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Dysregulation of microRNAs is a common mechanism in the development

of lung cancer, but the relationship between microRNAs and expression

subtypes in non-small-cell lung cancer (NSCLC) is poorly explored. Here,

we analyzed microRNA expression from 241 NSCLC samples and corre-

lated this with the expression subtypes of adenocarcinomas (AD) and squa-

mous cell carcinomas (SCC) to identify microRNAs specific for each

subtype. Gene set variation analysis and the hallmark gene set were utilized

to calculate gene set scores specific for each sample, and these were further

correlated with the expression of the subtype-specific microRNAs. In ADs,

we identified nine aberrantly regulated microRNAs in the terminal respira-

tory unit (TRU), three in the proximal inflammatory (PI), and nine in the

proximal proliferative subtype (PP). In SCCs, 1, 5, 5, and 9 microRNAs

were significantly dysregulated in the basal, primitive, classical, and secre-

tory subtypes, respectively. The subtype-specific microRNAs were highly

correlated to specific gene sets, and a distinct pattern of biological pro-

cesses with high immune activity for the AD PI and SCC secretory sub-

types, and upregulation of cell cycle-related processes in AD PP, SCC

primitive, and SCC classical subtypes were found. Several in silico pre-

dicted targets within the gene sets were identified for the subtype-specific

microRNAs, underpinning the findings. The results were significantly vali-

dated in the LUAD (n = 492) and LUSC (n = 380) TCGA dataset (False

discovery rates-corrected P-value < 0.05). Our study provides novel insight

into how expression subtypes determined with discrete biological processes

may be regulated by subtype-specific microRNAs. These results may have

importance for the development of combinatory therapeutic strategies for

lung cancer patients.

1. Introduction

Non-small-cell lung cancer (NSCLC) accounts for

approximately 85% of all lung cancers, where adeno-

carcinomas (AD) and squamous cell carcinomas (SCC)

are the main histological subtypes (Travis, 2014). AD

and SCC origin from different cell types and are asso-

ciated with different types of mutations. The majority

of never-smoking patients with NSCLC develop AD

(Halvorsen et al., 2016; Pikor et al., 2013). The two

histological subtypes can be further divided into three

and four expression-based subgroups, respectively. It is
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shown that the expression subtypes are robust and

harbor distinct features. The ADs can be classified as

terminal respiratory unit (TRU), proximal inflamma-

tory (PI), and proximal proliferative (PP) using a near-

est centroid subtype predictor of 506 genes, as

previously described (Hayes et al., 2006; Wilkerson

et al., 2012). The TRU subtype, including the majority

of never-smokers, is associated with favorable outcome

compared to patients with non-TRU AD (Ringner

et al., 2016). The TRUs are recognized with low muta-

tional burden, but with distinct driver mutations such

as EGFR mutations, ALK rearrangement, and ROS1

alterations. The PI subtype is described with high

immunological activity, high mutational burden, and

high frequency of TP53 mutations. High frequency of

TP53 mutations is also found in the PP subtype in

addition to KRAS and STK11 mutations. Increased

expression of DNA repair genes is reported, probably

reflecting the high number of heavy smokers, found in

this subgroup (Network, 2014). The SCC samples can

be divided into the four expression subgroups basal,

primitive, classical, and secretory based on the previ-

ously published centroid classifiers for SCC (Wilkerson

et al., 2010). Tumors classified as basal are usually well

differentiated and express genes involved in cell adhe-

sion and formation of the basement membrane. The

primitive subtype is associated with high proliferation,

poor differentiation, and poor prognosis. The classical

subtype is also recognized as an aggressive disease and

is described as hypermethylated and with high chro-

mosomal instability, probably reflecting the overall

high number of heavy smokers. The secretory subtype

is characterized with high immune activity and secre-

tory functions (Network, 2012). Based on immune cell

estimation, the secretory subtype shares characteristics

with normal lung tissue as being immune cell-rich

(Ojlert et al., 2019). Despite demonstrating distinct

phenotypic and genetic differences, the molecular

mechanisms underlying the development of the expres-

sion subtypes are poorly explored.

A class of small noncoding RNA called microRNA

has shown to be essential in post-transcriptional regu-

lation of mRNAs by inhibiting translation or exerting

mRNA degradation (Wilczynska and Bushell, 2015).

Recently, a pan-cancer project revealed the role of

microRNAs in regulating gene expression signatures of

the cancer hallmarks (Dhawan et al., 2018), underpin-

ning the crucial role of microRNAs during tumorigen-

esis. Aberrant expression of microRNAs is well

established as an important factor in lung cancer

development, and dysregulation across different histo-

logical lung cancer subtypes is reported (Calin and

Croce, 2006; Landi et al., 2010; Tran et al., 2018).

