
Frontiers in Endocrinology | www.frontiersi

Edited by:
Luigi Gnudi,

King’s College London,
United Kingdom

Reviewed by:
Saima Ajaz,

King’s College Hospital NHS
Foundation Trust, United Kingdom

Annette Schürmann,
German Institute of Human Nutrition

Potsdam-Rehbruecke (DIfE), Germany

*Correspondence:
Arun J. Sanyal

arun.sanyal@vcuhealth.org

Specialty section:
This article was submitted to
Translational Endocrinology,

a section of the journal
Frontiers in Endocrinology

Received: 09 February 2021
Accepted: 19 April 2021
Published: 10 May 2021

Citation:
Albhaisi S and Sanyal AJ (2021)
Gene-Environmental Interactions

as Metabolic Drivers of
Nonalcoholic Steatohepatitis.
Front. Endocrinol. 12:665987.

doi: 10.3389/fendo.2021.665987

REVIEW
published: 10 May 2021

doi: 10.3389/fendo.2021.665987
Gene-Environmental Interactions
as Metabolic Drivers of
Nonalcoholic Steatohepatitis
Somaya Albhaisi1 and Arun J. Sanyal2*

1 Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, United States, 2 Division of
Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Virginia Commonwealth University, Richmond,
VA, United States

Nonalcoholic fatty liver disease (NAFLD) has emerged as a leading cause of chronic liver
disease worldwide in the past few decades as a consequence of the global obesity
epidemic and is associated with significant morbidity and mortality. NAFLD is closely
associated with components of the metabolic syndrome, type 2 diabetes mellitus and
cardiovascular disease, suggesting a plausible metabolic mechanistic basis. Metabolic
inflexibility is considered a nidus for NAFLD pathogenesis, causing lipotoxicity,
mitochondrial dysfunction and cellular stress leading to inflammation, apoptosis and
fibrogenesis, thus mediating disease progression into nonalcoholic steatohepatitis (NASH)
and ultimately cirrhosis. In this review, we describe they key metabolic drivers that
contribute to development of NAFLD and NASH, and we explain how NASH is a
metabolic disease. Understanding the metabolic basis of NASH is crucial for the
prevention and treatment of this disease.

Keywords: NASH, metabolic syndrome, genes, insulin resistance, lipotoxicity, oxidative stress, inflammation,
gut microbiome
INTRODUCTION

Non-alcoholic fatty liver disease (NAFLD) has become one of the most common causes of chronic
liver disease worldwide and is rapidly becoming the most common indication for liver
transplantation (1, 2). It is a major public health problem of growing prevalence globally
paralleling the increase in the prevalence of obesity. NAFLD is often a progressive disease
associated with multifaceted deleterious impact and significant complications such as cirrhosis,
end-stage liver disease, hepatocellular carcinoma (HCC), and increased overall mortality (3).
Nonalcoholic steatohepatitis (NASH) is the inflammatory subtype of NAFLD and is associated
with steatosis, inflammation, hepatocyte injury, and that can progress to cirrhosis (4). The
understanding of the pathophysiology of NASH has evolved substantially. A large body of
evidence strongly supports that NAFLD is the hepatic manifestation of the metabolic syndrome,
with insulin resistance being the common driving factor (5). It became clear that NAFLD is a
complex multisystem disorder with significant clinical and pathogenic heterogeneity. There is a
variety of underlying mechanisms for its development, with the dominant driver being alterations in
hepatic and extra-hepatic lipid metabolism (6, 7). The disease susceptibility and progression are
likely attributed to dynamic interactions between genetic and environmental factors (8–10).
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Variations in genetic background have been identified as an
underlying etiology for the interindividual variability in the
natural history of the disease (11–13). Epigenetic alterations
that occur in response to environmental factors also contribute
to the development of NAFLD (10). It has been shown that only
a proportion of patients develop chronic inflammation (14).
Thus, a small subset of patients with NAFLD develop advanced
fibrosis or cirrhosis. Overall, only a minority only experience
associated liver-related morbidity (15, 16). In addition, not all
obese individuals will develop NAFLD and, more importantly,
NAFLD can develop in non-obese individuals (an entity known
as ‘Lean NAFLD’) (17). Also, several studies indicate strong
heritability of hepatic fat content (11). Therefore, there has been
an increased focus in the last few years on exploring genetic
factors associated with NAFLD.
DIET AND THE EXTRAHEPATIC MILIEU

