algorithm, which was repeated 50 times to obtain reliable
stemness subtypes for STS. Regarding the determination of the
optimal clustering number (K value), we mainly referred to the
consensus matrix and empirical cumulative distribution function
plots. Subsequently, Kaplan–Meier (K–M) survival analysis was
further used to evaluate the accuracy and practicability of stemness
subtypes in STS. In this study, K–M survival curves were plotted
and survival differences were determined using “survdiff” function
based on “survminer” packages.

Biological Differences in Different
Stemness Subtypes
To investigate biological differences in different stemness
subtypes, we characterized the immune microenvironment
through multiple methods. Firstly, immune scores and stromal
scores were calculated based on the “estimate” package, which
works dependent on an algorithm, named as Estimation of
STromal and Immune cells in MAlignant Tumours using
Expression data (ESTIMATE) (30). Immune scores and
stromal scores provided a preliminary assessment of the
immune microenvironment for STS. Secondly , the
“immunedeconv” package (31) containing multiple algorithms
(TIMER, xCell, MCP-counter, CIBERSORT, EPIC, quanTIseq,
and IPS) was applied to quantify the abundance of different
immune cells in STS samples. Thirdly, 29 immune gene sets
reflective of innate and adaptive immunity were searched from
previous studies (32, 33) and then were subjected to single-
sample gene set enrichment analysis (ssGSEA) to reveal immune
status in different stemness subtypes. In addition to the
characterization of the immune microenvironment, we
preformed gene set variation analysis(GSVA) (34) to further
score different biological pathways based on background gene
Frontiers in Immunology | www.frontiersin.org 3
sets (c2.cp.kegg.v7.4.symbols) from MSigDB (Molecular
Signatures Database v7.4) in the GSEA official website (http://
www.gsea-msigdb.org/gsea/msigdb/index.jsp). According to
scores of different biological pathways, the biological status of
stemness subtypes was fully evaluated in STS samples.

The Identification and Functional
Annotation of Differentially
Expressed Genes
To further understand the effect of tumor stemness on biological
status in STS, differentially expressed genes (DEGs) among
different stemness subtypes were identified using the “limma”
package (35), based on two requirements: |logFC(fold change)|
>2 and FDR (false discovery rate) <0.05. Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analyses were well-accepted procedures to annotate
DEGs. Then, the “clusterProfiler” package (36) was used to
perform functional annotation for DEGs to investigate the
involved biological processes and pathways. Background gene
sets of functional annotation were sourced from the GO or
KEGG database. Enriched terms were visualized according to
significant criteria (p and q values less than 0.05).

Somatic Mutation and CNA Among
Stemness Subtypes
After downloading the somatic mutation data (MuTect2 Variant
Aggregation and Masking) from TCGA-SARC, the “maftools”
package was used to calculate the frequency of gene mutation in
specific patients. We tried to find potential gene mutation driver
cancer stemness in STS through the identification of differential
gene mutations among stemness subtypes. Somatic mutation
data were also applied to obtain tumor mutation burden (TMB)
according to previous studies (37, 38). Furthermore, we
indirectly quantified frequencies of gene mutation for patients
among stemness subtypes using TMB.

To reveal the potential impact of CNA on stemness in STS, we
requested CNA data from the UCSC Xena browser. The
comparison of CNA between STS samples with the highest
and lowest stemness was performed using the chi-square test
(p < 0.001). Genes with significant CNA were visualized with the
“RCircos” package (39) and subjected to functional annotation
with GO and KEGG analyses.

DNA Methylation Analysis and
Identification of Stemness-Related
Methylation-Driven Genes
We obtained DNA methylation data (450K) of TCGA-SARC to
perform the following procedures: 1) Only DNA methylation
data of STS samples included in this study were reserved for
subsequent analyses. 2) Sites with deletion values greater than
70% and located in the X and Y chromosomes were deleted.
3) We identified sites surrounding the transcription start sites
(TSS) (-200 to -1,500 bp) (40), which were mostly located in the
promoter region and had a negative regulation of gene
expression. To find stemness-related differential methylation
probes, we performed differential analysis between STS
April 2022 | Volume 13 | Article 796606
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samples with the highest and lowest stemness, based on |logFC|
>0.25 and adjusted p value <0.05. In addition, the “MethyMix”
package (41) was used to find stemness-related methylation-
driven genes, which were required to meet three criteria: 1) They
should be DEGs (|logFC| >1.5 and FDR <0.05); 2) they should be
differentially methylated genes (|logFC| >0.5 and p <0.05);
and 3) the correlation coefficient of methylation level and gene
expression should be less than -0.3.

