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Background: Late HIV diagnosis is detrimental both to the individual and to society. Strategies to improve 

early diagnosis of HIV must be a key health care priority. We examined whether nation-wide electronic 

registry data could be used to predict HIV status using machine learning algorithms. 

Methods: We extracted individual level data from Danish registries and used algorithms to predict HIV 

status. We used various algorithms to train prediction models and validated these models. We calibrated 

the models to mimic different clinical scenarios and created confusion matrices based on the calibrated 

models. 

Findings: A total 4,384,178 individuals, including 4,350 with incident HIV, were included in the analyses. 

The full model that included all variables that included demographic variables and information on past 

medical history had the highest area under the receiver operating characteristics curves of 88 ·4% (95%CI: 

87 ·5% – 89 ·4%) in the validation dataset. Performance measures did not differ substantially with regards 

to which machine learning algorithm was used. When we calibrated the models to a specificity of 99 ·9% 

(pre-exposure prophylaxis (PrEP) scenario), we found a positive predictive value (PPV) of 8 ·3% in the full 

model. When we calibrated the models to a sensitivity of 90% (screening scenario), 384 individuals would 

have to be tested to find one undiagnosed person with HIV. 

Interpretation: Machine learning algorithms can learn from electronic registry data and help to predict 

HIV status with a fairly high level of accuracy. Integration of prediction models into clinical software 

systems may complement existing strategies such as indicator condition-guided HIV testing and prove 

useful for identifying individuals suitable for PrEP. 
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© 2019 Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

I

 

R  

c  

s  

a  

H  

M  

i  

(  

a

 

u  

h  

R  

b  

s  

t  

p  

t  

[  

c  

d  

h

2

ntroduction 

Over half of individuals diagnosed with HIV in the European

egion are diagnosed in a late stage of infection (i.e. with a CD4

ount below 350 cells/μL at time of diagnosis) [1] . Early diagno-

is is important for several reasons; it improves life expectancy

mong people living with HIV (PLWH) [2] , reduces risk of onward

IV transmission [3] , and lowers associated health care costs [4] .

oreover, there is now a large body of evidence from random-

zed controlled trials that early initiation of antiretroviral therapy

ART) lowers risk of acquired immunodeficiency syndrome (AIDS)

nd non-AIDS events [ 5 , 6 ]. 
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One way to diagnose PLWH at an early stage may be through

niversal screening in which all individuals, that encounter the

ealth care system, are offered testing. In the Western European

egion, where the prevalence of HIV is low, such an approach may

e associated with a poor cost-benefit ratio [7] . Thus, alternative

trategies have been proposed, such as indicator-condition guided

esting. Such guidance, which in part builds on studies on HIV

revalence within specific medical conditions [8] , recommends HIV

esting in any condition, which may indicate the presence of HIV

9] . Although this approach offers several advantages, it does not

onsider all the prior health data of a given individual. Moreover, it

oes not consider age, sex or any temporal patterns of prior medi-

al diseases, and it does not include those medical conditions that

ould be associated with a lower risk of HIV transmission. Includ-

ng this kind of information into decision algorithms of HIV pre-
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T  
diction may not only improve discriminative abilities but may po-

tentially also help identify individuals at increased risk of acquiring

HIV, including individuals who might be pre-exposure prophylaxis

(PrEP) candidates. 

Machine learning algorithms, a set of mathematical or algorith-

mic tools which extract generalizable patterns from large data sets

in order to make predictions about the outcome in new, unseen

cases, are rapidly growing research areas which have also found

their way into HIV research. It has so far primarily been used to

predict progression of HIV and ART resistance and for ART opti-

mization [10–12] . In the present study, we applied machine learn-

ing algorithms that learn from nation-wide historic electronic reg-

istry data to make prediction of HIV status and evaluated the po-

tential of such prediction models as a screening tool and to iden-

tify suitable candidates for PrEP. Focusing on assessing the general

applicability of these types of methods and thus establishing a ref-

erence baseline performance, we focused our investigation on sim-

pler general-purpose modeling frameworks over detailed models of

higher performance but reduced ability to generalize. 

Methods 

Setting 

As of December 31, 2016, Denmark had an adult population of

approximately 4 ·6 million people, 6200 ( ∼0 ·1%) people diagnosed

with HIV, and an estimated 600 ( ∼0 ·01%) individuals with undi-

agnosed HIV infection [13] . PLWH are treated in eight specialized

HIV-care centers and are typically seen as outpatients at intended

intervals of 12–24 weeks. Combination antiretroviral treatment is

provided free of charge at the HIV-centers. 