However, the role of microRNAs in the development

of the lung cancer gene expression-based subtypes is

largely unknown.

In this study, we analyzed microRNA expression for

a large set of NSCLC samples to identify microRNAs

associated with the expression subtypes. Subtype-speci-

fic microRNA expression was correlated to gene set

enrichment (GSE) scores in order to identify associ-

ated pathways that the microRNAs may be regulating,

characterizing the expression subtypes. The results

were further validated in independent NSCLC cohorts

from The Cancer Genome Atlas (TCGA).

2. Materials and methods

2.1. Oslo cohort

Patients diagnosed with operable NSCLC from 2006 to

2014 were included in this study (n = 241). The patients

underwent curatively intended surgical resection at Rik-

shospitalet, Oslo University Hospital, Norway. Tumor

samples were snap-frozen in liquid nitrogen and stored

at �80 °C until RNA isolation was performed. Clinical

characteristics are outlined in Table 1. Out of the 241

samples, 132 samples were classified as ADs and 109 as

SCC. Never-smokers were defined as those who had

smoked < 100 cigarettes per lifetime. In this study, 19

patients diagnosed with AD were never-smokers.

The study was approved by the Regional Ethics

Committee (S-05307), and written informed consent

was obtained from all patients. The study was per-

formed in agreement with the standards established by

the Declaration of Helsinki.

Table 1. Patient characteristic for the Oslo cohort. Subtype refers

to gene expression subtype.

Adenocarcinomas (n = 132)

Squamous cell

carcinomas (n = 109)

Subtype n (%)

PI 28 (21.2) Basal 30 (27.5)

PP 23 (17.4) Primitive 6 (5.5)

TRU 81 (61.4) Classical 50 (45.9)

Secretory 23 (21.1)

Age (median) 66.6 66.8

Gender female n (%) 73 (55.3) 40 (36.7)

Stage n (%)

Ia/Ib 79 (59.8) 56 (51.4)

IIa/IIb 27 (20.5) 36 (33)

IIIa/IIIb 26 (19.7) 17 (15.6)

EGFR mutated n (%) 19 (14.4) na

Pack-years (mean) 27.6 42.4
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2.2. RNA extraction

Total RNA (totRNA) was extracted using standard

TRIzol methods (Invitrogen, Carlsbad, CA, USA).

RNA quantity and quality (yield, 260/280 ratio and

260/230 ratio) were determined using the NanoDrop

ND-1000 spectrometer (NanoDrop Technologies,

Wilmington, DE, USA). The RNA integrity numbers

(RIN) were assessed using Agilent 2100 Bioanalyzer and

totRNA Nano Kit (Agilent Technologies, Santa Clara,

CA, USA) according to the manufacturer’s protocol.

2.3. mRNA expression analyses

We analyzed mRNA expression from the tumor sam-

ples using gene expression microarray from Agilent

Technologies (SurePrint G3 Human GE, 8 9 60 K).

For the AD samples, we used v.1, whereas for the

SCC samples, we used v.3 of the microarray platform.

We used 50 ng totRNA as input for the analyses, and

the analyses were performed according to the protocol

from the supplier. The data are deposited at ArrayEx-

press with accession number: E-MTAB-7954.

2.4. microRNA expression analyses

We analyzed microRNA expression using Agilent

Human microRNA Microarray for 132 ADs (microar-

ray kit release 16.0, 8 9 60 K) and 109 SCCs (microar-

ray kit release 21.0, 8 9 60 K). We used 100 ng of

totRNA in the analyses following the protocol as speci-

fied by the manufacturer. The data are deposited at

ArrayExpress with accession number: E-MTAB-7958.

2.5. Normalization of data

Data from the microRNA analyses were log2-trans-

formed and normalized using the 90th percentile

method. The gene expression data were log 2-trans-

formed and quantile normalized in GENESPRING GX

Analysis Software v.12.1 (Agilent Technologies). We

filtered out microRNAs detected in < 10% of the AD

samples and in < 20% of the SCC samples. After fil-

tering, 562 and 905 microRNAs remained for further

analysis, respectively.

2.6. Molecular subtyping of adenocarcinomas

and squamous cell carcinomas

The AD samples were assigned a gene expression sub-

type being TRU, PP, or PI, using the previously

described 506 gene centroid classifier and Pearson cor-

relation (Wilkerson et al., 2012). The SCC were

classified as basal, secretory, primitive, or classical

based on the centroid classifier described for SCCs

(Wilkerson et al., 2010). Samples negatively correlated

with all subtypes were not assigned to any subtype.