Generation of Stemness Prognostic Index
Considering that quantitation of stemness subtypes would
contribute to clinical application, we developed a set of scoring
tool based on SRSs. Common genes between SRSs and DEGs
were determined for the calculation of the stemness prognostic
index (SPi) using least absolute shrinkage and selection operator
(LASSO) regression analysis, performed using the “glmnet”
package. Through 1,000 times cross-validation, reliable and
optimal genes were remained to generate SPi. Then, the
optimal cutoff was determined to achieve perfect prognostic
stratification for STS patients. Based on the optimal cutoff,
patients with SPi more than the optimal cutoff were assigned
to the high-SPi group. Similarly, low SPi was also generated. K–
M survival analysis was used to compare survival differences
between the high- and low-SPi groups. Furthermore, the receiver
operating characteristic (ROC) curve was used to assess the
prognostic performance of SPi in STS. It is noted that SPi was
trained in TCGA-SARC cohort and tested in the GSE21050 and
overall cohorts (TCGA-SARC + GSE21050).

Multi-Omic Analysis for SPi
To better reveal the characteristics and accuracy of SPi in STS, we
performed series analyses: 1) clinical characteristics; 2) immune
infiltration; 3) biological processes based on GSEA analysis;
4) somatic mutation; and 5) tumor immunogenicity analysis.
We performed GSEA analysis to evaluate different biological
processes between patients with high and low SPi. Furthermore,
tumor immunogenicity indicators including TMB, neoantigen
burden (defined as the total predicted neoantigen count), DNA
damage including homologous recombination deficiency
(HRD), loss of heterozygosity (LOH; number of segments
with LOH events, and fraction of bases with LOH events),
and intratumor heterogeneity (ITH) were compared between
high- and low-SPi patients. Except for TMB, all other
immunogenicity indicators were sourced from a previous
study (42).

Prediction of Response to Immunotherapy
We used the following methods to ensure the accuracy of
stemness in the prediction of response to immunotherapy.
Firstly, T-cell inflammatory scores (TIS) were calculated by
GSVA analysis. Patients with a higher TIS were more likely to
benefit from immune checkpoint inhibitors (43). Secondly,
tumor immune dysfunction and exclusion (TIDE) scores
superior to PD-1 or TMB in the prediction of response to
immunotherapy (44) were obtained through an official website
(http://tide.dfci.harvard.edu/). Opposite to TIS, lower TIDE
scores indicated more response to immunotherapy. Besides, we
Frontiers in Immunology | www.frontiersin.org 4
assessed the predictive value of SPi in response of patients to
immunotherapy using a melanoma cohort containing 47 patients
treated with CTLA-4 blockade and PD-1 blockade (45). The
subclass mapping (SubMap) method was utilized, and the results
were visualized by the “complexHeatmap” package (46).
RESULTS

The Role of mRNAsi in STS
259 STS patients from TCGA-SARC cohort and 309 from the
GSE21050 cohort were included in this study. Due to clinical
data missing in the GSE21050 cohort, we only revealed the role
of mRNAsi in TCGA-SARC cohort. Firstly, survival analysis
showed that mRNAsi could not perform well in the risk
stratification of STS patients with different prognoses, although
a significant p value was obtained (p = 0.039, Figure 1A). The
ROC curve also demonstrated the unsatisfactory prognostic
value of mRNAsi in STS (AUC = 0.560, 0.537, 0.483 at 1, 3,
and 5 years, respectively, Figure 1B). Then, the clinical
characteristics of mRNAsi were investigated. Figure 1C shows
that female patients (p = 0.007) and metastatic patients
(p = 0.021) had higher mRNAsi. In terms of six histological
types of STS, higher mRNAsi was observed in patients diagnosed
with leiomyosarcoma (LMS) and undifferentiated pleomorphic
sarcoma (UPS); however, lower mRNAsi was seen in
dedifferentiated liposarcoma (DL) (Figure 1C). Moreover,
patients with different responses to treatments had similar
mRNAsi (p > 0.05). To explore the predictive value of
mRNAsi in immunotherapy, we performed SubMap analysis,
and results are displayed in Figure 1D. SubMap analysis revealed
that mRNAsi had no guiding significance for the use of CTLA4
blockade or PD-1 blockade in STS (p > 0.05).

Identification of Three Stemness Subtypes
Based on Prognostic SRSs
Due to the limited roles of mRNAsi in prognostic prediction and
the use of immunotherapy in STS, new stemness-related tools such
as molecular subtypes or a scoring system were required. We
carried out WGCNA to identify SRSs to develop new stemness-
related tools. 3,622 genes were prepared for WGCNA. Then, b = 8
was used to transform co-expression similarity into the adjacency
matrix (Figure 2A), and six gene modules were obtained through
hierarchical clustering and dynamic tree cut methods. We found
that the blue module, containing 560 genes, had the highest
positive correlation with mRNAsi (cor = 0.56, p = 6e-22,
Figure 2B). Furthermore, a high correlation of the module
membership with gene significance is observed in Figure 2C
(cor = 0.55, p = 1.4e-45). In addition, univariate Cox regression
analysis identified 64 prognostic SRSs (Table S1).