Strong evidence has shown that the metabolic basis of NAFLD is
a part of a metabolic disease cluster due to its association with
obesity, insulin resistance, type 2 diabetes mellitus (T2DM),
hyperlipidemia and cardiovascular disease (CVD) (18).
Individuals with NAFLD or NASH typically have hepatic and
adipose tissue insulin resistance, with hyperinsulinemia
demonstrated even in presence of normal glucose tolerance
(19–21). High‐calorie diets, excessive consumption of sugar
and sedentary lifestyle predispose to NAFLD and NASH and
have been linked to the development of other components of the
metabolic syndrome (22–24). A common feature in the Western
diet is increased fat and fructose consumption that is promoting
obesity and fatty liver (7). Diet and diet-related adiposity remain
a major cause of NAFLD. Diet can impact the development of
NAFLD by promoting obesity and excess adipose tissue which
can become inflamed (25). It can also alter the intestinal
microbiome and alter intestinal permeability thus increasing
systemic exposure to microbial products that are normally
largely excluded such as endotoxin resulting in activation of
the innate immune system and driving a systemic inflammatory
state (26, 27). Diet can also contribute to the load of free fatty
acids to the liver both directly and by promoting insulin
resistance (28). Intake of sugars can contribute by both
associated glucotoxicity and by serving as a substrate for de
novo lipogenesis. Fructose consumption (such as via sugared
sweetened beverages) is associated with extensive metabolic
dysfunction, including insulin resistance, altered gut
microbiota, dysregulated lipid metabolism and hepatic steatosis
(29). Fructose further bypasses several regulated steps in hexose
metabolism and can directly serve as a substrate for de novo
lipogenesis (30, 31); this has led to efforts to use ketohexokinase
inhibitors as a treatment of NASH (NCT03248882) (32, 33).

In contrast, the Mediterranean diet plays a beneficial role in
reducing liver fat and improving cardiovascular risk in patients
with NAFLD (34). This diet is enriched in n3 and n6
polyunsaturated fatty acids (PUFAs). N3 PUFAs have insulin-
sensitizing, anti-inflammatory effects and also impact membrane
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function across many organ systems. They further reduce
hypertriglyceridemia and are expected to improve NAFLD.
There are however no long term controlled data to support
this as a stand-alone approach to managing the patient with
NASH. Also, clinical trials of n3 PUFAs have been disappointing
(35). Whether the benefits of such a diet are realized only in the
context of the Mediterranean or Ikaria lifestyle or in all settings
remains to be established. Further, this diet as all other diets must
be considered in the relevant social-cultural context.

Metabolic flexibility refers to the body’s ability to adequately
handle substrates and maintain energy homeostasis (Figure 1)
(36). The inability to handle substrates and calories appropriately
is referred to as metabolic inflexibility which tips the energy
balance scale towards higher intake and storage, leading to
lipotoxic cell stress. Metabolic inflexibility has been recognized
as a driving factor for dysregulation of energy homeostasis
typically seen in NAFLD/NASH and contributes to dysregulated
glucose and lipid metabolism resulting in insulin resistance and
dyslipidemia (37). The persistently high intake of sugar and fat on
a background of obesity and insulin resistance results in the
inability to store free fatty acids (FFAs) in the adipose tissue in
addition to increased triglycerides (TG) lipolysis into FFAs. The
muscle responds by reducing fat and glucose oxidation.

The resultant high influx of FFAs to the liver combined with
increased de novo lipogenesis leads to lipotoxic stress. The
process of conversion of FFAs to TG within hepatocytes
inhibits peroxisome proliferator‐activated receptor‐a (PPARa)
signalling (38) and thus maintaining intrahepatic FFA
accumulation. Other key signalling pathways mediated by c-
Jun NH2-terminal kinase (JNK) (39), toll-like receptors (TLR4)
(40) and novel protein kinase C isoform PKCϵ (41) exacerbate
hepatic insulin resistance leading to a vicious cycle of increased
FFA, TG accumulation and formation of toxic lipid species that
cause cellular stress (42–44). Overall, these processes contribute
to high circulating insulin levels and FFA and inappropriate fat
deposition. The hyperinsulinemia and lipotoxic stress act as key
triggers for the development of NAFLD. Presence of metabolic
syndrome, T2DM and other factors can further heighten the
impact of insulin resistance and lipotoxicity which consequently
impair the repair response of the liver resulting in progression of
the disease (44, 45).
THE MICROBIOME AS A DRIVER OF
DYSMETABOLIC STATE