2.7. Validation dataset

For validation, the lung AD (LUAD) and the lung

SCC (LUSC) datasets were obtained from TCGA (Net-

work, 2012, 2014). microRNA and mRNA expression

data were extracted as log2(RPKM + 1) values through

the Xena browser (https://xenabrowser.net/datapages/).

Expression subtyping and gene set variation analysis

(GSVA) were performed on mRNA sequencing data

from the LUSC (n = 553) and the LUAD dataset

(n = 576). Results from the microRNA analysis were

validated in 492 LUAD samples and 380 LUSC sam-

ples extracted from TCGA. In addition, we included 45

normal lung tissue samples from the LUAD dataset

and 44 normal tissue samples from the LUSC dataset.

2.8. Statistics

All statistics were done in R version 3.5.2 (R Develop-

ment Core Team, 2013). Hierarchical clustering was

performed with ComplexHeatmap package version

1.20.0 using ward.D2 as clustering method (Gu et al.,

2016). Kruskal–Wallis tests were applied to identify

microRNAs differentially expressed between the

expression subtypes. Following a significant Kruskal–
Wallis test, a post hoc Dunn test was utilized to pin-

point in which subtype the microRNA was differen-

tially expressed compared to the others. The packages

FSA, fisheries stock analysis R package version 0.8.22

FSA v0.8.22, and Reshape (Wickham, 2007) (Ogle

et al., 2018) were utilized. False discovery rates (FDR)

were controlled using Benjamini–Hochberg adjustment

(Yoav Benjamini, 1995). FDR-corrected P-values

< 0.05 were assigned statistically significant.

Gene set variation analysis is a nonparametric and

unsupervised method for assessing GSE in gene

expression data. This method allows the evaluation of

pathway enrichment for each sample (Hanzelmann

et al., 2013). Here, we used the R package GSVA with

the Molecular Signatures Database (MSigDB) hall-

mark gene sets (n = 50) downloaded from Broad Insti-

tute (http://software.broadinstitute.org/gsea/msigdb/c

ollections.jsp#H) to assess enrichment in the samples.

The hallmark gene set contains specific well-defined

biological states or processes and displays coherent

expression (Liberzon et al., 2015). An enrichment score

for each of the 50 processes was calculated for each

sample. Then, Spearman rank correlation was assessed
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between the enrichment scores and each of the differ-

entially expressed microRNAs. Bonferroni adjustment

was applied to the correlation values to correct for

multiple testing. Corrected P-values < 0.05 were

assigned as statistically significant and further consid-

ered. We used miRDIP 4.1 (http://ophid.utoronto.ca/

mirDIP/) to identify predicted targets for the subtype-

specific microRNAs (Tokar et al., 2018). This database

integrates several computational microRNA–target
prediction tools aiming to strengthen the prediction of

microRNA/target relationship. Only predictions

ranked as very high, corresponding to the top 1% of

the list, were accepted as potential targets. Gene sets

positively correlated with subtype-specific microRNAs

were not tested. Further, only gene sets with the high-

est anticorrelated pathway for each microRNA in both

cohorts were selected for prediction analyses. Genes

were identified as targets for the tested microRNAs if

the correlation coefficients were significantly negative

(Bonferroni-corrected P-value < 0.05) in both cohorts.

3. Results

The frequencies of the AD subtypes TRU, PI, and PP

detected in the Oslo cohort were in line with the

TCGA LUAD cohort, although more TRU samples

(61.4% versus 45.8%) and fewer PI samples (21.2%

versus 35.3%) were identified (Fig. 1). For the SCC

samples, a lower frequency of the primitive subtype

was detected in the Oslo cohort (5%) than in the

TCGA LUSC cohort (14%) as shown in Fig. 1.

We identified 251 microRNAs differentially expressed

between the expression subtypes in ADs in the Oslo

cohort (FDR-corrected Kruskal–Wallis P-value

< 0.05). Of these, 157 microRNAs were validated in the

LUAD cohort of TCGA (FDR-corrected Kruskal–
Wallis P-value < 0.05). Dunn’s test was subsequently

used to find expression subtype-specific microRNAs. In

order to be classified as subtype-specific, the level had to

be significantly different from the other subtypes (FDR-

corrected P-value < 0.05) in both cohorts (Oslo and

TCGA). As shown in Fig. 2, the number of microRNAs

expressed at different levels was highest (low P-values

are displayed in blue) when we compared PP and TRU

samples. The PI and PP samples showed a more similar

microRNA expression pattern.