Based on prognostic SRSs, consensus clustering analysis provided
different clustering numbers (k = 2–9, Figure 2D). “Cleanest”
clustering was observed when k = 2 or 3 (Figures 2E, F).
We classified the overall cohort (568 STS samples) into three
subtypes (clusters A, B, and C) because more clustering numbers
could contribute to understanding characteristics and the
April 2022 | Volume 13 | Article 796606
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application of stemness subtypes. Then, we investigated some
characteristics of three subtypes. Three stemness subtypes had
distinct SRS gene expression patterns and survival rates
(Figures 2G, H). Survival analysis showed that cluster C (179
patients) had the best prognosis, followed by cluster B (227
patients), and cluster A (162 patients) had the worst prognosis.
Frontiers in Immunology | www.frontiersin.org 5
Besides, the stemness of three stemness subtypes was quantified by
mRNAsi, and we found that cluster A had the highest stemness,
followed by clusters B and C (Figure 2I). In addition, the close
relationship between stemness and metastasis of cancer is
demonstrated in Figure 2J. Cluster A (high stemness) tended to
develop tumor metastasis with a percentage of 41%, twice that in
A

C

B D

FIGURE 1 | The role of mRNAsi in STS. (A) K–M survival analysis of patients with high and low mRNAsi. (B) The receiver operating characteristic (ROC) curve of
mRNAsi in predicting survival of STS. (C) The differences of mRNAsi in patients with different characteristics. DL, dedifferentiated liposarcoma; MPNST, malignant
peripheral nerve sheath tumors; MFS, myxofibrosarcoma; LMS, leiomyosarcoma; UPS, undifferentiated pleomorphic sarcoma; SS, synovial sarcoma; CR, complete
response; PD, progressive disease; SD, stable disease; PR, partial response. (D) The response of patients with high and low mRNAsi to PD1 and CTLA4 inhibitors
(Benjamini and Hochberg corrected p > 0.05).
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A B

G J

C D

H I

E F

FIGURE 2 | Identification of three stemness subtypes based on prognostic SRSs. (A–C) Identification of SRSs based on WGCNA. (A) Selection of the optimal soft
threshold power, b (optimal b = 8, R2 = 0.9). (B) Heatmap of the module–trait relationship. Six modules were identified and related to clinical traits. The color depth
of each cell represents the correlation between the module and mRNAsi, and the numbers in the cell represent the correlation coefficients and p value, respectively.
(C) Identification of genes with high significance and module membership in the mRNAsi-related blue module. (D–F) Consensus clustering (K-means) algorithm was
performed for overall patients. (C) CDF plot. The flatter the middle part of the curve, the better the clustering effect. (E, F) Consensus matrix plots. K = 3 was
determined as optimal clustering number. (G) Heatmap of the gene expression of prognostic SRSs among three stemness subtypes (clusters A, B, and C). (H) K–M
survival analysis in clusters A, B, and C. (I) The differences of mRNAsi among clusters A, B, and C. (J) The percentage of metastatic and non-metastatic patients.
Na: data were not available. ***p < 0.001; **0.001 < p < 0.01.
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cluster C (low stemness). The accuracy of stemness subtypes was
also evaluated and validated in TCGA-SARC (Figure S1) and
GSE21050 (Figure S2) cohorts.