There is growing body of evidence supporting the role of gut
microbiome in the development and progression of NAFLD
(Table 1) (52, 53). Quantitative and qualitative alterations of gut
microbiota composition (also known as ‘Dysbiosis’) have been
recognized in patients with NAFLD and NASH. Instances of gut
microbiota producing hepatotoxic substances such as ethanol
which alter gut permeability and thus inducing endotoxemia
secondary to translocation of bacterial products have been
reported (54, 55). Patients with NASH tend to have increased
levels of circulating endotoxins that can activate innate immune
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responses and consequently exacerbating the disease (56).
Circulating pathogen-associated molecular pattern (PAMPs)
and damage-associated molecular patterns (DAMPs) activate
TLRs within the liver and induce production of pro-
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inflammatory cytokines and reactive oxygen species and
activation of the inflammasome (57, 58). Several studies
demonstrated that NAFLD was associated with increased
Firmicutes/Bacteroidetes ratio and that specific metagenomic
FIGURE 1 | Metabolic Inflexibility. In physiological conditions, fasting state is associated with relatively low insulin levels leading to increased lipolysis and free fatty
acid oxidation in adipose tissue and muscles. Glucose oxidation increased in muscles, and gluconeogenesis is activated in the liver. During fed state, food intake
increases insulin release which subsequently stimulates lipogenesis and triglyceride accumulation in adipose tissue. There is increase in glucose and free fatty acid
oxidation in muscles, and inhibition of gluconeogenesis in the liver. Inability of the body to maintain this balance or to adequately handle substrates at appropriate
times is referred to as metabolic inflexibility. The liver loses its ability to flexibly switch back and forth between prandial and fasting states due to exacerbated insulin
resistance (hallmark of NAFLD/NASH). Metabolic inflexibility is associated with hyperinsulinemia, systemic lipotoxic cell stress leading to inflammation and
fibrogenesis, and eventually NASH. (Adapted from Chakravarthy MV, Siddiqui MS, Forsgren MF and Sanyal AJ (2020), Harnessing Muscle–Liver Crosstalk to Treat
Nonalcoholic Steatohepatitis. Front. Endocrinol. 11:592373. doi: 10.3389/fendo.2020.592373.). DNL, de novo lipogenesis; FAO, fatty acid oxidation; FFA, free fatty
acid; IR, insulin resistance.
TABLE 1 | Examples of human studies on the gut microbiota-derived metabolites in NAFLD and NASH.

Study Subjects Type of
metabolites

Type of
sample

Results

Loomba
et al. (46)

Adults with NAFLD (n = 86) Short Chain
Fatty Acids

Blood ↑abundance of enzymes associated with lactate, acetate, and
formate in mild/moderate NAFLD. ↑abundance of enzymes for
butyrate, D-lactate, propionate, and succinate in advanced
fibrosis. ↑serum 3-phenylpropanoate in advanced fibrosis.

Hoyles et al.
(47)

Morbidly obese women (n = 105) Amino Acids Blood ↑Phenylacetic acid, ↑ Valine, ↑Leucine, ↑ Isoleucine

Mouzaki
et al. (48)

Adults with NASH (n = 22), SS (n = 11), healthy
controls (n = 17)

Bile Acids Fecal ↑Primary to secondary BA ratio in NASH

Raman et al.
(49)

Adults with NAFLD (n = 30), healthy controls (n = 30) Ethanol,
VOCs

Fecal ↑Butanoic acid, ↑Propanoic acid, ↑Acetic acid, and ↓2-butanone
in NAFLD vs. healthy controls

Da Silva
et al. (50)

Adults with SS (n = 15), NASH (n = 24), healthy
controls (n = 28)

Short Chain
Fatty Acids

Fecal and
Blood

(Fecal) ↑Isobutyric acid, ↑Propionate (Serum) ↑2-hydroxy-butyrate,
↑L-lactic acid

Del Chierico
et al. (51)

Children and adolescents (n = 61) with NAFLD, NASH,
or obesity, healthy controls (n = 54)

