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Vector Control and the
Emerging Insecticide Resistance
Crisis

The 2011 World Malaria Report [1]

showed welcome progress in the fight

against the world’s most important vec-

tor-borne disease. In the last 10 years, the

estimated incidence of malaria has fallen

by 17% globally, with malaria-specific

mortality rates reduced by 25%. Central

to these gains, especially in Africa, has

been the massive scale-up of chemical

insecticide interventions against malaria

mosquito vectors. Current malaria vector

control relies almost exclusively on killing

adult mosquitoes with chemical insecti-

cides deployed as either insecticide-treated

nets (ITNs) or indoor residual sprays (IRS).

However, these technologies use a limited

arsenal of insecticides originally developed

for agriculture, and their efficacy is

threatened by the spread of insecticide

resistance [1–3]. In 2010, 27 countries in

sub-Saharan Africa reported mosquitoes

resistant to pyrethroids [1]. Such resis-

tance is alarming because pyrethroids are

the only class of insecticides approved for

use on ITNs and account for two-thirds of

the total product (by area) used in IRS for

malaria control [4]. Evidence suggests that

resistance is beginning to reduce control

[5,6]. Implementation of alternative man-

agement strategies is needed to slow and

reverse this trend.

Parallels with Agriculture

In the middle of the last century, the

development of cheap and effective

synthetic chemical insecticides revolution-

ized crop protection. Widespread use of

broad-spectrum insecticides reduced pest

damage substantially in many systems,

prompting discussion of pest eradication,

similar to some current discussions of

eradication ofmalaria. However, rapid

evolution of insecticide resistance, pest

resurgence due to disruption of biological

control, and harmful environmental side

effects quickly revealed the limitations of

‘‘pesticide monotherapy’’ [7–9].

The search to find new chemical insecti-

cides continued, stimulated by the transient

efficacy of products in use and increased

restrictions on available insecticides because

of their toxicity to people and other non-

target organisms. Meanwhile, academic and

government researchers explored ways to

reduce reliance on insecticides. In crop

systems where insecticide use was actually

exacerbating pest problems, researchers

combined diverse tools such as pest moni-

toring and forecasting, conservation of

natural pest control, habitat manipulation,

and resistant host plants, and thereby limited

pesticide use to situations where it was

necessary [10]. This approach, called inte-

grated pest management (IPM) [10], reduc-

es the risk of insecticide resistance. IPM is

knowledge intensive, relying heavily on

farmers’ understanding and monitoring of

local conditions. Its development therefore

engendered a culture of farmer participation

and decision-making, providing a balance to

the former top-down, technology-driven

approach. While not a panacea, IPM is

now a cornerstone of many production

systems in both developed and developing

countries [10–14]. Even new technologies,

such as genetically engineered crops, can be

more effective and sustainable when used

with other tactics in IPM [12,15].

Current malaria vector control has

more in common with the agricultural

practices of the 1950s than contemporary

IPM (Figure 1). There is a reliance locally

on single technologies associated with fast-

acting insecticides used in ways that

impose intense selection pressure for

resistance.

The pending resistance crisis creates an

urgent need to develop and implement in-

tegrated, multi-tactic strategies for vector

control that parallel IPM in agriculture. We

call this ‘‘integrated vector management’’

(IVM), which we define as the optimal use

of diverse tools, tactics, and resources to

reduce transmission of disease by vectors.

The potential of IVM has been discussed

previously (e.g., [16,17]), and tacit recogni-

tion of the approach already exists in

World Health Organization (WHO) policy

[18,19]. The transition to more sustainable

IVM will, however, require increased

efforts in several key areas.
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Quantifying the Problem

One of the foundations of IPM and thus

IVM is to quantify the ‘‘pest’’ or ‘‘vector’’

problem and define the targets for control.

For malaria this might seem straightfor-

ward—‘‘control mosquitoes and reduce

disease as much as possible’’. Yet, it is

surprising how little is understood about

how local vector ecology contributes to

infection. A typical list of unknowns could

include the temporal and spatial distribu-

tion of biting, rate of parasite develop-

ment, local variation in vector compe-

tence, sites where mosquitoes rest, the

causes and rate of adult mosquito mortal-

ity, the nature of density-dependent regu-

lation, and sometimes even which vector

species is most important [20,21]. Equally

little is understood regarding the impact of

insecticide resistance on vectorial capacity

and malaria epidemiology [22,23]. These

unknown factors influence the approaches

and strategies required to reduce malaria

transmission in a particular setting. For

example, while a 30% reduction in

infectious bites might substantially reduce

disease prevalence in a low transmission

environment, even a 90% reduction might

not be sufficient in a high transmission

environment [24]. Effective IVM requires

a better understanding of local vector and

transmission ecology with appropriate

targets for control defined in ways analo-

gous to economic thresholds of pest

density used widely to guide pest control

decisions in agriculture.

Conventional Chemicals

Highly lethal insecticides like pyre-

throids knock down and kill mosquitoes

rapidly after contact. This lethality can

provide excellent disease control, yet it

also selects intensely for resistance. Devel-

opment of replacement insecticides is one

recognized strategy to address this prob-

lem [25]. However, the insecticide target

product profiles prescribed by the WHO

Pesticide Evaluation Scheme (WHOPES)

set a high bar with respect to rapid killing,

high persistence, and low mammalian

toxicity. This, together with protracted

regulatory procedures, means new insecti-

cides are still many years off [3]. More-

over, novel chemistry will not prevent

resistance evolution [26]. Resistance man-

agement strategies used in agriculture such

as insecticide combinations and rotations

require two or more insecticides with

diverse modes of action to avoid cross-

resistance [27], yet this diversity is not

commonly available for vector control

[28]. This problem is compounded when

the same insecticide active ingredients are

used in both agriculture and vector control

[29,30]. In the only controlled trial of

resistance management strategies for ma-

laria mosquito vectors we know of,

rotations or mosaics did not delay pyre-

throid resistance [26,31].