Next, we included normal lung tissue samples

(LUAD, n = 45) and focused only on subtype-specific

microRNAs that were also differentially expressed

compared to the normal samples. Most of the micro-

RNAs that had similar level as the normal samples

were associated with the TRU subtype. These were fil-

tered out. Following these criteria, 21 subtype-specific

microRNAs were identified in ADs (Table 2, Fig. S1,

Table S1): three microRNAs characterizing PI (all up),

nine microRNAs characterizing PP (two up and seven

down), and nine microRNAs characterizing TRU (all

up).

We applied the same analysis to the SCC samples.

Using Kruskal–Wallis test, we identified 50 micro-

RNAs being differentially expressed between the

expression subtypes in the Oslo cohort (FDR-corrected

P-value < 0.05). Of these, 41 were validated in the

LUSC cohort (FDR-corrected P-value < 0.05). Dunn’s

tests further excluded 21 microRNAs, leaving 20

microRNAs passing the above-mentioned criteria

(Table 2, Fig. S1, Table S1): one microRNA character-

izing basal (up), five microRNAs characterizing classi-

cal (all up), five microRNAs characterizing primitive

(three up and two down), and nine microRNAs char-

acterizing secretory (one up and eight down). Of note,

due to the low number of primitive samples in the

Oslo cohort, borderline significant microRNAs for

tests with this subtype were included if significant in

the LUSC cohort. As shown in Fig. 2, the largest dif-

ference between the SCC subtypes, in terms of micro-

RNA expression, was found between the secretory and

the classical subtypes. On the other side, the classical

and the primitive subtypes were most similar with

regard to microRNA expression (Fig. 2).

3.1. Gene set variation analysis

Gene set variation analysis is a GSE method that esti-

mates underlying pathway activity variation in samples

in an unsupervised manner. The hallmark gene sets

from MSigDB were used for the analysis (Liberzon

et al., 2015). These gene sets contain 50 well-defined

signatures of 50 hallmarks that represent well-defined

biological processes. An enrichment score was calcu-

lated sample-wise for each hallmark without knowl-

edge of any phenotypic information. In order to

identify hallmarks associated with subtype-specific

microRNAs, the enrichment scores were correlated

with the expression level of the subtype-specific micro-

RNA using Spearman rank correlation (retaining cor-

relation with a Bonferroni-corrected P-value < 0.05).

As shown in Table 3, immune response, cell cycle

maintenance, epithelial–mesenchymal transition

(EMT), and metabolism were the processes that corre-

lated the most with the subtype-specific microRNAs.

More details are shown in Table S2.

To further explore and visualize the correlation

between subtype-specific microRNAs and hallmark

signatures, the correlation values were hierarchically

clustered (Figs 3 and S2).

2607Molecular Oncology 13 (2019) 2604–2615 ª 2019 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

A. R. Halvorsen et al. Subtype-specific microRNAs in NSCLC patients

http://ophid.utoronto.ca/mirDIP/
http://ophid.utoronto.ca/mirDIP/


As displayed in Fig. 3 and Table 3, the AD PI sub-

type shows upregulation of processes involved in

immune response and of the hallmarks cell cycle and

DNA repair, which were the opposite of what was

found in AD PP subtype. The TRU subtype was asso-

ciated with upregulation of bile acid metabolism and

downregulation of cell cycle and DNA repair. For

SCC, a similar pattern was seen with immune response

upregulated and cell cycle and DNA repair downregu-

lated in the secretory subtype, just the opposite of

what was detected for the primitive and classical sub-

types.

In order to assess whether the subtype-specific

microRNA signal originates from the lung cancer cells

or from infiltrating immune cells, we compared our

subtype-specific microRNAs with the results from a

study investigating human cell-specific microRNA

expression. In this project, the authors sequenced

microRNAs from 46 primary cell types, 42 cancer cell

lines and tissues (McCall et al., 2017). We extracted

the sequencing data from dendritic cells, B lympho-

cytes, T lymphocytes, macrophages, blood, lung

fibroblasts, lung tissue, and lung cancer cell lines. All

over, most of the subtype-specific microRNAs showed

highest expression in lung tissue and lung cancer cell

lines. Nevertheless, miR-142-3p, miR-142-5p, and miR

146-5p were highly expressed in T cells, whereas miR-

140-3p and miR-221-5p were highly expressed in B

cells. We also found microRNAs which seemed to be

exclusively expressed in lung tissue and lung cancer cell

lines. This included 149-5p, miR-196a-5p, miR-200b-

3p, miR-224-5p, miR-429, and miR-452-5p. (Fig. S3,

Table S3).