Distinct Biological Differences in
Stemness Subtypes
We performed biological analyses to further clarify the differences
of three stemness subtypes. Estimation of immune and stromal
components revealed that Cluster C was characterized by higher
immune scores, compared with clusters A and B (p < 0.05,
Figure 3A). Interestingly, higher stromal components were also
seen in cluster C (p < 0.05, Figure 3B). Detailed immune and
stromal components estimated by seven methods also
demonstrated high immune and stromal status in cluster C and
are clarified in Figure 3C. Compared with cluster A characterized
by worst prognosis, cluster C, characterized by best prognosis,
possessed more B, DC, Th1, CD8+ T, activated NK, gamma delta
T cells, and M1 macrophages and normal mucosa cells. However,
cluster A had more Th2, M0, Treg, and SW480 cancer cells.
Besides, scores from 29 immune gene sets based on the ssGSEA
method also supported these findings. Figure 3D shows that
innate and adaptive immunities were both activated in cluster C
patients. Similar results obtained from TCGA-SARC (Figure S3)
and GSE21050 (Figure S4) cohorts further witnessed the accuracy
of the immune microenvironment in the specific stemness
subtype. In addition to the immune microenvironment,
important biological pathways were studied to illustrate the
biological differences in stemness subtypes. It is noted that
patients with the lowest stemness (cluster C) possessed higher
tumor immune, metabolic levels (drug, histidine, tryptophan, fatty
acid metabolism), an elevated phosphatidylinositol signaling
system, and vascular smooth muscle contraction (Figure 3E).
Instead, lots of pathways associated with cell cycle, cell division,
and RNA metabolism were activated in cluster A with the highest
stemness. We obtained 150 DEGs from different stemness
subtypes (|logFC| >2 and FDR <0.05, Table S2). Results of GO
and KEGG further revealed the biological differences among
different stemness subtypes. Figures 3F, G show that 150 DEGs
were involved in the cell cycle, oocyte meiosis, progesterone-
mediated oocyte maturation, human T-cell leukemia virus 1
infection, and p53 signaling pathway (q value <0.05), consistent
with findings from GSVA analysis (Figure 3E).

High Stemness Was Associated With More
Somatic Mutation and CNA
Somatic mutation data from 235 samples were obtained to
investigate differences of gene mutation among stemness
subtypes. 78.79% (52/66), 73.53% (75/102), and 61.19% (41/67)
samples with gene mutations were observed in clusters A (with
highest stemness), B (with intermediate stemness), and C (with
lowest stemness), respectively (Figures 4A–C). Specific gene
mutations are also visualized in Figures 4A–C. We used TMB
to further demonstrate that high stemness was associated with
more somatic mutation (TMB: cluster A > B > C, p < 0.05,
Figure 4D). Next, we explored CNAs associated with stemness,
which were illustrated by the identification of differences of
CNAs between samples with highest stemness (cluster A) and
Frontiers in Immunology | www.frontiersin.org 7
lowest stemness (cluster C). Significant CNAs were observed in
184 genes (p < 0.0001, Figure 4E). Functional annotation
revealed that these genes played vital roles in fat cell
proliferation, notch binding, regulation of nucleotide metabolic
process, and TGF-beta signaling pathway (Figures 4F, G). We
found that high stemness was also associated with more CNAs
(Figures 4H, I). Patients with highest stemness (cluster A) had
the highest copy number burden (p < 0.05, Figure 4H).
Furthermore, compared with cluster C, cluster A had obviously
higher gistic scores across 22 chromosomes, especially in chr 1–4,
7, 9, 13, 15, 17, and 19 (Figures 4E, I).

DNA Methylation Analysis and
Identification of Stemness-Related
Methylation-Driven Genes
To explore the impact of DNA methylation on stemness, we
performed differential analysis and identified 2,054 DNA
methylation sites between patients with highest (cluster A) and
lowest (cluster C) stemness (Table S3). More sites with a higher
methylation level were found in the lowest stemness group
(Figure 5A). After mapping to genes, functions of differential
methylation sites were uncovered by GO and KEGG analyses.
These sites were mainly involved in skin development, epidermis
development, arginine biosynthesis, and steroid hormone
biosynthesis (Figures 5B, C). We further investigated stemness-
related methylation-driven genes using the “MethyMix” package.
Three genes (CPXM2,CYP1B1, andDES)with significantly negative
correlations between gene expression and methylation level were
identified as stemness-related methylation-driven genes (CPXM2:
cor = -0.603, p value = 8.039e-09; CYP1B1: cor = -0.565, p value =
1.025e-07; DES: cor = -0.801, p value = 3.909e-18,Figure 5D). Three
genes were also validated in clusters A, B, and C with different
stemness (Figure 5E).

Clinical and Multi-Omic
Characteristics of SPi
A quantitative tool was determined to contribute to clinical
application of SRSs in STS. 57 genes derived from the intersection
of SRSs and DEGs were subjected to LASSO analysis, and 16
optimal genes were used to construct a SRS-related model,
termed as SPi (SPi = -0.011*S100A2 + 0.396*RAD54L +
0.160*AURKB + 0.104*TRIP13 + 0.089* MAD2L1 + 0.030*
KIF15-0.048* CKS2-0.278*CEP55 + 0.027*PBK + 0.058*TK1-
0.050*PRC1-0.277*OIP5-0.079*UBE2T + 0.134* SLC2A1-
0.145*SERPING1-0.061*IGF1). We performed a series of
analyses to reveal characteristics of SPi in TCGA-SARC cohort,
because of its relative complete clinical and multi-omic data. We
found that SPi was associated with survival. According to the
optimal cutoff of SPi, patients were divided into two groups. Low-
SPi patients had better prognosis (Figure 6A), which was also
validated in Figures S5A, B. Compared with mRNAsi, SPi had
excellent prognostic value (Figure 1B and Figure 6B). Figures 6C,D
indicate that SPi was the independent prognostic factor for STS.
Besides, the difference of stemness between high-SPi and low-SPi
patients was assessed using mRNAsi in Figure 6E. High-SPi
patients were characterized by high stemness (mRNAsi),
which was consistent with a positive correlation between SPi and
April 2022 | Volume 13 | Article 796606
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mRNAsi (cor = 0.24, p = 9.7e-05, Figure 6F). Then, we assessed
clinical characteristics of SPi (Figure S5C). Patients aged >65 and
diagnosed with UPS had higher SPi. High-SPi patients with poor
prognosis tended to develop metastasis (p = 0.014). Low-SPi
patients were more likely to respond to treatments.