Data sources 

The unique 10-digit personal identification number assigned to

all Danish residents at birth or immigration was used to avoid

multiple registrations and to track individuals in the following reg-

istries. 

The Danish National Hospital Registry (DNHR) was established in

1977 and stores information on all inpatient and outpatient admis-

sion to hospitals in Denmark. Diagnoses are classified according to

the ICD 8th revision (ICD8) until December 31, 1993, and 10th re-

vision (ICD10) thereafter. The registry has been expanded gradually

so that it now also contains outpatient data, data from emergency

wards, and data from psychiatric admissions dating back to 1995,

which led us to use data on admission dating back to Jan 1, 1995. 

The Danish Civil Registration System was established in 1968 and

stores information on all Danish residents. From this registry we

extracted data on date of birth, sex, residency, marital status and

migration. 

The Employment Classification Module provides information on

the occupation and employment status of the population charge-

able with tax. From this registry we extracted data on main source

of income 

Educational Classification Module includes data on successfully

completed educational attainments collected directly from all Dan-

ish educational institutions for all Danish residents. Ninety-seven

percent of the Danish-born population and 85–90% of the immi-

grant population has non-missing data. Educational attainment is

classified according to a Danish modified version of the Interna-

tional Standard Classification of Education 2011 [14] . 

Study population 

We included all Danish individuals that: i) had at least one hos-

pital visit between January 1, 1995, until December 31, 2016, ii) had
 Danish personal identification number, and iii) were aged ≥ 16

ears at the hospital visit. We excluded individuals with i) an HIV

iagnoses registered before 16 years of age and ii) an HIV diagnosis

efore Jan 1, 1995. 

tatistics 

We defined an index visit which was the last registered hospital

isit or the first registered hospital visit with an HIV-diagnosis. For

he index visit we computed 167 variables associated with med-

cal history. These variables were a slightly modified version of

ategories used previously [15] . The categories and the associated

CD8/ICD10 codes are provided as online supplementary material.

ome ICD codes were omitted from the chosen disease categories

sed for the models. All codes have been highlighted in online

upplementary material Table S1. For each index visit we identi-

ed all hospital visits up until three months before the index visit.

ased on these visits we calculated a score for each disease cate-

ory that was 10 minus the number of years between each hospi-

al visit and the index visit, e.g. if an individual was hospitalized

ve years prior to the index visit with a diagnosis of pneumococ-

al pneumonia (PP) the variable PP was assigned a value of 10 -

 = 5, if the time was equal to or exceeded 10 years the variable

as assigned the value 0. We also included a variable that indi-

ated how many hospital visits the individual had the last year

rior to the index visit. Additional variables included were age

 > 16, 16–25, 25–35, 35–45, 45–55 and 55 + ), sex (male and fe-

ale), place of birth (Denmark, Scandinavia, other and unknown),

ighest educational attainment (primary school, high school, voca-

ional internships and main course, short higher education, middle

ength higher education, bachelor and long length higher educa-

ion, PhD programs, unknown), marital status (married, divorced,

idowhood, registered partnership, cancelled registered partner-

hip, longest living of two partners and unknown), main source of

ncome (self-employed, employed spouse, wage earner with own

usiness, wage earner without business, wage earner with sup-

ort, senior citizen with own business, senior citizen, other and

nknown) and place of residency (capital region, large city region,

interland region, provincial region, rural region and unknown).

or more details on the variables please refer to Table 1 and Ta-

le S1. 

The response variable in all models was an HIV diagnosis dur-

ng the index visit. HIV was defined as one a of the following di-

gnoses: ICD8: 07983 or ICD10: B20-B24.9. The validity of an HIV

iagnosis in LPR has previously been shown to be very high [16] . 

We used logistic regression with an elastic net penalty function

GLMnet) as regularizer to fit models with increasing variable com-

lexity. A regularizer is a tool which automatically penalizes com-

lex models over simpler ones during model fitting, and the partic-

lar type used here (elastic net) allows for the automatic exclusion

f variables with little impact on model performance (these vari-

bles are marked with a “-“ in Table S1); thus, the role of the reg-

larizer is to find the model that best fits the data with the mini-

al number of variables. The elastic net is a regularized regression

ethod that combines lasso and ridge regression penalties, the hy-

erparameter α controls which mix between the two penalties is

sed, ie. if α = 0 pure ridge penalty is used and if α = 1 pure lasso

enalty is used [17] . We used 10-fold cross validation to determine

he value of λ in the penalty function and used 10-fold cross val-

dation to determine the mix between the penalty functions (the

-value). When a model was fit, we used the model to calculate a

isk score of HIV for each individual included. The risk scores were

sed to create receiver operating characteristics (ROC) curve for all

he models. Furthermore, we calculated area under receiver operat-

ng characteristics curve (AUROC) in order to compare the models.

he ROC curves were used to calibrate the models to certain val-
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Table 1 

Clinical characteristics of the training and validation cohort. 