3.2. Prediction of targets for the subtype-specific

microRNAs

In order to further elucidate how the subtype-specific

microRNAs may regulate the associated gene sets, we

utilized prediction analysis to find potential targets

for the microRNAs within the gene sets. First, we

identified gene sets being anticorrelated with the sub-

type-specific microRNAs. The most anticorrelated

gene set for each of the subtype-specific microRNAs

being significant in both cohorts was selected for tar-

get analysis. One exception was made; we included

Spermatogenesis and E2F targets for the TRU sub-

type since these two gene sets were anticorrelated

with several of the TRU-specific microRNAs, but

were not ranged as the most anticorrelated gene sets.

As expected, for the AD PI, AD TRU, SCC basal,

and SCC classical subtypes, no upregulated gene sets

were anticorrelated with the selected microRNAs due

to only upregulated microRNAs. For AD PP, 11 pre-

dicted targets were identified for miR-101-3p and

miR-140-3p within the gene set G2M checkpoint, and

six predicted targets within inflammatory response

were significantly anticorrelated with miR-200c-3p

61.40 %17.40 %

21.20 %

AD Oslo cohort

TRU PP PI

45.80 %

18.90 %

35.30 %

LUAD TCGA

TRU PP PI

27.30 %

45.50 %

21.80 %
5 %

SCC Oslo cohort

Basal Classical Secretory Primi�ve

29.30 %

38.20 %

18.50 %

14 %

LUSC TCGA

Basal Classical Secretory Primi�ve

Fig. 1. shows the frequency of the

expression subtypes for AD and SCC in

the Oslo cohort and the TCGA cohort.
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and miR-141-3p. For SCC secretory subtype, pre-

dicted targets for miR-200a-3p, miR-200b-3p, miR-

200c-3p, miR-141-3p, miR- 205-5p, miR-429, and

miR-196-5p were identified within the gene sets

inflammatory response (12 predicted targets), EMT

(32 predicted targets), myogenesis (16 predicted tar-

gets), kras signaling up (13 predicted targets), il6-jak-

stat3-signaling (four predicted targets), and/or coagu-

lation (12 predicted targets). The upregulated gene

sets in the SCC primitive subtype E2F targets and

G2M checkpoint were identified with eight and 11

predicted targets for miR-22-3p and miR-145-5p,

respectively. Further, four predicted targets for miR-

106-5p were found in the downregulated gene sets

myogenesis and coagulation. Three downregulated

gene sets were identified with predicted targets for the

SCC classical subtype. For more details, see

Table S4. Nine of our predicted targets have been

functionally validated in previous studies, according

to MiRTargetBase (Chou et al., 2018). Details are

shown in Table S4.

4. Discussion

In this study, we identified 21 and 20 subtype-specific

microRNAs in AD and SCC, respectively. Correlation

analysis between microRNA expression and hallmark

enrichment scores revealed distinct positive and nega-

tive associations with the subtypes of AD and SCC.

This suggests that the identified microRNAs may regu-

late biological processes determining the different sub-

types. Even though the identified microRNAs were

subtype-specific, they were involved in many of the

same processes, although associated with different tar-

gets. We propose that distinct processes characterizing

the subtypes, such as high immune activity in AD PI

and SCC secretory samples, and proliferation in AD

PP, SCC primitive, and SCC classical samples, may be

P
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regulated by the identified subtype-specific micro-

RNAs.

4.1. The role of microRNAs in cell cycle and

proliferation

Pathways involved in cell cycle and DNA repair sig-

naling were upregulated in SCC classical, SCC primi-

tive, and AD PP subtypes and downregulated in AD

TRU and SCC secretory subtypes. These results are

in line with previous work where a high proliferation

score was detected in the classical, primitive, and PP

subtypes (Ojlert et al., 2019). In the SCC classical

subtype, all the five classical-specific microRNAs were

upregulated, and subsequently, no anticorrelated pre-

dicted targets were detected within the upregulated

gene sets. Therefore, we speculate that targets for

these microRNAs are inhibitors of the G2M check-

point and E2F target gene sets, leading to an

increased signaling. For the primitive tumors, the

same pathways were upregulated but seem to be con-

trolled in a different manner. With 19 predicted tar-

gets of miR-22-3p and miR-145-5p within G2M

checkpoint and E2F target gene sets, an upregula-

tion of these gene sets may be explained by down-

regulation of the microRNAs controlling these

processes.