Immune characteristics of SPi were also investigated as shown in
Figure 7. Low-SPi patients had higher immune, stromal scores and
Frontiers in Immunology | www.frontiersin.org 8
more infiltrationof immunecells (Figures7A–C). Furthermore, low-
SPi patients also had activated innate and adaptive immunity,
assessed using the ssGSEA method (Figure 7D). Figure 7E shows
thatDNA repair, E2F targets, glycolysis,mtorc1 signaling, andWNT
beta catenin signaling pathways were enriched in patients with high
SPi. Instead, immune pathways, KRAS signaling, and TNFA
signaling viaNF-KB were activated in low-SPi patients (Figure 7F).
A

D

E F

G

B C

FIGURE 3 | Distinct biological differences in stemness subtypes. The differences of immune (A) and stromal (B) scores among three subtypes (clusters A, B, and C)
in the overall cohort. (C) The heatmap of immune infiltration (calculated by seven methods) among three subtypes. (D) The differences of enrichment scores of 29
immune gene sets reflective of innate and adaptive immunity among three subtypes. (E) The heatmap of differences of GSVA scores of KEGG pathways. GO (F) and
KEGG (G) analyses of DEGs from three stemness subtypes. ***p < 0.001; **0.001 < p < 0.01; *0.01 < p < 0.05; ns (not significant), p > 0.05.
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In addition to transcriptome analysis, we also investigated
differences of gene mutations between patients with high and low
SPi. As we expected, more proportions of gene mutation were
found in patients with high SPi (Figures 7G, H), and high SPi
was associated with high MSI and CNA burden (Figures 7I, K).
However, there was no significant difference of TMB between
high-SPi and low-SPi patients (Figure 7J). Besides, significant
correlations between SPi and TMB (cor = 0.13, p = 0.043) or MSI
(cor = 0.25, p = 7e-05) were as shown in Figures 7L, M. Based on
these findings, considering the closer relationship between SPi
and MSI, we introduced MSI into SPi to achieve an accurate
Frontiers in Immunology | www.frontiersin.org 9
classification of patients with different prognoses. Figure 7N
shows the combination of SPi and MSI; patients with STS were
classified into four groups with markedly different prognoses
(p < 0.001). Furthermore, high SPi was also associated with high
immunogenic biomarkers including AS, HRD, ITH, and LOH,
but not neoantigen burden (Figure S6).

Patients With Low Stemness Could Benefit
From Immunotherapy
Whether stemness was associated with response to
immunotherapy was investigated in this study. As is shown in
A B C

D E F

G H I

FIGURE 4 | High stemness was associated with more somatic mutation and CNA. Visualization of gene mutations in cluster A (A), cluster B (B), and cluster C (C).
(D) The difference of TMB in three stemness subtypes. TMB value was subjected to the transformation of log2(X+1). (E) The visualization of genes with significant
CNAs associated with stemness in highest stemness (cluster A) and lowest stemness (cluster C). GO (F) and KEGG (G) analyses of genes with significant CNAs
associated with stemness. (H) The differences of burden of copy number gain and loss among three stemness subtypes. (I) The visualization of copy number gistic
scores among three stemness subtypes. ****p < 0.0001; ***p < 0.001; **0.001 < p < 0.01; *0.01 < p < 0.05; ns (not significant), p > 0.05.
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A