VOCs Blood ↑2-butanone and ↑1-pentanol in NAFLD. ↑2-butanone and ↑4-
methyl-2-pentanone in NASH
↑, increase; ↓, decrease; NAFLD, nonalcoholic fatty liver disease; NASH, nonalcoholic steatohepatitis; SS, simple steatosis; BA, bile acids; VOC, volatile organic compounds.
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signatures in the intestinal microbiota are robust predictors of
advanced fibrosis associated with NASH (46, 59, 60). Gut
microbiota are also implicated in modulating bile acid-related
pathways, which sequentially regulate lipid and carbohydrate
metabolism as well as energy homeostasis (61). Recently, there
has been growing interest in evaluating the influence of human
genetic variation and ethnicity in driving gut microbiota
diversity (62–64). However, separating the effects of diet on
liver health from the effects of diet-induced microbiota changes
and its role in driving risk for liver disease, remains challenging.
Furthermore, most of the literature has focused on associations
and mechanistic studies are now needed to better understand
how the microbiome leads to NAFLD and contributes to
its progression.
SARCOPENIA AS A DRIVER OF NASH

Recently, there has been an increased interest in investigating the
role of skeletal muscles in the pathogenesis of NAFLD (65).
Sarcopenia is a pathological disorder characterized by
generalized loss of skeletal muscle mass and strength.
Sarcopenia has been recently proposed as an additional risk
factor of NAFLD and a contributor to its development and
progression, even after adjusting for body mass index and insulin
resistance (66, 67). What was previously only regarded as part of
aging (68) is now recognized as a progressive disease frequently
associated with cardiometabolic disorders (69). Studies in Asian
populations showed that sarcopenia is associated with the
presence and severity of NAFLD (66, 70, 71). A prospective
study in Western population showed that sarcopenia was
associated with the severity of fibrosis and steatosis in NAFLD
patients, independently of hepatic and metabolic risk
factors (72).

It is now recognized that the muscle is a key metabolic organ
and buffers the functions of the liver. While its role as an
ammonia buffer is well known with the hepatology
community, its role in maintaining body composition is less
well appreciated. Muscles primarily utilize free fatty acids in the
fasted state and are critical for mobilization of fat stores with diet
and exercise. In the metabolically inflexible sarcopenic state, it
depends on glucose as its principal substrate for energy and
switches to protein breakdown when glucose is not available
further contributing to sarcopenia. A host of myokines have been
described of which myostatin is the best known (73–75). They
both modulate muscle mass and also contribute to a systemic
inflammatory state. Systemic levels of cytokines such as Tumor
Necrosis Factor-a (TNF-a) and other hepatokines such as
Fibroblast growth factor 21 (FGF21) may modulate sarcopenia
and muscle function respectively as well. There is thus close
cross-talk between the muscles and liver to maintain metabolic
homeostasis and its disruption is a key aspect of NAFLD. There
are however some caveats in the interpretation of data on muscle
structure and function in NAFLD. It is difficult to disentangle the
impact of aging on body composition and risk for NAFLD (76),
from effects mediated by sarcopenia alone given that aging itself
Frontiers in Endocrinology | www.frontiersin.org 4
is a risk factor for NAFLD through its association with a decrease
in muscle mass, an increase in visceral adiposity, ectopic fat
deposition and insulin resistance (66, 67), in addition to more
exposure with time to risk factors of NAFLD.
METABOLIC FLEXIBILITY AND THE ROLE
OF ADIPOSE TISSUE AND MUSCLE