Training cohort Validation cohort 

Total number of individuals 2,972,264 1,411,914 

HIV + , n (%) 3,063 (0 ·1%) 1,287 (0 ·1%) 

Male, n (%) 1,470,420 (49%) 652,912 (46%) 

Age 

15–25, n (%) 383,521 (13%) 149,525 (11%) 

25–35, n (%) 33,662 (11%) 232,098 (16%) 

35–45, n (%) 439,223 (15%) 168,687 (12%) 

45–55, n (%) 408,877 (14%) 203,669 (14%) 

55 + , n (%) 1,406,981 (47%) 657,935 (47%) 

Country of origin 

Denmark, n (%) 2,623,960 (88%) 1,288,389 (91%) 

Scandinavia, n (%) 34,075 (1%) 13,315 (1%) 

Other Countries, n (%) 280,223 (9%) 100,519 (7%) 

Unknown, n (%) 34,006 (1%) 9,691 (1%) 

Highest Educational Attainment 

Primary school, n (%) 929,426 (31%) 403,871 (29%) 

High school, n (%) 160,838 (5%) 92,277 (7%) 

Vocational internships and main course, n (%) 829,897 (28%) 417,074 (30%) 

Short higher education, n (%) 89,474 (3%) 44,397 (3%) 

Middle length higher education, n (%) 322,035 (11%) 165,348 (12%) 

Bachelor and long higher education, n (%) 192,771 (6%) 95,981 (7%) 

PhD Programs, n (%) 10,187 ( < 1%) 4,256 ( < 1%) 

Unknown, n (%) 437,636 (15%) 188,710 (13%) 

Marital status 

Married, n (%) 1,331,231 (45%) 622,066 (44%) 

Divorced, n (%) 313,083 (11%) 154,192 (11%) 

Widowhood, n (%) 364,476 (12%) 163,582 (12%) 

Registered partnership, n (%) 4,280 ( < 1%) 1,863 ( < 1%) 

Cancelled registered partnership, n (%) 1,322 ( < 1%) 625 ( < 1%) 

Longest living of two partners, n (%) 330 ( < 1%) 125 ( < 1%) 

Unknown, n (%) 85,289 (3%) 33,911 (2%) 

Main source of income 

Self-employed, n (%) 93,678 (3%) 41,650 (3%) 

Employed spouse, n (%) 3,273 ( < 1%) 1,654 ( < 1%) 

Wage earner with own business, n (%) 39,663 (1%) 18,179 (1%) 

Wage earner without business, n (%) 1,174,574 (40%) 610,584 (43%) 

Wage earner with support, n (%) 6,074 ( < 1%) 2,989 ( < 1%) 

Senior citizen with own business, n (%) 21,963 (1%) 9,666 (1%) 

Senior citizen, n (%) 1,059,706 (36%) 499,156 (35%) 

Others, n (%) 524,385 (18%) 211,455 (15%) 

Unknown, n (%) 48,948 (2%) 16,581 (1%) 

Place of residence 

Capital region, n (%) 761,306 (26%) 363,318 (26%) 

Large city region, n (%) 352,530 (12%) 174,090 (12%) 

Hinterland region, n (%) 467,034 (16%) 219,237 (16%) 

Provincial region, n (%) 657,852 (22%) 311,164 (22%) 

Rural region, n (%) 648,253 (22%) 311,194 (22%) 

Unknown, n (%) 85,289 (3%) 32,911 (2%) 
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es of sensitivity and specificity by calculating their corresponding

isk scores. We additionally calculated sensitivity, specificity, posi-

ive predictive value (PPV) and negative predictive value (NPV). 

To evaluate how much information was gained by including an

ncreasing number of variables, we fitted three different models

ith the elastic net penalty function. Each model was fitted inde-

endently, i.e. regularization was done separately for each model

nd parameters in the model calculated independently. The vari-

bles introduced in the three different models were: i) age, sex and

exually transmitted infections (STIs, see Table 1 for a complete

ist), ii) age, sex, place of birth, educational attainment, marital sta-

us, place of residency and main source of income and iii) all in-

luded in ii and medical history, this was the final model used. The

otal number of index visits was randomly divided into a training

et (70%) and a validation set (30%). The validation set was used to

ake out-of-sample validation on the prediction algorithm. 