D E

B

C

FIGURE 5 | DNA methylation analysis and the identification of stemness-related methylation-driven genes. (A)The heatmap of differential methylation sites between
highest stemness (cluster A) and lowest stemness (cluster C). GO (B) and KEGG (C) analyses of genes with differential methylation sites. (D) The correlations of gene
expression of three stemness-related methylation-driven genes with corresponding value of gene methylation. (E) The differences of stemness-related methylation-
driven genes among three stemness subtypes. ***p < 0.001; **0.001 < p < 0.01.
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Figures 8 and S7, three methods were used to identify patients
who respond to immunotherapy. Compared with cluster A,
cluster C with low stemness had high TIS (Figures S7A, C, E)
and low TIDE scores (Figures S7B, D, F). Although the
difference of TIDE scores between clusters A and C did not
reach significance (p = 0.095), Figure S7D shows that relatively
lower TIDE scores were observed in cluster C. We also
performed SubMap analysis to predict immunotherapy in
Figure S7G. Patients in cluster C were more sensitive to PD-1
blockade. Similar to stemness subtypes, Figures 8A–G show that
SPi could serve as an indicator to predict the efficacy of
immunotherapy. Figures 8H, I indicates that MSI (adjusted
Frontiers in Immunology | www.frontiersin.org 11
p = 0.04) could help SPi to identify patients (with low MSI and
SPi) more sensitive to immunotherapy.
DISCUSSION

STS with low incidence received less attention from researchers.
However, more complexity and high heterogeneity lead to the
dilemma of management of STS. More seriously, little knowledge
about STS was obtained. Hence, STS deserves enough attention
to contribute to management.
A B

C D

E F

FIGURE 6 | The prognostic role and stemness characteristic of SPi in STS from TCGA cohort. (A) K–M survival analysis of patients with high and low SPi. (B) ROC
curve of SPi at 1, 3, and 5 years. Forest plot of the univariate (C) and multivariate (D) analyses for the clinical factors and SPi in STS. (E) The difference of mRNAsi
between high-SPi patients and low-SPi patients. (F) The correlation of SPi with mRNAsi. ***p < 0.001.
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A

D

E F

G H

I J

K L M N

B C

FIGURE 7 | Multi-omic characteristics of SPi. The differences of immune (A) and stromal (B) scores between patients with high and low SPi. (C) The landscape of
immune infiltration in patients with high and low SPi. (D) The differences of enrichment scores of 29 immune gene sets reflective of innate and adaptive immunity in
patients with high and low SPi. GSEA of patients with high SPi (E) and low SPi (F). (G) Visualization of gene mutations in patients with high (G) and low SPi (H).
The differences of MSI (I) and TMB (J) between patients with high and low SPi. TMB value was subjected to the transformation of log2(X+1). (K) The differences of
burden of copy number gain and loss between patients with high and low SPi. The correlation of TMB (L) and MSI (M) with SPi. (N) Survival analyses for patients
with high MSI+ high SPi, high MSI +low SPi, low MSI + high SPi, and low MSI + low SPi. ***p < 0.001; **0.001 < p < 0.01; *0.01 < p < 0.05; ns (not significant), p > 0.05.
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It was well accepted that mRNAsi from a previous study (6)
was a great evaluation indicator for tumor stemness. Tumor
stemness played important roles in biological behaviors of tumor
including metastasis, resistance to treatment, and maintenance
of the tumor microenvironment (47), which was consistent with
our findings in STS. However, little role of mRNAsi in the
prediction of prognosis and immunotherapy was found in STS,
which limited the clinical application of mRNAsi. Due to vital
roles of stemness in STS, further studies on stemness could
promote the clinical management of STS. We introduced
stemness into STS to comprehensively study the role of tumor
stemness in STS. Based on two well-established cohorts, we
identified three stemness subtypes and obtained SPi, which
performed well in the prediction of prognosis and response
to immunotherapy.
Frontiers in Immunology | www.frontiersin.org 13
In this study, based on prognostic SRSs, three stemness
subtypes with distinct prognosis and biological characteristics
were obtained. Patients with high stemness had worse prognosis
and were more likely to develop metastases. To further explore
mechanisms leading to distinct characteristics in stemness
subtypes, we performed multilevel analysis for patients with
STS. Immune and stromal components, which could reflect
innate and adaptive immune status and were well recognized
as prognostic factors for tumors (48), were analyzed for each
stemness subtype. We found that different survival differences
might be caused by immune infiltration. Specifically, B, DC, Th1,
CD8+ T, activated NK, gamma delta T cells, and M1
macrophages with ability to directly or indirectly kill abnormal
tumor cells (48–50) might support better prognosis in low-
stemness subtypes. However, poor prognosis in high-stemness
A B C

D E F

G H I

FIGURE 8 | Patients with low stemness could benefit from immunotherapy. The differences of TIS and TIDE between patients with high and low SPi in the overall
cohort (A, B), TCGA-SARC cohort (C, D) GSE21050 cohort (E, F). (G) The response of patients with high and low SPi to PD1 and CTLA4 inhibitors (Benjamini and
Hochberg corrected p < 0.05). (H) The differences of TIS in patients with high MSI+ high SPi, high MSI +low SPi, low MSI + high SPi, and low MSI + low SPi. (I) The
response of patients with high MSI+ high SPi, high MSI +low SPi, low MSI + high SPi, and low MSI + low SPi to PD1 and CTLA4 inhibitors (Benjamini and Hochberg
corrected p < 0.05).
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subtypes was illustrated by low immune infiltration of immune
killer cells and more immunosuppressive cells. Besides, higher
immune inhibition might also occur in patients with activated
immune status. The above findings supported our speculation
that immune escape was more likely to occur in STS cells with
high stemness, resulting in poor prognosis.

