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A B S T R A C T   

This study’s principal mathematical deduction exploits the importance of the specification of 
long-term equilibrium level in the mean-reversion short-term interest rate model—such as the 
CKLS (Chan, Karolyi, Longstaff, and Sanders) model—to describe the dynamic characteristics of 
future short-term interest rate expectations, especially long-horizon expectations. Therefore, we 
present a preferred model by introducing a stochastic long-run equilibrium level factor to extend 
the specifications of the Vasicek model’s short-term interest rate dynamics. Using this new type of 
short-term interest rate as a driver we develop a two-factor affine arbitrage-free model of term 
structure, the generalized Vasicek mode. The empirical results show that the model not only has a 
good sample fitting ability to the Chinese government bond yield curve, but also has better 
performance in capturing the dynamic characteristics of short-term interest rates and short-term 
interest rate expectations. This study provides not only a promising avenue for future research on 
improving interest rate modeling techniques and their practical applications in the financial in
dustry but also a new literature base for accurately identifying public expectations and explaining 
the underlying mechanisms of expectation changes.   

1. Introduction 

The term structure of interest rates describes the relationship between yields to maturity and the maturity of default-free securities 
and plays a very important role in economic theory. Several theoretical models have been proposed to explain this relationship and its 
dynamic changes over time in various ways. Vasicek [1] pioneered the method of modeling the term structure of interest rates in 
continuous time, assuming that short-term interest rates follow the Ornstein–Uhlenbeck process [2] and that the bond yield obtained 
by imposing no-arbitrage restrictions is an affine function of the short-term interest rate. Researchers have since explored the for
mulations of multifactor models to overcome the single-factor limitations of the Vasicek model, where the representation of the 
short-term rate is extended by introducing latent factors following more general diffusion processes, and the short-term rate is a linear 
combination of these latent factors [e.g., Refs. [3–5]]. 

Dai and Singleton [6] provide a thorough specification analysis of affine term structure models (ATSMs), including the Vasicek 
model. For computational ease, various improved classes of ATSMs with closed-form bond pricing solutions, such as by Ang and 
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Piazzesi [7] and Christensen and Rudebusch [8], have gained popularity. These ATSMs can provide a better fit to the Treasury yield 
curve data and macroeconomic theoretical explanations of the Treasury yield curve dynamics, but the long-run equilibria of the 
short-term interest rate or the state factors determining the short-term interest rate implied by these ATSMs remain constant, 
consistent with the Vasicek model. Our mathematical deduction exploits the fact that this specification causes the long-horizon ex
pectations of future short-term interest rates implicit in the model to lack dynamism, which is obviously inconsistent with the actual 
situation. 

Even special research on the short-term interest rate model does not pay sufficient attention to this relationship between the long- 
term equilibrium level and different horizon expectations of short-term interest rates in terms of dynamic characteristics. Chan, 
Karolyi, Longstaff, and Sanders [9], hereafter CKLS, generalized a conclusion that the dynamics for the short-term interest rate can be 
nested within the following stochastic differential equation: 

dr(t) = κ(θ − r(t))dt + σr(t)γdW(t), (1)  

where r(t) denotes the instantaneous spot rate, κ, σ, θ, and γ are nonnegative parameters, and W(t) is a standard Brownian motion. κ 
and θ represent the speed of mean reversion and the long-run equilibrium level of the short-term interest rate, respectively. The σr(t)γ 

the evolution of the short-term intermediate. By simply placing the appropriate restrictions on the parameter γ, different specifications 
of the short-term interest rate dynamics in many well-known term structure models can be obtained. For example, setting γ = 0 
corresponds to Vasicek [1], setting γ = 1/2 corresponds to Cox et al. [10], and setting γ = 1 corresponds to 
Brennan and Schwartz [11]. CKLS’s empirical comparisons indicate that the models in which there is a higher level of parameter γ 
were more successful in capturing the dynamics of the short-term interest rate. 