From a pathophysiological perspective, striated muscles play a
key role in metabolic homeostasis (77–79). Under physiological
conditions, fasting insulin levels are relatively low (80). This
releases adipose tissue from insulin-mediated suppression and
promotes lipolysis. The free fatty acids released are taken up in
striated muscle and used as a principal source of ATP generation.
Following a meal, striated muscles clear the circulating glucose
load and the muscle shifts from FFA to glucose as a principal
source of ATP generation. At the same time, insulin levels rise
and suppress lipolysis. This phenomenon of changing fuel source
based on availability is also known as metabolic flexibility. Data
suggest a relationship between liver and skeletal muscle steatosis
in patients with NAFLD. Myokines are active substances derived
from skeletal muscle cell. They include myostatin, irisin,
myonectin, and various interleukins (IL-6, IL-7, IL-8, and
IL-15) and their dysfunction have been implicated in the
disrupted adipose–liver–muscle axis in NAFLD (81). Few
studies found that skeletal muscle steatosis increased
significantly with increasing stage of NASH (82). Fat
accumulation in muscles occurs in the context of ectopic fat
accumulation and systemic insulin resistance typically associated
with NAFLD (82). In the insulin-resistant state associated with
obesity, the insulin levels are high and have less variability from
fasted to post prandial state. Insulin resistance allows lipolysis to
continue in adipose tissue thus releasing excess FFA. While these
can be taken up, they are not fully utilized in muscle resulting in
ectopic fat storage in the muscle. Also, glucose clearance by
muscle is impaired due to insulin resistance. Together, these
generate a greater systemic lipid and glucose load which sets the
stage for development of excess adiposity and injury to end-
organs. In the liver, this is recognized as NAFLD.
METABOLIC STRESS TO THE LIVER

Key pathogenic mechanisms driving the progression from
hepatic steatosis to NASH include aberrant lipid metabolism,
oxidative stress, mitochondrial dysfunction, inflammatory
cytokines, immune response and alterations in gut microbiome
(83). Lipotoxicity refers to the toxic effects of excessive lipids and
lipid derivatives on cells. NAFLD results from delivery of excess
FFA and glucose to the liver along with inflammatory cytokines
in circulation. Glucose that is not oxidized is converted via de
novo lipogenesis in to FFA thus further contributing to the lipid
load in the liver. The abundance of FFAs generates cytotoxicity
through dysregulation of energy storage homeostasis. Several
lipotoxic lipids have been studied, such as FFA, lysophosphatidyl
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Choline (LPC), ceramides, free cholesterol (FC), and bile acids
(BAs). Hepatic steatosis observed in NAFLD occurs secondary to
the liver’s attempt to store FFAs in the form of TGs to
accommodate excess in FFAs. Adipose tissue derived FFAs are
considered drivers of hepatic lipotoxicity. Lipoapoptosis is a
principal feature of NASH that results from failure of
hepatocytes to dispose of excess FFAs. Intracellular stress leads
to hepatocyte apoptosis via activation of intrinsic and extrinsic
pathways. The mechanisms involved in lipotoxicity are organelle
dysfunctions including endoplasmic reticulum (ER) stress and
mitochondrial permeabilization, JNK-induced toxicity and BH3-
only protein-induced mitochondrial and lysosomal dysfunction
(84–88). Those pathways ultimately lead to activation of caspases
mediating apoptosis (44). Further, defects in hepatic
mitochondrial fatty acid beta-oxidation have been suggested to
contribute to hepatic steatosis and progression to NASH (89).
Several studies demonstrated that patients with NAFLD have
distinct lipidomic signatures (90–92). NAFLD and NASH are
associated with accumulation of highly toxic lipid metabolites (e.g.
diacylglycerol, ceramides, sphingomyelin) which trigger
inflammation and hepatocyte damage (44, 93). A comprehensive
lipidomic analysis on human liver biopsies revealed decreased
activity of fatty acid desaturase 1 (FADS1) which is a key player in
accumulating toxic lipids during NASH progression (91). The
significant complexity of the lipotoxic milieu should be accounted
for by targeted therapeutic approaches (94, 95).
ROLE OF GENETICS

Genetics play a key role across the spectrum of NAFLD
pathogenesis (96, 97). Variations in genes such as patatin-like
phospholipase domain-containing protein 3 (PNPLA3),
transmembrane 6 superfamily member 2 (TM6SF2), membrane
bound O-acyltransferase domain-containing 7 gene (MBOAT7),
glucokinase regulator (GCKR), hydroxysteroid 17-beta
dehydrogenase-13 (HSD17B13) have been identified as key
modifiers of NAFLD development and progression (8). The
role of PNPLA3 gene is discussed in a separate section below.
Genetic heterogeneity is involved in various aspects of the
disease, namely regulation of energy homeostasis and lipotoxic
stress, modulating extracellular matrix production and turnover
and controlling inflammation. Studies have shown that genetic
variants are implicated in regulating insulin signaling (98),
oxidative stress (99), and fibrogenesis (100) thus consequently
progression to NASH.