To evaluate whether different machine learning algorithms per-

ormed better with regards to discriminative ability, we also fitted

imple logistic regression, random forest with random undersam-

ling (1 HIV-positive to 10 HIV-negative individuals) to balance the

ataset, logistic regression with lasso regularizer (GLM ) and lo-
Lasso 
istic regression with ridge regularizer (GLM Ridge ), and logistic re-

ression with elastic net regularizer with synthetic minority over-

ampling technique (SMOTE) to balance dataset, on all variables

nd compared these using AUROC. We tested differences in per-

ormance of the models on the models that were calibrated to a

ensitivity of 90% with McNemars test. 

We created calibrated confusion matrices of the final model to

imic three clinical scenarios. The first scenario is when a high

ertainty of an HIV diagnosis is required (model calibrated to a

pecificity of 99 ·9%), e.g. when evaluating potential candidates of

rEP, the specific score of 99 ·9% was chosen to be high but other

han that is arbitrary. The second scenario is the optimal trade-

ff between sensitivity and specificity (model optimized according

o the highest value of the Youden’s index (sensitivity + specificity

 1)) [18] . The third scenario is when a large coverage of the di-

gnosis is required (model calibrated to a sensitivity of 90%), e.g.

 screening setting, the 90% sensitivity was chosen to reflect the

rst ‘90 ′ in the WHO ’90-90–90 ′ . The calibration was done by cal-

ulating the risk score that yields the desired performance char-

cteristic (eg. sensitivity of 90%) in the training data set, and then

pplying this risk score to the validation data set and then calcu-
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Fig. 1. Training and validation sample ROC curves . The figures show the training (a) sample and validation sample (b) performance of the three different models based on 

the best performing algorithm (GLM ridge ). Each point on the graphs represents a sensitivity and a specificity for a particular cut-off with regards to risk-score calculated by 

using the parameters generated by fitting the different models. 
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late the actual sensitivity, specificity, NPV and PPV. Of note is that

the calibration of the model is made on the training set, and the

confusion matrix is calculated on the validation dataset. Therefore,

the actual performance values may differ slightly from what the

model was calibrated to. 

Statistical analyses were performed using R version 3 ·5 ·0 (R De-

velopment Core Team (2018). R: A language and environment for

statistical computing. R Foundation for Statistical Computing, Vi-

enna, Austria) [19] . 

Results 

We included 4,384,178 individuals from the Danish population

with at least one hospital visit. These data were divided into a

training set with 2,972,264 hospital visits and a validation set with

1,411,914 hospital visits. We identified 4,350 PLWH that were in-

cluded in the analyses, in either the training data or the validation

data. For exact characteristics of the two datasets please refer to

Table 1 . 

We found that an increasing number of variables included in

the model resulted in increasing predictive performance. For the

model including age, sex and STIs (model I), we found an AUC

of 0 ·780 (95% CI: 0 ·769–0 ·792) in the validation set. For the full

model (model III), which included additional information about

medical history, we found an AUC of 0 ·884 (95% CI: 0 ·874–0 ·893)

in the validation set ( Fig. 1 a and b). 

When we calibrated the models to a sensitivity of 90%, the ac-

tual sensitivity of model III was 86 ·2%. Specificity was 69 ·9% for

model III and only 43 ·5% for model I. The model, which included

information on birth, educational attainment, marital status, place

of residency and main source of income, but not medical history

(model II), had a sensitivity of 86 ·1% and a specificity of 65 ·4%

( Table 2 a). The PPV of model III was 0 ·26%, for model II it was

0 ·23% and for the model I it was 0 ·15%. Thus, for the full model,

384 individuals would have to be tested to find one undiagnosed

PLWH. For model I and model II, 681 and 441 individuals would

have to be tested, respectively ( Table 2 a). 
When we calibrated the models to a specificity of 99 ·9%, model

II had the highest sensitivity (8 ·1%). The specificity did not differ

ubstantially between the three models ( Table 2 b). 

When we calibrated the models with regards to the highest

ouden’s Index, model III outperformed the other models in all

etrics. Thus, sensitivity was 76 ·2%, 74% and 71%, specificity was

5 ·0%, 82 ·5% and 69 ·9% and PPV was 0 ·46%, 0 ·37% and 0 ·22% for

odel III, II and I, respectively. Thus, for the full model, 226 indi-

iduals would have to be tested in order to find one undiagnosed

LWH. For model I and model II, 446 and 269 individuals would

ave to be tested, respectively ( Table 2 c). 