In addition to high immune status, low stemness was also
characterized by high metabolic status. Histidine metabolism
was enriched in patients with low stemness and better prognosis,
consistent with a previous study (51). Close relationships of drug
metabolism cytochrome p450, tryptophan and fatty acid
metabolism with prognosis, and tumor stemness were also
reported in previous studies (52, 53) and found in this study.
Instead, patients with high stemness were characterized by
higher activity of the cell cycle, cell division, DNA replication,
and mismatch repair, which were prone to generate abnormal
mutations and result in malignant proliferation of tumors (54,
55). Functional annotation of DEGs from stemness subtypes
further supported the above results. Therefore, STS with different
stemness might maintain malignant potential by influencing
tumor immunity and metabolism.

Due to complexity of the cancers, multi-omics analysis was
necessary to better reveal the pathogenesis of STS. Mounting
evidence found that gene mutations could cause cell
abnormalities and uncontrolled growth, leading to the
occurrence and progression of tumors (56). We found that
patients with high stemness were more likely to develop
genetic mutations, resulting from higher activity of the cell
cycle, cell division, DNA replication, and mismatch repair. We
also identified some gene mutations (ATRX (57), and MUC16)
in different stemness subtypes, which might be potential targets
for STS to regulate stemness of tumor cells. Besides, high
stemness was also associated with more CNA. It is noted that
genomic instability including gene mutations and CNA tends to
result in more immune infiltration. However, high-stemness
subtypes with more gene mutations and CNA possessed low
immune cells, which might be caused by more invalid antigens or
lower antigen presentation. It is noted that tumor immunity is a
complex biological phenomenon, and further studies are
required to completely clarify inconsistency between genomic
changes and immune infiltration.

Epigenetic regulation was closely associated with growth and
development, maintenance of normal cell function, genome
integrity, and transcriptional regulation. DNA methylation as a
form of epigenetic regulation was reported to negatively regulate
gene expression to drive tumor formation and maintain
stemness (58, 59). We found that stemness of STS might be
regulated by DNA methylation. We also identified CPXM2,
CYP1B1, and DES as potential stemness-related methylation-
driven genes, which might contribute to the progression of STS.
CYP1B1 was reported to drive cancer cell stemness and patient
outcome in head-and-neck carcinoma (52). CPXM2 was
associated with poor prognosis in gastric cancer (60). DES was
also reported in multiple cancers (61).

Considering the important roles of stemness in the prediction
of prognosis and treatment, we developed a quantitative tool,
Frontiers in Immunology | www.frontiersin.org 14
SPi, to contribute to the clinical application of stemness in STS.
In this study, clinical and genomic characteristics of SPi were
described as follows: 1) Compared with mRNAsi, SPi had higher
predictive value of prognosis in STS. As expected, high SPi was
associated with high stemness, low infiltration of immune cells,
poor prognosis, and other genomic characteristics similar to
stemness subtypes. 2) SPi also had important clinical
characteristics. High SPi was observed in patients aged >65,
diagnosed with UPS and metastases, consistent with previous
studies where age and presence of metastases were reported as
risk factors in STS (62, 63). 3) In addition to the high predictive
value of prognosis, SPi was expected to possess guide significance
for immunotherapy. According to characteristics of the immune
microenvironment and the expression of immune checkpoints,
we speculated that SPi could predict the efficacy of patients
treated with immunotherapy. As we expected and speculated,
patients with low SPi and low-stemness subtype were more likely
to respond to immunotherapy. 4) Considering the close
relationships of MSI with SPi, we investigated whether the
combination of MSI and SPi could make up shortcomings of
each other and improve the prediction of prognosis and
management. We found that the combination of MSI and SPi
contributed to elevated efficacy of SPi to predict the prognosis
and benefits of patients from immunotherapy. Patients who meet
both low MSI and SPi were more likely to respond
to immunotherapy.