However, the CKLS model only emphasizes the sensitivity of interest rate volatility to the level of the interest rate by the σr(t)γ term 
and ignores the high persistence of interest rate volatility. To better describe the dynamics of interest rate volatility, Brenner et al. [12] 
and Koedijk et al. [13] remodel the volatility of short-term interest rates by considering both the level effect of CKLS and the con
ditional heteroskedasticity effect of the GARCH class of models. However, Andersen and Lund [14] extend the CKLS model to a 
multi-factor diffusion process by incorporating a stochastic volatility factor. Most researchers regard volatility as a critical component 
for improving the applicability of short-term interest rate models. Durham [ [15] shows that allowing for additional flexibility beyond 
a constant drift term provides minimal benefit, but this conclusion was completely derived from the nonlinear time-varying rather than 
the stochastic long-run equilibrium level in the short-term interest rate model. He also overlooked the importance of the specification 
of long-term equilibrium level θ to describe the dynamic characteristics of short-term interest rate expectations Et [r(s)](0≤ t< s). 
Scholars such as Yu and Phillips [16], Ahangarani [17], and Phillips and Yu [18] also discussed estimation methods for short-term 
interest rate models using methods such as maximum likelihood and Gaussian for continuous-time models in finance [19,20]. 

In this study, we present a preferred model of short-term interest rates by introducing a stochastic long-run equilibrium level factor 
to extend the specifications of short-term interest rate dynamics in the Vasicek model. In contrast to Chen [21] and Balduzzi et al. [22], 
we derive the stochastic properties of the long-run equilibrium level in our model entirely from the short-term interest rate r(t) without 
any additional uncertainties, consistent with the actual situation. Generally, the short-term interest rate model with a stochastic 
long-run equilibrium level factor can adequately describe the dynamics of short-term interest rate expectations, especially 
long-horizon expectations (2–5 years). With this new way of driving short-term interest rates, we further develop a two-factor affine 
arbitrage-free model of the term structure, the generalized Vasicek model, whose factors are the short-term interest rate and the 
long-run equilibrium level of the short-term interest rate. The estimation is performed by implementing the Kalman filter in the 
state-space model, where the above factors are considered as the two unobserved state variables. A comparison with existing models, 
which are empirically represented by the Vasicek model, shows that the model can provide better performance in capturing the dy
namics of short-term interest rates and short-term interest rate expectations. 

2. Model construction 

2.1. Short-term interest rate and short-term interest rate expectation 

Based on equation [1], which describes the dynamics of the short-term interest rate, we derive an analytical expression of 
short-term interest rate expectations and obtain the relationship between short-term interest rate expectations and the long-run 
equilibrium level of the short-term interest rate. As equation [1] is an It ô process, we use It ô’s lemma to obtain equation [2] 

deκtr(t)= κθeκtdt + σeκtr(t)γdW(t). (2)  

By integrating both sides of the above equation [2] for time t to (s≥ t), we can get equation [3] 

r(s)= e− κ(s− t)r(t) + θ
(
1 − e− κ(s− t))+ σ

∫s

t

e− κ(t− u)r(u)γdW(u). (3) 

Equation [4] presents the conditional expectation of r(s) at time t is 
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Et[r(s)]= e− κ(s− t)r(t)+ θ
(
1 − e− κ(s− t))+ Et[σ

∫s

t

e− κ(t− u)r(u)γdW(u)]. (4) 

According to the martingale property of It ô integral, as shown in equation [5], the expected value of the integral is zero 

Et

⎡

⎣
∫s

t

e− κ(t− u)r(u)γdW(u)

⎤

⎦=

∫t

t

e− κ(t− u)r(u)γdW(u)= 0. (5) 

Therefore, the expression for the market’s rational expectation of the short-term interest rate r(s) at time t is then given by equation 
[6] 

Et[r(s)]= e− κ(s− t)r(t) + θ
(
1 − e− κ(s− t)). (6) 

The above expression demonstrates that the expectation of future short-term interest rate Et [r(s)] is the weighted average of the 
current values of short-term interest rate r(t) and long-run equilibrium level θ, and their influence weights are the functions 
of forecast horizon s: g1(s) = e− κ(s− t) and g2(s) = 1 − e− κ(s− t). The monotonicity of g1(s) and g2(s) with respect to s describes the 
backward- and forward-looking characteristics of public expectations; the smaller the s, the greater the influence weight of r(t), and the 
greater the s, the greater the influence weight of θ.1 Unfortunately, in the limit s→∞, we have e− κ(s− t)→0 and therefore, the behavior of 
the infinite horizon expectation Et [r(∞)] is trivially a constant θ. Besides, the model has a smaller value of κ because of the highly 
persistent nature of interest rates, and it may be difficult to accommodate a considerable time variation in long-horizon expectations 
(2–5 years). 