When we compared different machine learning algorithms, we

ound that the random forest algorithm performed slightly bet-

er with an AUC of 0 ·892 (95% CI: 0 ·882 − 0 ·903), however, the

Is where overlapping with the other machine learning algorithms.

egardless, the improved performance of the random forest could

ndicate that some covariate interactions are present. The logistic

egression with elastic net penalty and SMOTE to balance the data

et performed worst with an AUC of 0 ·846 (95% CI: 0 ·836 − 0 ·857).

hen we calibrated the model from the random forest algorithm

o different sensitivities and specificities the actual sensitivities and

pecificities in the validation data was substantially different from

hat they were calibrated to, i.e. the actual sensitivity in the vali-

ation data set was 37 ·5%, and the specificity was 95 ·4% ( Table 3 ).

his was not the case for the other machine learning algorithms

GLM lasso , GLM ridge and simple logistic regression). When we cal-

brated the final models from the different machine learning al-

orithms to a sensitivity of 90% we found that the ridge regres-

ion performed best, and differed highly from all other algorithms

McNemars test: P-value < 0 ·001) except the simple logistic re-

ression from which we found no statistically significant difference

McNemars test: P-value 0 ·494). When we compared the mod-

ls from the machine learning algorithms (GLM lasso and GLM ridge )

ith a simple logistic regression, we found that the simple logis-

ic regression model had performance characteristics that did not

iffer substantially from any of the machine learning algorithms

 Fig. 2 ). 
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Table 2 

Confusion matrices and performance characteristics (GLM Ridge algorithm). 

Table 2 a: Algorithms calibrated to a sensitivity of 0 ·90 

(high coverage - screening) 

Age, sex and STIs 

HIV + HIV- Total 

Test + 1,172 797,138 798,310 Sensitivity 0 ·911 (0 ·894 - 0 ·926) 

Test- 115 613,489 613,604 Specificity 0 ·435 (0 ·434 - 0 ·436) 

Total 1,287 1,410,627 1,411,914 PPV 0 ·0015 (0 ·0014 - 0 ·0016) 

NPV 0 ·9998 (0 ·9998 - 0 ·9998) 

Age, sex, origin of birth, educational attainment, marital 

status, place of residence and main source of income 

HIV + HIV- Total 

Test + 1,108 487,880 488,988 Sensitivity 0 ·861 (0 ·841 - 0 ·879) 

Test- 179 922,747 922,926 Specificity 0 ·654 (0 ·653 - 0 ·655) 

Total 1,287 1,410,627 1,411,914 PPV 0 ·0023 (0 ·0021 - 0 ·0024) 

NPV 0 ·9998 (0 ·9998 - 0 ·9998) 

Age, sex, origin of birth, educational attainment, marital 

status, place of residence, main source of income and 

medical history 

HIV + HIV- Total 

Test + 1,110 424,654 425,764 Sensitivity 0 ·862 (0 ·842 - 0 ·881) 

Test- 177 985,973 986,150 Specificity 0 ·699 (0 ·698 - 0 ·700) 

Total 1,287 1,410,627 1,411,914 PPV 0 ·0026 (0 ·0025 - 0 ·0028) 

NPV 0 ·9998 (0 ·9998 - 0 ·9998) 

Table 2 b: Algorithms calibrated to a specificity of 0 ·999 

(high risk population) 

Age, sex and STIs 

HIV + HIV- Total 

Test + 35 1,667 1,702 Sensitivity 0 ·027 (0 ·019 - 0 ·038) 

Test- 1,252 1,408,960 1,410,212 Specificity 0 ·999 (0 ·999 - 0 ·999) 

Total 1,287 1,410,627 1,411,914 PPV 0 ·0206 (0 ·0144 - 0 ·0285) 

NPV 0 ·9992 (0 ·9991 - 0 ·9992) 

Age, sex, origin of birth, educational attainment, marital 

status, place of residence and main source of income 

HIV + HIV- Total 

Test + 77 1,042 1,119 Sensitivity 0 ·060 (0 ·048 - 0 ·074) 

Test- 1,210 1,409,585 1,410,795 Specificity 0 ·999 (0 ·999 - 0 ·999) 

Total 1,287 1,410,627 1,411,914 PPV 0 ·0688 (0 ·0547 - 0 ·0853) 

NPV 0 ·9992 (0 ·9991 - 0 ·9992) 

Age, sex, origin of birth, educational attainment, marital 

status, place of residence, main source of income and 

medical history 

HIV + HIV- Total 

Test + 104 1,156 1,260 Sensitivity 0 ·081 (0 ·067 - 0 ·097) 

Test- 1,183 1,409,471 1,410,654 Specificity 0 ·999 (0 ·999 - 0 ·999) 