To our knowledge, it is the first study to comprehensively
reveal the role of stemness in STS based on muti-omic data.
Based on the above findings, our study had several significances
and clinical applications. We identified three stemness subtypes
with distinct stemness, immune, and metabolic characteristics,
which contribute to understanding of relationships among
stemness, immunity, and metabolism. The low response rate is
the main difficulty of immunotherapy, especially in STS (64).
Most tumors were considered as “cold tumors” insensitive to
immunotherapy. Knowledge of stemness could also be exploited
to remodel the immune microenvironment and tumor
metabolism to benefit “cold tumors” from immunotherapy.
We also developed an SRS-based tool (SPi) to promote the
clinical application of stemness, and SPi could predict the
prognosis and benefits of patients from immunotherapy.
However, our study had the inevitable disadvantage of small
sample size (568 patients). Due to the lower incidence of STS, we
considered this sample size to be acceptable. Furthermore, muti-
omic data and multiple methods could make up for the
disadvantage of small sample size and guarantee the accuracy
of this study.
CONCLUSION

We identified three stemness subtypes with distinct stemness,
immune, and metabolic characteristics, and developed SPi to
well predict prognosis and response of patients to
immunotherapy. Besides, MSI could help SPi to improve the
predictive value of SPi in STS. Patients who meet both low MSI
April 2022 | Volume 13 | Article 796606
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and SPi were more likely to respond to immunotherapy. Based
on muti-omic analysis, this study could contribute to better
understand stemness, immune, and metabolic characteristics in
STS and promote the management of STS. Our study also
provides a reference for study of stemness in other tumors.
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Supplementary Figure 1 | Identification of three stemness subtypes based on
prognostic SRSs in TCGA-SARC cohort. Note: Consensus clustering (K-means)
algorithmwas performed for TCGA-SARCpatients. (A)CDFplot. The flatter themiddle
part of the curve, the better the clustering effect. (B) Consensus matrix plots. (C)
Heatmap of gene expression of prognostic SRSs among three stemness subtypes
(Cluster A, B andC). (D)K-Msurvival analysis inCluster A, B andC. (E)The percentage
of metastatic and non-metastatic patients. Na: data was not available.

Supplementary Figure 2 | Identification of three stemness subtypes based on
prognostic SRSs in GSE21050 cohort. Note: Consensus clustering (K-means)
algorithm was performed for GSE21050 patients. (A) CDF plot. The flatter the
middle part of the curve, the better the clustering effect. (B) Consensus matrix plots.
(C) Heatmap of gene expression of prognostic SRSs among three stemness
subtypes (Cluster A, B and C). (D) K-M survival analysis in Cluster A, B and C.
(E) The percentage of metastatic and non-metastatic patients. Na: data was
not available.

Supplementary Figure 3 | Landscape of immune infiltration among three
subtypes in TCGA-SARC cohort.Note: The differences of immune (A) and stromal
(B) scores among three subtypes (Cluster A, B and C). (C) Heatmap of immune or
stromal cells (calculated by xCell method) among three subtypes. (D) The
differences of immune or stromal cells (calculated by CIBERSORT method) among
three subtypes. (E) The differences of enrichment scores of 29 immune gene sets
reflective of innate and adaptive immunity among three subtypes. ****p < 0.0001;
***p < 0.001; **0.001 < p < 0.01; *0.01 < p < 0.05; ns (not significant), p > 0.05.

Supplementary Figure 4 | Landscape of immune infiltration among three
subtypes in GSE21050 cohort.Note: The differences of immune (A) and stromal
(B) scores among three subtypes (Cluster A, B and C). (C) Heatmap of immune
or stromal cells (calculated by xCell method) among three subtypes. (D) The
differences of immune or stromal cells (calculated by CIBERSORT method) among
three subtypes. (E) The differences of enrichment scores of 29 immune gene sets
reflective of innate and adaptive immunity among three subtypes. ****p < 0.0001;
***p < 0.001; **0.001 < p < 0.01; *0.01 < p < 0.05; ns (not significant), p > 0.05.

Supplementary Figure 5 | The prognostic role and clinical characteristics of SPi.
Note: K-M survival analyses of patients with high and low SPi in TCGA-SARC (A)
and GSE21050 (B) cohorts. (C) The differences of SPi in patients with different
clinical characteristics in TCGA-SARC cohorts.

Supplementary Figure 6 | The differences of tumor immunogenicity indicators
between patients with high and low SPi.

Supplementary Figure 7 | Patients with low stemness could benefit from
immunotherapy.Note: The differences of TIS and TIDE among three stemness
subtypes in overall cohort (A, B), TCGA-SARC cohort (C, D) GSE21050 cohort
(E, F). (G) The response of patients (Cluster A, Cluster B and Cluster C) to PD1 and
CTLA4 inhibitors (Benjamini and Hochberg corrected p<0.05).
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