Moreover, ATSMs [7,8] based on Dai and Singleton’s [6] theory assume that the short-term interest rate is determined by a linear 
combination of several observable or unobservable state factors. However, these state factors still follow a mean-reversion process in 
which the long-run equilibrium level of all state factors is constant. Thus, the instantaneous spot rate is defined as stated in equation 
[7], can be expressed as 

r(t)= δ0 + δ′
1X(t), (7)  

where δ0 ∈ R, δ1 ∈ Rn. X(t) is a column vector consisting of n state factors X1(t),X2(t),⋯,Xn(t). X(t) follows an affine Gaussian process 
with constant volatility under the actual probability measure P as shown in equation [8], with dynamics in continuous time given by 
the solution to the following stochastic differential equations (SDEs): 

dX(t) =Κ(θ − X(t))dt + ΣdW(t), (8)  

where Κ ∈ Rn×n is a mean-reversion matrix, θ ∈ Rn is a vector of mean levels, Σ ∈ Rn×n a volatility matrix and W(t) is a n-dimensional 
vector of independent standard Brownian motions under P. According to the It ô–Deblin formula and the property of the matrix 
exponential function,2 get equation [9]. 

d(eΚtX(t))= eΚtΚX(t)dt+ eΚtdX(t)= eΚtΚθdt + eΚtΣdW(t). (9) 

Then, the following expression [10] may be obtained by integrating both sides of the above equation [9] for time t to (s≥ t): 

X(s)= e− Κ(s− t)X(t)+
(
I − e− Κ(s− t))θ +

∫s

t

e− Κ(s− u)ΣdW(u), (10) 

According to the martingale property of the It ô integral, we can obtain the conditional expectation of X(s) at time t in the same 
manner., presented in equation [11] 

Et[X(s)]= e− Κ(s− t)X(t) +
(
I − e− Κ(s− t))θ. (11) 

Finally, the expectations of short-term interest rates can be expressed as equation [12]: 

Et[r(s)]= δ0 + δ′
1

(
e− Κ(s− t)X(t)+

(
I − e− Κ(s− t))θ

)
. (12)  

That is, in the limit s→∞, there are e− Κ(s− t)→0, so the infinite horizon expectation Et [r(∞)] is still a constant δ0 + δ′
1θ. 

To solve these problems, we draw inspiration from Cox et al. [10,23] and describe the dynamic process of short-term interest rates 
as follows. 

1 As the short-term interest rate r(t) can only fluctuate in θ around its long-term equilibrium level, the long-term equilibrium level can reflect the future 
direction of short-term interest rates to some extent.  

2 According to the definition and properties of the exponential function of the matrix, if A is a square matrix of constants and t is an independent variable, 

then eAt = I+ At + (At)2
2! +

(At)3
3! + ⋯, deAt

dt = AeAt = eAtA. 
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dr(t) = κ(θ(t) − r(t))dt + σdWr(t), (13)  

θ(t)=
∫∞

0

βe− βur(t − u)du, (14)  

where equation [13], κ > 0, σ > 0 is a constant and Wr(t) is a standard Brownian motion. As 
∫∞

0

βe− βudu = 1, we consider that θ(t) in 

equation [14] is the exponentially weighted average of the past values of short-term interest rate r(t). Let τ = t − u, and then equation 
[14] can be changed to 

θ(t)= βe− βt
∫t

− ∞

eβτr(τ)dτ. (15) 

Differentiating both sides of the equation [15], we get 

dθ(t)= β(r(t) − θ(t))dt. (16) 

Our specifications for the long-run equilibrium level θ(t) are different from those in Chen [21] and Balduzzi et al. [22]. There is no 
diffusion term in equation [16]; thus, θ(t) has zero quadratic variation, which means that as long as r(t) and θ(t) are known at time t, 
θ(t) at the next moment is determined, and there is no additional uncertainty in the model. Nevertheless, since r(t) is random, θ(t) is 
also random over longer periods. It is in line with the reality that θ(t) is the long-run equilibrium level of the short-term interest rate, 
whose stochastic properties entirely derive from the short-term interest rate r(t) itself, without any additional uncertainty. 