Total 1,287 1,410,627 1,411,914 PPV 0 ·0825 (0 ·0679 - 0 ·0991) 

NPV 0 ·9992 (0 ·9991 - 0 ·9992) 

Table 2 c: Algorithms calibrated to maximal Youdens 

Index (Sensitivity + Specificity – 1) 

Age, sex and STIs 

HIV + HIV- Total 

Test + 952 424,326 425,278 Sensitivity 0 ·740 (0 ·715 - 0 ·763) 

Test- 335 986,301 986,636 Specificity 0 ·699 (0 ·698 - 0 ·700) 

Total 1,287 1,410,627 1,411,914 PPV 0 ·0022 (0 ·0021 - 0 ·0024) 

NPV 0 ·9997 (0 ·9997 - 0 ·9998) 

Age, sex, origin of birth, educational attainment, marital 

status, place of residence and main source of income 

HIV + HIV- Total 

Test + 919 246,857 247,776 Sensitivity 0 ·714 (0 ·689 - 0 ·739) 

Test- 368 1,163,770 1,164,138 Specificity 0 ·825 (0 ·824 - 0 ·826) 

Total 1,287 1,410,627 1,411,914 PPV 0 ·0037 (0 ·0035 - 0 ·004) 

NVP 0 ·9997 (0 ·9996 - 0 ·9997) 

Age, sex, origin of birth, educational attainment, marital 

status, place of residence, main source of income and 

medical history 

HIV + HIV- Total 

Test + 981 211,973 212,954 Sensitivity 0 ·762 (0 ·738 - 0 ·785) 

Test- 306 1,198,654 1,198,960 Specificity 0 ·850 (0 ·849 - 0 ·850) 

Total 1,287 1,410,627 1,411,914 PPV 0 ·0046 (0 ·0043 - 0 ·0049) 

NPV 0 ·9997 (0 ·9997 - 0 ·9998) 

The tables depict confusion matrices and actual sensitivities, specificities, positive predictive values (PPVs) and negative predictive values (NPVs) of the best performing 

GLM ridge model. The models are calibrated according to the risk score that yields the desired value in the training data, i.e. when sensitivities are calculated on the validation 

set the actual sensitives and specificities may differ slightly. 
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Table 3 

Confusion matrices and performance characteristics of different algorithms. 

3a: simple logistic regression algorithm sensitivity of 0 ·90 

(high coverage - screening) 

HIV + HIV- Total 

Test + 1,107 424,879 425,986 Sensitivity 0 ·860 (0 ·840 - 0 ·879) 

Test- 180 985,748 985,928 Specificity 0 ·699 (0 ·698 - 0 ·700) 

Total 1,287 1,410,627 1,411,914 PPV 0 ·026 (0 ·0024 - 0 ·0027) 

NPV 0 ·9998 (0 ·9998 - 0 ·9998) 

3b: Random forest algorithm sensitivity of 0 ·90 (high 

coverage - screening) 

HIV + HIV- Total 

Test + 483 68,763 69,246 Sensitivity 0 ·375 (0 ·349 - 0 ·402) 

Test- 804 1,408,960 1,411,016 Specificity 0 ·954 (0 ·953 - 0 ·954) 

Total 1,287 1,410,627 1,411,914 PPV 0 ·0070 (0 ·0063 - 0 ·0067) 

NPV 0 ·9994 (0 ·9994 - 0 ·9995) 

3c: Lasso regression algorithm sensitivity of 0 ·90 (high 

coverage - screening) 

HIV + HIV- Total 

Test + 1,120 439,787 440,907 Sensitivity 0 ·870 (0 ·851 - 0 ·888) 

Test- 167 970,840 971,007 Specificity 0 ·688 (0 ·687 - 0 ·689) 

Total 1,287 1,410,627 1,411,914 PPV 0 ·0025 (0 ·0023 - 0 ·0027) 

NPV 0 ·9998 (0 ·9998 - 0 ·9999) 

3d: Ridge regression algorithm sensitivity of 0 ·90 (high 

coverage - screening) 

HIV + HIV- Total 

Test + 1,110 424,654 425,764 Sensitivity 0 ·860 (0 ·840 - 0 ·879) 

Test- 177 985,973 986,150 Specificity 0 ·699 (0 ·698 - 0 ·700) 

Total 1,287 1,410,627 1,411,914 PPV 0 ·0026 (0 ·0025 - 0 ·0028) 

NPV 0 ·9998 (0 ·9998 - 0 ·9998) 

3e: Elastic net penalty regression ( α = 0.992) algorithm 

with Synthetic minority oversampling (SMOTE) and 

sensitivity of 0 ·90 (high coverage - screening) 

HIV + HIV- Total 

Test + 723 124,770 425,764 Sensitivity 0 ·562 (0 ·534 - 0 ·589) 

Test- 564 1,285,857 986,150 Specificity 0 ·912 (0 ·911 - 0 ·912) 

Total 1,287 1,410,627 1,411,914 PPV 0 ·0058 (0 ·0054 - 0 ·0062) 

NPV 0 ·9996 (0 ·9995 - 0 ·9996) 

The tables depict confusion matrices and actual sensitivities, specificities, positive predictive values (PPVs) and negative predictive values (NPVs) of four different algorithms. 