In the AD PP subtype, we found 11 predicted tar-

gets of miR-140-3p and miR-101-3p within the G2M

checkpoint gene set indicating that upregulation of

G2M checkpoint most likely is a result of repression of

miR-140-3p and miR-101-3p. However, since miR-

101-3p is expressed both in immune cells and lung tis-

sue, they may be targets of essential components

within the cell cycle, simultaneously being involved in

the development of suppressive mechanisms in the

immune microenvironment. Furthermore, since miR-

140-3p is highly expressed by B cells, low levels of

miR-140-3p may indicate the absence of B-cell infiltra-

tion. The TRU tumors were associated with a down-

regulation of G2M checkpoint and E2F-targets. High

levels of miR-181c-5p may explain this downregula-

tion, supported by identification of 12 predicted targets

within these two signaling pathways. None of the 12

predicted targets have been functionally validated, but

a recent study showed that miR-181c-5p is involved in

G2M-checkpoint regulation, and have direct targets

within this pathway (Sun et al., 2019).

We found an upregulation of the DNA repair in

primitive, classical, and PP subtypes. In addition, the

gene set reactive oxygen species were upregulated in

the classical subtype. This probably reflects that these

subtypes are associated with more heavy smoking

(Wilkerson et al., 2010; Wilkerson et al., 2012).

Table 2. Micrornas significantly differentially expressed between the subtypes and different from normal samples were selected for further

analysis. B, basal, C, classical, P, primitive, S, secretory.

Adenocarcinomas Squamous Cell carcinomas

Mimat microRNA Subtype direction Mimat microRNA Subtype direction

MIMAT0000433 hsa-miR-142-5p PI high MIMAT0000089 hsa-miR-31-5p B high

MIMAT0000434 hsa-miR-142-3p PI high MIMAT0000281 hsa-miR-224-5p C high

MIMAT0000646 hsa-miR-155-5p PI high MIMAT0000450 hsa-miR-149-5p C high

MIMAT0000432 hsa-miR-141-3p PP high MIMAT0000764 hsa-miR-339-5p C high

MIMAT0000617 hsa-miR-200c-3p PP high MIMAT0004987 hsa-miR-944 C high

MIMAT0000099 hsa-miR-101-3p PP low MIMAT0009197 hsa-miR-205-3p C high

MIMAT0000278 hsa-miR-221-3p PP low MIMAT0000226 hsa-miR-196a-5p P high

MIMAT0001635 hsa-miR-452-5p PP low MIMAT0000680 hsa-miR-106b-5p P high

MIMAT0002809 hsa-miR-146b-5p PP low MIMAT0001412 hsa-miR-18b-5p P high

MIMAT0003266 hsa-miR-598-3p PP low MIMAT0000077 hsa-miR-22-3p P low

MIMAT0004568 hsa-miR-221-5p PP low MIMAT0000437 hsa-miR-145-5p P low

MIMAT0004597 hsa-miR-140-3p PP low MIMAT0004550 hsa-miR-30c-2-3p S high

MIMAT0000258 hsa-miR-181c-5p TRU high MIMAT0000266 miR-205-5p S low

MIMAT0000418 hsa-miR-23b-3p TRU high MIMAT0000267 hsa-miR-210-3p S low

MIMAT0000692 hsa-miR-30e-5p TRU high MIMAT0000318 hsa-miR-200b-3p S low

MIMAT0000758 hsa-miR-135b-5p TRU high MIMAT0000432 hsa-miR-141-3p S low

MIMAT0002871 hsa-miR-500a-3p TRU high MIMAT0000617 hsa-miR-200c-3p S low

MIMAT0003150 hsa-miR-455-5p TRU high MIMAT0000682 hsa-miR-200a-3p S low

MIMAT0003338 hsa-miR-660-5p TRU high MIMAT0001080 hsa-miR-196b-5p S low

MIMAT0004673 hsa-miR-29c-5p TRU high MIMAT0001536 hsa-miR-429 S low

MIMAT0004775 hsa-miR-502-3p TRU high
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Table 3. Hallmark gene sets significantly associated with high or low expression of subtype-specific microRNAs in both the Oslo and TCGA

cohorts.

Upreg AD PI AD PP AD TRU

allograft_rejection dna_repair bile_acid_metabolism

complement g2m_checkpoint

il2_stat5_signaling myc_targets_v1

il6_jak_stat3_signaling myc_targets_v2

inflammatory_response glycolysis

interferon_alpha_response oxidative_phosphorylation

interferon_gamma_response

tnfa_signaling_via_nfkb

Downreg

AD

PI AD PP AD TRU

NA allograft_rejection e2f_targets

apoptosis g2m_checkpoint

hedgehog_signaling spermatogenesis

il2_stat5_signaling myc_targets_v1

il6_jak_stat3_signaling myc_targets_v2

inflammatory_response unfolded_protein_response

interferon_alpha_response mitotic_spindle

interferon_gamma_response mtorc1_signaling

tnfa_signaling_via_nfkb glycolysis

p53_pathway

Upreg SCC Primitive SCC Classical SCC Secretory SCC Basal

dna_repair dna_repair allograft_rejection glycolysis

e2f_targets p53_pathway inflammatory_response estrogen_response_late

g2m_checkpoint (prog cell cycle) reactive_oxigen_species_pathway il6_jak_stat3_signaling