In addition, ITNs and IRS only target

mosquitoes inside domestic dwellings,

leaving potentially significant fractions of

the vector community untouched. While

outdoor biting tends to be less epidemio-

logically important than indoor biting, it

still contributes to transmission [32,33].

Thus, even in the absence of resistance, it

is unlikely that ITNs and IRS will be

sufficiently effective to meet the goal of

long-term malaria suppression in intense

transmission settings.

Additional Tools

Current vector control relies on killing

mosquitoes quickly with neurotoxins. How-

ever, more subtle approaches, such as slow-

acting insecticides that shorten adult mos-

quito longevity, could also reduce trans-

mission while imposing less intense selec-

tion for resistance [24,34]. Alternative

modes of action that impair olfaction, flight,

energy metabolism, or immunity could

further contribute to reduced vectorial

capacity (e.g., see [35]). Such ‘‘sub-lethal

insecticides’’ would represent genuinely

new additions to the mosquito control tool

kit that extend beyond the current fast-

acting insecticide paradigm [36].

In addition, chemical insecticides that

act against the adult vectors are not the only

available tools. Physical barriers such as

house screens [37], habitat management to

reduce vector breeding site quality [38],

microbial larvicides [39], and manipulation

of nectar sources [40] could contribute to

reduced disease transmission. Other tools

in development such as fungal biopesticides

[41], odor-baited traps [42], manipulation

or release of parasites [43], and genetically

modified [44,45] or transinfected mosqui-

toes [46] could add to the list.

Individually, many of these technologies

face today the same constraints that

alternatives to insecticides faced in crop

protection: marketing and regulatory sys-

tems for new products favored broad

spectrum, fast-acting, lethal insecticides

that provided stand alone, albeit unsus-

tainable, solutions to pest problems.

Against this model, subtler alternative

methods cannot compete, except in an

IPM/IVM context, where the benefit

comes from the sum of the parts. It is

important that regulatory frameworks are

amenable to IVM to encourage research

and development (R&D) and prevent

barriers to ultimate commercialization.

Integrated Strategies and
Sustainable Implementation

Developing effective IVM will require

better understanding of the impact of

control tactics individually and in various

combinations [39,47–49]. Again, there is

surprisingly little relevant research. Yet,

different combinations of tools could

deliver the same end points with strategies

optimized over time and space.

Development of IVM will also require

substantial money and effort. It has been

estimated that effective delivery of ITN or

IRS measures will require 40%–61% of

projected national malaria control program

budgets [50]. This is in sharp contrast to the

4% of the global malaria R&D budget that is

currently spent on vector control [51].

Given the historic and contemporary signif-

icance of vector control in reducing malaria

[52], this level of funding is inadequate.

Experience from agriculture suggests that

with appropriate engagement and educa-

tion, even complex knowledge-intensive

practices can be successfully implemented.

Extensive IPM programs in many develop-

ing countries indicate that such strategies are

best developed and implemented via bot-

tom-up approaches engaging end users from

the outset in research and development

Summary Points

N The effectiveness of insecticide-treated bed nets and indoor insecticide sprays
to control adult mosquito vectors is being threatened by the spread of
insecticide resistance.

N We argue for expanding beyond ‘‘insecticide monotherapy’’ to more
sustainable integrated vector management strategies that use optimal suites
of control tactics.

N Experience in agriculture suggests that such integrated approaches can provide
more effective and durable pest management.

N This shift will require increased investment in research and translational science.

N Failure to act risks a resurgence of malaria and erosion of community support
and donor commitment.
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[53,54]. Embracing this philosophy can

bolster vector control and move it away

from top-down prescriptions towards adapt-

ive, surveillance-, and evidence-based strat-

egies that vary in space and time depending

on local conditions. As with IPM, IVM can

be best advanced by engaging the end users

and working in partnerships to generate

shared knowledge and solutions relevant to

the local context. This strategy is necessary

not only to develop effective solutions, but

also to avert the risks of donor and

community fatigue. There is no ‘‘quick fix’’

for sustainable vector control, or for eradi-

cation of malaria.

Conclusions

Ensuring continued advance in malaria

control requires rethinking how we man-

age vector populations. Current strategies

rely heavily on repeated application of

single neurotoxic insecticides that quickly

kill adult mosquitoes. This narrow para-

digm is beginning to fail, as it did in

agriculture, as well as in previous malaria

eradication campaigns of the ’50s and

’60s. We should not abandon ITNs and

IRS; these can be useful in IVM just as

insecticides are in IPM. But experience

with IPM in agriculture suggests that

integrated approaches have the potential

to provide more effective and durable pest

management. To achieve the equivalent

for malaria control requires additional

tools in the armory, a better understanding

of the impact of individual tools and their

interactions, appropriate training for end

users, and design of novel integrated

strategies that maximize impact and fit

the local ecological and socioeconomic

context. Given the current lack of any

clear alternative to the current insecticide

paradigm, researchers, policy makers, and

funding agencies need to act now to sup-

port this more diverse and adaptive ap

proach. It is unlikely that any single tactic

or combination of tactics will provide a

permanent solution. Vector control pro-

grams must proactively and continuously

innovate to optimize and sustain impact.
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Figure 1. Features of current vector control strategies compared with potential integrated vector management (IVM). The arrows
indicate trends representative of the contrasting strategies. Progression towards IVM has the potential to increase the effectiveness and sustainabilty
of control, but requires more diverse and knowledge-intensive approaches.
doi:10.1371/journal.pmed.1001262.g001
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