The models are calibrated according to the risk score that yields the desired value in the training data, i.e. when sensitivities are calculated on the validation set the actual 

sensitives and specificities may differ slightly. 

Fig. 2. Training and validation sample ROC curves using different machine learning algorithms . The figure shows ROC curves for the training (2a) and validation data 

(2b) of simple logistic regression, best performing random forest algorithm, the best performing GLM ridge algorithm, the best performing GLM Lasso algorithm and the best 

performing logistic regression with elastic net penalty and synthetic minority oversampling technique (SMOTE) prior to analyses. 
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We assessed whether there was a change in performance of

he model over the years (1995–2016) which did not seem to be

he case. However, we did see minor fluctuations in sensitivity and

pecificity as depicted in supplementary Figure S1. 

iscussion 

The first of the United Nations’ (UN) 90–90–90 targets to end

he HIV epidemic is for 90% of PLWH to know their HIV status.

arly diagnosis is a prerequisite for achieving these targets. We ex-

mined whether machine learning algorithms could learn from ex-

sting electronic registry data and help to predict HIV status. Our

tudy shows that such an approach is feasible and that the algo-

ithms had a fairly high accuracy for the prediction of HIV status. 

Routine HIV testing of individuals presenting with certain con-

itions, which may indicate the presence of HIV, has been imple-

ented in European countries guidance on HIV testing [20] . These

ndicator conditions are defined as conditions in which the preva-

ence of HIV is > 0 ·1%, i.e. the level at which testing is assumed

o be cost-effective [7] . Although this strategy may have facilitated

arly diagnosis of PLWH across Europe [21] , testing rates of indi-

iduals presenting with indicator conditions remain low in many

ettings [ 22 , 23 ], and the number of diagnosed PLWH in Europe is

anging from 28% −98% with only three countries meeting the first

90 ′′ of the UN’s targets [24] . Moreover, a significant number of

LWH do not experience an HIV indicator condition in the years

rior to diagnosis of HIV [25 , 26] . Research aimed at developing

omplementary risk stratification tools are therefore needed. 

To our knowledge, this is the first study to apply machine

earning methods on nation-wide electronic registry data for the

rediction of HIV status. We have shown that this method may

elp identify undiagnosed PLWH and potentially individuals at in-

reased risk of acquiring HIV. Moreover, the properties of the mod-

ls seemed to be favorable, and although PPVs was generally low

e.g. 0 ·26% in the full model where algorithms were calibrated to a

igh sensitivity and 8 ·3% in the full model where algorithms were

alibrated to a high specificity), this PPV was comparable to cur-

ently available manual HIV risk prediction tools which also in-

luded very detailed information about sexual preferences and il-

icit drug use [27] . The difference between model 2 and model 3

ere smaller than expected, ie. A fairly high discriminatory value

an be achieved by including demographics only, indicating that

hese variables are very important to include in models that guide

linicians with regards to HIV-testing. However, we did see a sub-

tantial difference in that a total number of 441 and 384, respec-

ively, would have to be tested in order to find one PLWH when

odels were calibrated to a sensitivity of 90%. 

There are several barriers to HIV testing including professional

arriers (e.g. lack of knowledge of underlying risk factors), and

ersonal barriers (e.g. not disclosing underlying risks due to fear

f stigma, discrimination or prosecution) [28] . The present algo-

ithms do not rely on specific information about sexual orienta-

ion, whether the individual has a partner with HIV, from a coun-

ry with high HIV prevalence, or is an intravenous drug user, in

hich cases a testing may be recommended per se [1] . On the other

and, incorporating such information into the algorithms may po-

entially improve the discriminative properties of the algorithm. 