We derive an expression for the expectation of short-term interest rates within the framework of this new short-term interest rate 
model. First, reconcile the relations defined by Equations [13,16] into a unified matrix form. This formulation culminates in equation 
[17]: 

dX(t) = − Κ0X(t)dt + Σ0dW(t), (17)  

where 

X(t) =
(

r(t)
θ(t)

)

,Κ0 =

(
κ − κ
− β β

)

,Σ0 =

(
σ 0
0 0

)

,W(t)=
(

Wr(t)
Wθ(t)

)

,

and Wθ(t) is also a standard Brownian motion. Using a similar approach as before, we obtain equation [18] 

X(s)= e− Κ0(s− t)X(t) +
∫s

t

e− Κ0(s− u)Σ0dW(u), s ≥ t, (18)  

and the conditional expectation of X(s) at time t in equation [19]: 

Et(X(s))= e− Κ0(s− t)X(t). (19) 

See Appendix 2 for the specific form of e− Κ0(s− t). The expectations of the short-term interest rate have been 

Et[r(s)]=
[

β
β + κ

+
κ

β + κ
e− (β+κ)(s− t)

]

r(t) +
κ

β + κ
(
1 − e− (β+κ)(s− t))θ

(
t
)
. (20) 

Obviously, in our short-term interest rate model with random long-run equilibrium level, the expectation of future short-term 
interest rate is determined by two factors: the current values of short-term interest rate r(t) and long-term equilibrium level θ(t). In 
addition to f1(s)+ f2(s) = 1, the factor-loading functions f1(s) = β

β+κ +
κ

β+κe
− (β+κ)(s− t) and f2(s) = κ

β+κ (1 − e− (β+κ)(s− t)) are a monotone 
decreasing function and a monotone increasing function of s, respectively. These characteristics are consistent with those of the old 
models. Whereas, in the limit s→∞, we have e− κ(s− t)→0, and hence, the behavior of the infinite horizon expectation Et [r(∞)] = β

β+κ r(t)+
κ

β+κ θ(t). As a result, the long-horizon expectation has considerable time-varying and stochastic property yet, and may be more in line 
with the reality that the long-horizon expectation has backward-looking characteristics to a certain extent. 

2.2. Modeling the term structure 

Let R(t, s) denote the yield at time t of a discount bond with maturity date s, where t ≤ s. The yield, as expressed in equation [21], 
The expectation, market segmentation, and liquidity preference hypotheses conform to the following assumption. 
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R(t, s)=Et

⎛

⎝ 1
s − t

∫s

t

r(τ)dτ)+ π(t, s, r(t)

⎞

⎠, (21)  

with various specifications for the function π that denote the risk premium. The dynamics of the short-term interest rate r(t) can be 
characterized by the following SDEs. 

dr(t) = κ(θ(t) − r(t))dt + σdWr(t), (22)  

dθ(t)= β(r(t) − θ(t))dt. (23) 

Equation [23] establishes that both r(t) and θ(t) are Markov processes as the solutions of SDEs. There must be a Borel-measurable 
function f(t, r, θ) of the dummy variable t, r and θ such that shown in equation [24] 

Et

⎛

⎝ 1
s − t

∫s

t

r(τ)dτ)= f (t, r(t), θ(t)

⎞

⎠, (24)  

and R(t, s) is a function of t, r(t) and θ(t). Once the yield-to-maturity has been computed, we can define the discount bond price as 
shown in equation [25] 

P(t, s)= e− (s− t)R(t,s). (25)  

Thus, P(t, s) is also a function of t, r(t) and θ(t): P(t, s) = P(t, s, r, θ). From the It ô-Deblin formula, we derive the partial differential 
equation in equation [26] 

dP(t, s, r, θ) =Ptdt + Prdr + Pθdθ +
1
2
Prrdr2 +

1
2
Pθθdθ2 + Prθdrdθ, (26)  

where Pt = ∂P
∂t , Pr = ∂P

∂r, Pθ = ∂P
∂θ, Prr = ∂2P

∂r2 , Pθθ = ∂2P
∂θ2 and Prθ = ∂2P

∂r∂θ are some partial derivatives of the function P(t,s,r,θ), and dr2 = σ2dt, 
dθ2 = 0, drdθ = 0. Substituting equations [22,23] yields 

dP(t, s, r, θ) =Pμ(t, s, r, θ)dt − Pρ(t, s, r, θ)dWr(t), (27)  

which 

μ(t, s, r, θ) =
1
P

[

Pt + κ(θ(t) − r(t))Pr + β(r(t) − θ(t))Pθ +
1
2
σ2Prr

]

,

ρ(t, s, r, θ) = −
1
P

σPr .