mitotic_spindle e2f_targets complement

spermatogenesis g2m_checkpoint epithelial_mesenchymal_transition

myc_targets_v1 unfolded_protein_response angiogenesis

myc_targets_v2 spermatogenesis coagulation

oxidative_phosphorylation myc_targets_v1 myogenesis

myc_targets_v2 kras_signaling_up

fatty_acid_metabolism

glycolysis

oxidative_phosphorylation

cholesterol_homeostasis

peroxisome

mtorc1_signaling

estrogen_response_late

Downreg SCC Primitive SCC Classical SCC Secretory SCC Basal

allograft_rejection allograft_rejection dna_repair NA

complement inflammatory_response g2m_checkpoint

inflammatory_response complement e2f_targets

il2_stat5_signaling interferon_alpha_response unfolded_protein_response

il6_jak_stat3_signaling interferon_gamma_response spermatogenesis

tgf_beta_signaling il6_jak_stat3_signaling myc_targets_v1

tnfa_signaling_via_nfkb epithelial_mesenchymal_transition myc_targets_v2

epithelial_mesenchymal_transition angiogenesis fatty_acid_metabolism

angiogenesis coagulation oxidative_phosphorylation

coagulation myogenesis glycolysis

heme_metabolism kras_signaling_up cholesterol_homeostasis

apoptosis mtorc1_signaling
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4.2. Immune activity regulated by microRNAs

Processes belonging to immunological response were

upregulated in AD PI and SCC secretory subtypes and

downregulated in AD PP, SCC primitive, and SCC

classical subtypes. Interestingly, all three microRNAs

associated with the PI subtype are highly expressed in

B cells and T cells (Fig. S3), which point to a high

Table 3. (Continued).

Downreg SCC Primitive SCC Classical SCC Secretory SCC Basal

uv_response_dn

myogenesis

kras_signaling_up

apical_junction

androgen_response

myc_targets_v1
e2f_targets
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oxidative_phosphorylation
dna_repair
unfolded_protein_response
spermatogenesis
glycolysis
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mitotic_spindle
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peroxisome
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protein_secretion
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Fig. 3. shows the correlation between the subtype-specific microRNAs and the hallmark gene set for AD and SCC in the Oslo cohort.

Subtype annotation indicates which subtype the different microRNAs are associated with. To identify up- or downregulated pathways, the

correlation coefficient for downregulated microRNAs (annotated with black/low) must be multiplied with �1 (this will switch the red pixels

into blue and vice versa).
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immune activity in the PI subtype. This is in line with

previous work where high cytolytic and immune score

in the PI and secretory subtypes, and low cytolytic

and immune score in the PP, primitive, and classical

subtypes were detected (Ojlert et al., 2019). Interest-

ingly, in a study of microdissected lung ADs, genes

involved in the immune response were not as promi-

nent in the PI subtype as we detected in our study.

One possible explanation is that we used bulk tumor,

which also harbors cells from the microenvironment

such as immune cells (Zabeck et al., 2018). This indi-

cates that the expression subtypes are not restricted to

the tumor cell, but can also mirror the tumor microen-

vironment.

The secretory subtype was recognized with upregula-

tion of immune-related pathways, which is confirmed

in other studies (Faruki et al., 2017; Ojlert et al.,

2019). However, in contrast to the PI subtype, the sub-

type-specific microRNAs detected in secretory tumors

were downregulated (except for miR-30c-2-3p) and

mostly associated with expression in lung tissue. Since

the secretory subtype is reported to be associated with

high immune activity, our findings may indicate that

these microRNAs are expressed by the tumor cells,

usually suppressing the immune activity. This was fur-

ther supported when we identified 16 predicted targets

within the gene sets Immune response and il6-jak-stat3-

signaling. Interestingly, this was also consistent with

the finding of a downregulation of immune response in

the AD PP subtype, identified with upregulation of

two of the same microRNAs (miR- 200c-3p and miR-

141-3p) which were downregulated in the SCC secre-

tory subtype.

The expression pattern for the secretory subtype

shares many similar features to the expression pattern

of normal lung tissue. Both normal lung tissue and

secretory lung cancer tissue exhibit an immune active

pattern. This may explain why many of the secretory

subtype-specific microRNAs were in the same direction

as the normal samples.