The use of machine learning algorithms is a growing trend in

IV research. Thus, it has been used to predict progression of HIV

nd ART resistance and for ART optimization [10–12] . Recent stud-

es have also shown that machine learning algorithms may be used

or surveillance, including prediction of new HIV diagnoses and

IDS incidence based on internet search data [29 , 30] , and there is

arly evidence that social media data may be used to study param-

ters such as HIV prevention, testing, and treatment efforts [31] .

ur study adds to this growing field. However, whether such al-
orithms have any potential when applied in a real world setting

eeds to be further studied. We envision that algorithms could

e integrated into clinical systems at hospitals, clinics or in pri-

ary care, e.g. by triggering a prompt to offer an HIV test to

 given individual. One study evaluated a prototype application

hich prompted clinicians to add an HIV test when other labo-

atory tests selected suggested that the patient was at higher risk

f HIV infection [32] . This application was found to be both feasi-

le and acceptable among the clinicians. Future work should work

oward improving these algorithms, and do external validation of

urrently available algorithms. This may include exploring other

achine learning techniques, redefining or including new predic-

ors and exploring interactions in the present models. Previous

tudies have suggested that behavioral information such as sexual

reference and illicit drug use is useful for HIV prediction [30] and

ay improve performance of these models further. Future studies

hould try and make such extensions. However, in our nation-wide

etting some of these extensions will prove difficult, e.g. we do not

ave access to behavioral data or clinical measures of disease for

ll people living in Denmark. 

Certain ethical issues may arise when using individual charac-

eristics for clinical prediction including the ability of an individ-

al to consent for the use of their information [33] . Implemen-

ation of algorithms into clinical practice should take such issues

nto account and any benefits should outweigh the risks of harm

o patients. As previously discussed, the present algorithms do not

nclude information about substance abuse, sexual orientation or

ender minority status which may be more acceptable to patients

han if such information was to be included 

There are several limitations to this study. First, the algo-

ithms assume that PLWH and uninfected individuals are classi-

ed correctly. This is not the case as an estimated number of

0 0/5,80 0,0 0 0 ( ∼0 ·01%) individuals in Denmark are undiagnosed

LWH [13] , under the assumption that undiagnosed individuals

ith HIV resemble the PLWH in the current study, the sensitiv-

ty and specificity of the models should not change, however PPV

ould decrease and NPV would increase. For obvious reason, we

o not know the medical history of those PLWH that are currently

ndiagnosed. Second, our algorithm, in its current form, does not

ave universal applicability. The type and extent of electronic reg-

stry data will inevitably vary by country, the regions with the

ighest number of undiagnosed PLWH may not have access to this

ype of data. Moreover, there may be some issues in relation to

he use of ICD codes due to potential systematic biases in their use,

nd the distribution of risk factors may vary from country to coun-

ry. Also we only included data from the secondary health care

ector, the majority of health care is provided in the primary sec-

or, so exploring possibilities with data from primary health care

ould be valuable as and some variables look promising e.g. fre-

uency of visits [34] . Furthermore, although Danish registry data

rovides a unique data capture of all individuals living in Den-

ark, the quality and completeness of the data may be impeded

y a few factors. We only included PLWH diagnosed after 1995

hich represents the date the Danish HIV Cohort Study was initi-

ted. Moreover, there may be a slight loss to follow up ( < 1%?) and

e may not have complete information about past medical history

rom immigrants. Moreover, we have not yet studied implemen-

ation and we are unaware of the potential epidemiological impact

r the cost-effectiveness of introducing such an approach. Thus, the

im of this work is not to convey that these algorithms is a stan-

alone strategy, or should replace existing HIV identification strate-

ies, such as indicator-guided HIV testing, but rather to present a

ovel and complementary method for early HIV identification. Fu-

ure studies may try to compare the combined effect of algorith-

ic prediction and indicator condition guided testing. Even in the

ase that algorithmic prediction would only provide a little addi-
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tional benefit, future studies in the field may reveal novel insights

in the risk characterization of PLWH. The strength of the study in-

cludes a nation-wide population-based design including PLWH and

uninfected individuals with identical electronic registry data from

well-validated and comprehensive registries. 

In conclusion, machine learning algorithms can learn from

nation-wide electronic registry data and help to identify undiag-

nosed PLWH with a fairly high level of accuracy. Moreover, these

algorithms may help identify individuals who may be suitable for

PrEP. Future studies are needed to further evaluate the usefulness

and effects of these algorithms and should be aimed toward im-

proving the algorithms. This may include exploring other machine

learning techniques to improve model performance (e.g. models in-

trinsically capable of hand When we calibrated the final models

ling non-linearities of which neural nets (plain or more advanced)

or gradient boosting could be starting points; models catering to

the time-series nature of the problem (e.g. survival analysis); or

models based on deeper analysis of the covariance structure), re-

defining or including new predictors and exploring interactions in

the present models. 
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