Further, the differential form of the discounting process D(t) is: 

dD(t) = − r(t)D(t)dt, (28) 

Using Ito’s product rule, the discounted price of the bond D(t)P(t, s, r, θ) satisfies the following equation (29). 

dD(t)P(t, s, r, θ)=D(t)dP(t, s, r, θ) + P(t, s, r, θ)dD(t) + dP(t, s, r, θ)dD(t). (29) 

The substitution of equation [27] and equation [28] leads to equation (30) 

dD(t)P(t, s, r, θ)= − D(t)P(t, s, r, θ)ρ(t, s, r, θ)
[

−
μ(t, s, r, θ) − r(t)

ρ(t, s, r, θ)
dt + dWr(t)

]

. (30)  

If there is a market price of risk λ(t, r, θ) independent of the bond’s maturity, then 

λ(t, r, θ)=
μ(t, s, r, θ) − r(t)

ρ(t, s, r, θ) . (31) 

According to Gosanov’s theorem, the model has a risk-neutral probability measure P̃ under which the discounted price of any 
maturity bond D(t)P(t, s, r, θ) is a martingale, and it does not admit arbitrage. We assume that λ(t, r, θ) exists and is constant [1], that is 
λ(t, r, θ) = λ. Substituting the expressions for μ(t, s, r, θ), ρ(t, s, r, θ) in equation [27] into equation (31), we collate get equation (32) 

Pt + [κ(θ(t) − r(t)) + λσ]Pr + β(r(t) − θ(t))Pθ +
1
2

σ2Prr − rP = 0. (32) 

Solving this partial differential equation (see Appendix 1 for the detailed solution process) yields to seen in equation (33) 

P(t, s, r, θ) = exp{ − A(t, s) − B(t, s)r(t) − C(t, s)θ(t)}, (33) 
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where 

A(t, s)=

[
λσκ

(β + κ)2 −
σ2κ2

2(β + κ)4

]

(s − t) +

[
λσβ

2(β + κ)
−

σ2βκ
2(β + κ)3

]

(s − t)2
−

σ2β2

6(β + κ)2 − t)3
+

[
λσκ

(β + κ)3 −
σ2βκ

(β + κ)5

−
σ2κ2

(β + κ)5

]

e− (β+κ)(s− t) +
σ2κ2

4(β + κ)5e− 2(β+κ)(s− t) −
σ2βκ

(β + κ)4 (s − t)e− (β+κ)(s− t) −
λσκ

(β + κ)3 +
σ2βκ

(β + κ)5 +
3σ2κ2

4(β + κ)5 ,

B(t, s)=
β

β + κ
(s − t) +

κ
(β + κ)2

(
1 − e− (β+κ)(s− t)),

C(t, s)=
κ

β + κ
(s − t) −

κ
(β + κ)2

(
1 − e− (β+κ)(s− t)).

Finally, the discount bond yields as shown in equation (34) 

R(t, s)=
A(t, s)
s − t

+
B(t, s)
s − t

r(t) +
C(t, s)
s − t

θ(t), (34)  

which satisfies the specifications of arbitrage-free affine term structure models. We call this term the generalized Vasicek model, 
constructed following technical studies such as Marin et al. [24,25]. 

3. Empirical test 

3.1. Data 

This study uses daily closing price data from Wind’s Treasury Bond Benchmark Yield (CGBB) (for specific algorithms, refer to 
Wind’s Description of the Treasury Bond Benchmark Yield Algorithm) for empirical research. From August 9, 2010 to August 8, 2016, 
1498 sets of observations and 1492 sets were retained, after six outliers were excluded. Each set of observation data includes the 
Treasury yield for four periods: 3-month, 6-month, 1-year, and 5-year, and all rates are compounded continuously on an annualized 
basis. Missing data were not treated because of the high frequency and small percentage of missing data in the overall dataset. 