TM6SF2 is a gene involved in hepatic very low-density
lipoprotein (VLDL) secretion and lipoprotein metabolism. The
rs58542926 C>T polymorphism results in loss of this gene’s
function or reduction of its hepatic expression, leading to
impaired secretion of TG‐rich lipoproteins and increased
hepatocyte TG content (96, 101). Studies have shown that
mutated variant of TM6SF2 is associated with development of
NAFLD likely through altered hepatic lipid metabolism (102),
and higher risk of progression to NASH (103). C-allele is linked
with increased cardiometabolic risk (104). A large meta-analysis
suggested a correlation between T-allele variant and risk
Frontiers in Endocrinology | www.frontiersin.org 5
developing T2DM (105). The rs58542926 C>T polymorphism
affects nutrient oxidation, glucose homeostasis, and postprandial
lipid metabolism and thus contributes to liver injury in
NAFLD (106).

MBOAT7plays an essential role in the phospholipid remodeling
pathway. The rs641738 C>T variant attached to the 3’ untranslated
region of MBOAT7 is a commonly associated with a decrease in
phosphatidylinositol‐containing arachidonic acid within the
hepatocytes which exacerbates liver fibrosis (101, 107). Studies
have shown that this MBOAT7 variant is associated with
increased risk of NAFLD in Caucasians (108).

GCKR controls de novo lipogenesis by regulating glucose influx
into hepatocytes (109). Loss of function of GCKR protein results in
greater hepatic fat accumulation (110). A large NAFLD meta-
analysis has identified PNPLA3 and GCKR as factors for
increased hepatic TG content (111).
PNPLA3 MEDIATED PROGRESSION OF
LIVER INJURY AND FIBROSIS

PNPLA3 gene, also called adiponutrin, was the first major gene
associated with NASH (112, 113). It is the most replicated
modifier of NAFLD pathogenesis in different ethnicities (16).
Overall, multiple studies in different populations and diverse
ethnicities validated the association between NAFLD
and PNPLA3 (Figure 2) (104, 111, 112, 114–116). The
PNPLA3 enzyme is found in hepatocytes and adipocytes and
plays a role in lipid remodeling in the liver (108, 109, 112, 117).
The wild type PNPLA3 has function of TG hydrolase and acetyl-
CoA-independent transacylase, and loss of its function
consequently leads to an accumulation of triglycerides and
retinyl esters within hepatocytes (118). Studies have shown
that loss of function of PNPLA3 leads to increased hepatic
steatosis and elevated serum alanine aminotransferase (ALT)
and aspartate aminotransferase (AST) levels (102, 119). Patients
with NAFLD who carry the PNPLA3 rs738409 C/G mutation, a
genetic polymorphism characterized by the substitution of
isoleucine to methionine at position 148 (I148M), are more
likely to develop steatohepatitis and fibrosis (16), and this
nonsynonymous variant is the main genetic risk factor for
disease severity and progression (Figure 3) (120, 121). Studies
consistently showed a strong association between I148M and
hepatocellular TG accumulation, increased fibrosis and severity
of steatohepatitis (113, 122, 123).

The original studies on mechanisms by which the PNPLA3
I148M variant led to NASH and fibrosis focused on its function
as a triglyceride lipase and the loss of function with this mutation
(112). This explained the accumulation of triglyceride but did
not explicitly explain how this led to steatohepatitis and fibrosis.
Elegant studies by Dr. Hobbs and colleagues further established
that with increasing mutant gene expression level, there is an
abnormal ubiquitination of the mutant protein with less
proteosomal degradation leading to accumulation of the
protein on the surface of lipid droplets where its loss of
function as a triglyceride lipase further contributed to
accumulation of triglyceride in the liver (119, 124). This too
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does not explain the development of steatohepatitis or fibrosis
seen in those with this mutation.

Recently, expression of PNPLA3 I148M in stellate cells has
been related to increased collagen synthesis (125, 126). However,
the very low prevalence of significant disease in lean
metabolically healthy individuals who carry this mutation
makes it unlikely that this alone is enough to explain the
impact of this mutation in terms of public health and under
conditions of overweight or obesity, those with the mutation
appear to have more aggressive fibrosis. A key methodological
barrier to studying this question has been the inability to
accelerate fibrosis and NASH in a murine model. Whereas
silencing PNPLA3 does not lead to a disease phenotype (127),
overexpression of the mutant PNPLA3‐148M variant generally
has accelerated steatosis and some inflammation but not
steatohepatitis with fibrosis.