4.3. Epithelial–mesenchymal transition signaling

Several studies have shown that members of the miR-

200 family (miR-200a, miR-200b, miR-200c, miR-429,

and miR-141) are crucial regulators of the EMT sig-

naling (Humphries and Yang, 2015). It has been

shown that miR-200 family can target ZEB1 and

ZEB2 and promote expression of E-cadherin, thus hin-

der migration, invasion, and tumor angiogenesis (Kor-

pal et al., 2008).Tumors with the secretory subtype

were recognized with a downregulation of all members

of the miR-200 family and upregulation of EMT and

angiogenesis. For EMT signaling, 32 predicted targets

for the miR-200 family were identified within our data-

set supporting these findings. Interestingly, in a study

of pan-cancer EMT signature, immune cell signaling

was strongly correlated to EMT (Mak et al., 2016).

This was also shown with the clustering of micro-

RNAs and the hallmark gene sets (Fig. 3) where

EMT- and immune-related processes were identified in

the same subcluster. This may explain why the classi-

cal and primitive subtypes revealed a downregulation

of EMT and angiogenesis, in addition to a low

immune activity. An opposite result was discovered for

the SCC secretory subtype, identified with upregula-

tion of the same pathways. Further, an association

between EMT and increased expression of PD-L1 has

been reported, and EMT has been suggested in regu-

lating immune escape in lung cancer (Chen et al.,

2014). However, we did not observe high PD-L1

expression in the secretory subtype in our previous

study (Ojlert et al., 2019).

There are some limitations in this study. Due to

fewer samples included in the Oslo cohort, micro-

RNAs with borderline significance were included if sig-

nificant in the TCGA cohort. This may implicate that

other microRNAs important for this subtype were not

captured during the first analysis. However, all the

results were validated in TCGA which make the find-

ings in this study robust and repeatable. Furthermore,

only one microRNA (miR-31-5p) was significantly

associated with the basal subtype, resulting in few

pathways correlated with this group. This may indicate

that development of basal tumors is driven by other

mechanisms than microRNAs, or that some basal-

specific microRNAs were not captured by our analy-

ses. However, we found that miR-31-5p was highly

lung cancer and lung tissue specific which may indicate

that this microRNA is oncogenic and plays a specific

role in basal lung tumors.

The samples from the Oslo cohort were analyzed

using a microarray platform, whereas the TCGA sam-

ples were profiled using next-generation sequencing

technology. Thus, there may exist additional subtype-

specific microRNAs which were not captured in this

study as the microRNAs present on the microarray

defined the microRNA focus. Nevertheless, the result-

ing subtype-specific microRNAs reported in the pre-

sent study were robustly identified across platforms.

5. Conclusions

In this study, we showed that subtype-specific micro-

RNAs may be involved in essential processes charac-

terizing the expression subtypes of ADs and SCCs. Of
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note, functional studies are warranted in order to

detect precise targets for the subtype-specific micro-

RNAs. Unraveling the underlying biology in lung can-

cer subtypes may be important in order to offer the

patients a more stratified targeted therapy. Inhibition

of essential pathways together with standard care of

treatment including immunotherapy may be a benefi-

cial strategy.
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of the article.
Fig. S1. Examples of microRNAs significantly associ-

ated with one specific expression subtype shown for

the LUAD and LUSC cohorts.

Fig. S2. This figure shows the correlation between the

subtype-specific microRNAs and the hallmark gene set

for AD and SCC in the TCGA cohort. Subtype anno-

tation indicate which subtype the different microRNAs

are associated with. To identify up- or down-regulated

pathways, the correlation-coefficient for downregulated

microRNAs (annotated with black/low) must be multi-

plied with -1 (this will switch the red pixels into blue

and vice versa).

Fig. S3. This figure shows the expression of the identi-

fied subtype-specific microRNAs across different

immune cells, lung tissue and lung cancer cell lines.

Data is extracted from McCall et al.24 The color-bars

show the subtype and direction associated with the

microRNA. Three microRNAs (miR-141-3p, miR-145-

5p, miR-200c-3p) were specific to subtypes both in AD

and SCC, and are annotated with the suffix 2.

Table S1. Dunn test was utilized to identify expression

subtype-specific microRNAs in Oslo Cohort and

TCGA.

Table S2. Shows the hallmark gene sets associated

with subtype-specific microRNAs.

Table S3. Shows which cells the subtype-specific

microRNA may originate from. The sequencing data

is from a project were the authors sequenced micro-

RNAs from 46 primary cell types, 42 cancer cell lines

and tissues (McCall et al., 2017). We extracted the

sequencing data for the subtype-specific microRNAs.

Table S4. Shows in silico predicted targets for subtype-

specific microRNAs within the associated gene set.

Genes marked with a star are previous functionally

validated according to MiRTargetBase (Chou et al.,

2018).
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