3.2. Estimation method 

To estimate the model parameters, this study transforms the interest rate term structure model constructed in continuous time, as 
described above, into a state-space form, using the short-term interest rate and short-term interest rate regression mean as unob
servable state variables and the discounted bond yield as an observable state variable. 

Many scholars have attempted to transform the diffusion process similar to that in equation [22] into a discrete time form. Brennan 
et al. [12], Dietrich-Campbell et al. [26], and Sanders et al. [28] use an approximate discretization method. Following this approximate 
discretization, the discrete-time form of equation [13] is: 

rt − rt− 1 = κ(θt− 1 − rt− 1) + vt, vt ∼ N
(
0, σ2), (35)  

t = 1, 2⋯, n denotes the point in time at which the sample is located. If we treat equation [22] using the Euler discretization technique, 
then we get equation (36) 

rt − rt− 1 = κ(θt− 1 − rt− 1) ⋅ Δt + vt, vt ∼ N
(
0, σ2h

)
, (36)  

where Δt denotes the time interval between observations. If the time unit chosen by the model is year and the sample data are quarterly 
data, then Δt should be equal to 1/4, which shows that equation (35) holds only if it is ensured that the time unit selected by the model 
is the same as that of the sample. The Eulerian method is also an approximate discretization method, and the approximation error 
increases as the sample time interval increases. Therefore, according to the calculation results in equation [18], we can transform 
equations [22,23] into a discrete-time form as follows. 

Xt = e− Κ0ΔtXt− 1 + vt, (37)  

where 

Xt =

(
rt
θt

)

=X(t),Xt− 1 =

(
rt− 1
θt− 1

)

=X(t − Δt),
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vt =

∫t

t− Δt

e− Κ0(t− u)ΣdW(u) ∼ i.i.d.N2

⎛

⎝0,
∫Δt

0

e− Κ0uΣ0Σ0
′e− Κ0

′udu

⎞

⎠

Equation (A3) is the transfer equation for the state-space model. See Appendix 2 for the explicit expressions of e− Κ0Δt and 
∫Δt

0

e− Κ0uΣ0Σ0
′e− Κ0

′udu. 

Suppose that at each time t,t = 1,2⋯,n, there are M discount bonds with maturitie T1,T2,⋯,TM. If the discount bond yield R(t,Ti) is 
taken as the observable variable and there are measurement errors εit ∼ i.i.d.N(0,σ2

i ), i = 1,⋯,Mi = 1,2,⋯,M, which are independent 
of each other, then according to equation (34), the following measurement equation is obtained: 

Rit =
A(t, t + Ti)

Ti
+

B(t, t + Ti)

Ti
rt +

C(t, t + Ti)

Ti
θt + eit, i= 1, 2,⋯,M, (38)  

where Rit = R(t, Ti), rt = r(t), θt = θ(t). Assuming that εt = (ε1t,⋯, εMt)
′ is independent o vt ,

the covariance matrix between εt and vt can be written as follows: 

(
νt
εt

)

∼ N

⎛

⎜
⎜
⎝

∫Δt

0

e− Κ0uΣ0Σ0
′e− Κ0

′udu 0

0 Φ

⎞

⎟
⎟
⎠,Φ=

⎛

⎝
σ2(T1) ⋯ 0

⋮ ⋱ ⋮
0 ⋯ σ2(TN)

⎞

⎠. (39)  

The state-space model consists of equation (39)* and equation (38), which can be estimated by implementing the Kalman filter to 
compute the estimators of the unobserved variables and the log-likelihood function via prediction error decomposition; this process 
has been discussed by Kim and Nelson [27]. We use year as the unit of time; thus, the bond maturity Ti is expressed in years, for 
example, six months is expressed as 1/2 year. The estimates of all fixed and unobserved variables can be interpreted as annualized 
values. As the sample data used in the present paper are daily data, the observation time interval Δt is equal to 1/365 year. 