As demonstrated by several studies, the mechanism seems
related to accumulation of PNPLA3‐148M on lipid droplets as
the 148M variant disrupts ubiquitylation and proteasomal
degradation of PNPLA3 and inhibits other lipases, resulting in
impaired mobilization of TG from lipid droplets (119, 124).
Animal models showed that PNPLA3 deletion has no phenotype
(128), whereas overexpression or knock-in of the I148M mutation
in mice results in increased susceptibility to hepatic fat
Frontiers in Endocrinology | www.frontiersin.org 6
accumulation (129). A recent study demonstrated that hepatic
TG content was associated with significant increase in
the PNPLA3-I148M (130). A more recent study to evaluate
mechanisms underlying PNPLA3-I148M induced acceleration of
NASH in a murine model where mice received aWestern diet with
ad lib administration of sugar in drinking water has revealed that
under this type of diet, PNPLA3-I148M overexpression promotes
steatosis and NASH. This study used a model where mice on a high
fat high glucose/fructose diet sequentially developed steatosis,
steatohepatitis and then progressive fibrosis. This sequential
development of lesions was leveraged by testing the hypothesis
that introduction of the mutant PNPLA3 I148M variant but not the
wild type PNPLA3 fed this diet would accelerate the disease and
lead to steatohepatitis and fibrosis at a time point where mice with
empty vector would only have steatosis. The majority of PNPLA3-
I148M mice developed severe steatohepatitis with fibrosis (p<
0.0001). In addition, PNPLA3-I148M significantly worsened the
severity of histological features of NASH including steatosis,
hepatocellular ballooning and lobular inflammation (p< 0.001).
The principal observation in this study is that the hallmark feature
linked to PNPLA3-I148M-induced NASH acceleration is
‘metabolic reprogramming’ of the liver with increased TGs and
diglycerides, n3 polyunsaturated fatty acids depletion and increased
ceramides. PNPLA3-I148M also had a significant impact on several
FIGURE 2 | The contribution of mutant PNPLA3 to the risk of NASH and fibrosis. PNPLA3 mutation results in increased oxidative stress and fatty acid oxidation
which subsequently leads to accumulation of highly toxic lipid metabolites (e.g. diacylglycerol, ceramides, sphingomyelin, sphingosine). These lipotoxic metabolites
trigger immune activation and inflammation via key signaling pathways mediated by p-JNK and p-STAT3, and ultimately activation of several fibrogenic pathways
such as those for TGF-b1, a-SMA, Col1 and 3. Col1, collagen I; Col3, collagen III; FA, fatty acid; DAG, diacylglycerol; GSH, GSSG, glutathione-disulfide; glutathione;
JNK, c-Jun activated kinase; KDSR, 3-ketodihydrosphingosine reductase; SMA, a-smooth muscle actin; STAT3, signal transducer and activator of transcription,
TGF-b, transforming growth factor b.
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cellular processes including proteosomal, phagosomal, and
lysosomal function, amino-acyl T RNA synthesis, circadian
rhythm and ER function. PNPLA3-I148M expression promoted
cell death and increased oxidative stress and ER stress. Multiple
inflammatory pathways were activated with PNPLA3-I148M, such
as JAK-STAT system. Specifically, the STAT3 system was activated
significantly in the presence of the I148M variant. Integrated
pathway analysis revealed a strong signature of ceramide related
inflammatory activation including h-ras and downstream PLA2
activation, suggesting a key role for sphingolipids in the
Frontiers in Endocrinology | www.frontiersin.org 7
inflammatory response to PNPLA3-I148M. Furthermore,
PNPLA3-I148M was associated with activation of several
fibrogenic pathways such as those for Procollagen I, III and a-
smooth muscle actin mRNA, as well as increased transforming
growth factor beta (TGF-b1) protein levels (131). Importantly, this
accelerated phenotype of disease could be rescued by silencing the
mutant PNPLA3 I148M variant.

The findings reported in animal models were also supported
by human genetic studies which showed that PNPLA3 rs2294918
E434K variant decreased PNPLA3 expression, reducing the effect
A

B

FIGURE 3 | PNPLA3I148M-associated acceleration of NASH and fibrosis. (A) Liver histology in mouse of empty vector (Luc) after 16 weeks on a Western diet/sugar
water (WDSW) diet with NAFLD with minimal fibrosis. (B) Hepatocyte of mouse with PNPLA3I148M after 16 weeks on a WDSW diet demonstrating NAFLD with
advanced bridging fibrosis. (A) 16wks AAV LUC (10x) (B) 16wks PNPLA3 I148M (4x).
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of the I148M variant on the predisposition to steatosis and liver
damage (127). This suggests that the PNPLA3 I148M variant
expression is required for PNPLA3‐associated hepatic steatosis
by the aforementioned mechanism. These data suggest that the
mutant PNPLA3-I148M protein can be a new therapeutic target
for NAFLD and NASH (132).
SUMMARY AND FUTURE DIRECTIONS

A growing body of literature indicates that the development of
the NAFLD phenotype (fatty liver or steatohepatitis) and its
progression to cirrhosis represents a complex set of gene-
environment interactions. While environmental factors such as
changes in diet play a central role, the role of other factors such as
environmental pollutants are also becoming apparent and
worthy of further investigation.

The role of genetics in modulating the metabolic drivers of
NASH will be a major area of research over the next decade.
Following the landmark studies identifying a linkage between the
I148M variant of PNPLA3 and progressive NASH, an increasing
number of genetic variants have also been linked to the disease.
However, for several of these the specific mechanisms by which
they affect NASH have not been clarified. Particularly the
HSD17B13 splice variant which has a protective role is an
important new discovery and future studies will be needed to
define how it contributes to the disease and even potentially
negates some of the deleterious effects of the PNPLA3 mutation.

It is further clear that individual mutations can not only have
an impact based on their biological effect but multiple mutations
in different genes in various metabolic pathways can interact to
modulate the metabolic response to the lipotoxic load being
delivered to the liver. Development of a rigorously validated
polygenic risk score remains an important unmet need in the field.

A key focus of this manuscript has been the growing body of
literature on the role of the extrahepatic milieu as a cause of the
liver disease. Much more work needs to be done on the
relationship between changes in diet and the changes in
intestinal epithelium and how these alter the meal stimulated
gut hormonal response. This is likely to be a key modulator of the
state of metabolism and the development of both the metabolic
syndrome and fatty liver disease. Early data from the metabolic
benefits of duodenal mucosal resurfacing provide a strong
rationale to continue to pursue this line of research. These are
Frontiers in Endocrinology | www.frontiersin.org 8
also likely to yield potential therapeutic approaches beyond
duodenal mucosal surfacing.

The role of the intestinal microbiome continues to be elucidated
as well. There is already a plethora of literature demonstrating
changes in specific taxa that are linked to the NASH and even
advanced fibrosis. While some data on metagenomics are available,
they are not tightly concordant with the metabolomic signatures in
stool and direct interrogation of the microbial transcriptome will be
needed to better understand the role of altered microbial taxa in
NASH. Further functional analyses of changes in the microbiome
will provide mechanistic insights into the nature of microbial
contribution to the disease and its progression. It will also set the
stage for phase-based therapeutics for NASH.

Additional intestinal factors such as secondary bile acids are
likely to also be important. Many bacteria are susceptible to the
antibiotic functions of secondary bile acids and decrease when
secondary bile acids increase whereas bacteria that require such
bile acids for growth increase. These may provide a potential
explanation for the changes in microbial composition. Further
systemic uptake of secondary bile acids may have direct effects on
metabolism via FXR, TGR5 and affect processes such as
senescence to cause hepatocellular cancer.

Finally, the importance of striated muscle and adipose tissue
in driving NASH is also becoming apparent and direct
modification of muscle function by specifically engineered diets
designed to break metabolic inflexibility to improve the systemic
metabolic state are likely to improve not only NAFLD but the
systemic state of dysmetabolism.

In summary, while much progress has been made in
understanding the metabolic drivers of NASH, much additional
work remains to be done. These are likely to have a major impact
on the understanding of the role of the systemic changes in
metabolic syndrome and how these lead to NASH. Gene-
environmental interactions and studies to define subpopulations
based on clustering of specific genetic and environmental factors
may provide insights on the heterogeneity of NAFLD and new
approaches to treat individual patients.
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