3.3. Estimated results and analysis 

We completed the estimation using the Gaussian programming language. Table 1 reports the estimates of the fixed parameters in 
the generalized Vasicek model. The results show that all parameters are significantly nonzero. The continuous-time mean-reversion 
parameters κ = 1.82 and β = 1.61 are used to compute the one-day conditional mean-reversion matrix e− Κ0Δt in the VAR structure of 
equation (35): 

e− Κ0Δt =

(
0.9950 0.0050
0.0044 0.9956

)

,

reflect the high persistence of short-term interest rates. Besides, the market price of risk λ = 1.33 and the volatility of short-term 
interest rate σ = 0.7580. In equation (31), μ(t, s, r, θ) is the mean rate of the discount bond yield, r(t) is the short-term riskless rate, 
and λρ(t, s, r, θ) = μ(t, s, r, θ) − r(t) indicates the instantaneous risk premium. Therefore, λρ(t, s, r, θ) = − λσPr/P > 0 indicates that the 
Chinese Treasury bond market exists in a positive risk premium during the sample period. The standard deviations of the measurement 
errors of the 3-month, 6-month, 1-year, and 5-year treasury bond rates are σ(1 /4) = 0.3832, σ(1 /2) = 0.1538, σ(1) = 0.1306, σ(5) =

0.2006, respectively. This shows that the non-determinacy of the observed Chinese Treasury bond yields gradually decreased with 
maturity. 

Fig. 1 illustrates the interaction between short-term interest rates and long-run equilibrium levels over time. First, short-term 
interest rates always move up and down around the long-run equilibrium level and tend to converge towards the long-run 

Table 1 
Estimates of the generalized Vasicek model parameters.  

Parameters Estimated Value Standard Deviation t-value 

κ 1.82 0.1986 9.18 
β 1.61 0.0882 18.26 
λ 1.33 0.0103 129.36 
σ 0.7580 0.0344 22.03 
σ(1 /4) 0.3832 0.0078 49.36 
σ(1 /2) 0.1538 0.0037 41.66 
σ(1) 0.1306 0.0033 39.61 
σ(5) 0.2006 0.0045 44.62 
log-likelihood 704.80  
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equilibrium level. This cyclical pattern underscores the underlying economic theory that short-term interest rates converge to a long- 
run equilibrium, reflecting the self-correcting mechanism of the market to adjust to underlying economic fundamentals over time. 

Second, the volatility of short-term interest rates is significantly higher than that of long-run equilibrium levels. When short-term 
interest rates start to fall, the long-run equilibrium level follows. When short-term interest rates start to rise, the long-run equilibrium 
level follows. Meanwhile, the average yield of short-term interest rates is important in guiding short-term interest rate expectations. 
This difference in volatility indicates how short-term interest rates are susceptible to direct economic forces such as policy changes, 
investor sentiment, and global events, which can lead to rapid fluctuations. By contrast, the long-term equilibrium level is more inert 
and adjusts to changes more gradually, suggesting that it acts as a proxy for the underlying economic trends. This lagged movement 

Fig. 1. Estimates of the short-term interest rate and the long-run equilibrium level of short-term interest rate.  

Fig. 2. Comparison of estimated and actual observed Treasury rates. (a) 3-month Treasury rates (b) 6-month Treasury rates (c) 1-year Treasury Bill 
rates (d) 5-year Treasury Bill rates. 
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suggests that the equilibrium level is not only smoother but also emerges as a follower rather than a leader in the relationship, adjusting 
its path in response to movements in short-term interest rates. 

The dynamic process in Fig. 1 confirms our proposed theoretical framework, in which the short-term interest rate is not only 
influenced by the long-run equilibrium level but also acts as a weather vane for the long-run equilibrium level. The behavior of these 
two state variables highlights the intrinsic link between current economic conditions and long-term expectations. When the short-term 
interest rates begin to fall or rise, the long-term equilibrium level responds with a time lag, representing a form of economic inertia or 
momentum. 

However, the upward and downward ranges of the long-term equilibrium level are smaller than those of short-term interest rates. 
The empirical results confirm the specifications of the two-factor dynamic process used in this study. 

The following facts also exist. When the short-term interest rate is above the long-run equilibrium level, regardless of whether it is 
on an upward or downward trend, it eventually declines and converges toward the long-run equilibrium level. Conversely, when the 
short-term interest rate is below the long-term equilibrium, it eventually converges. Again, when the time interval Δt is sufficiently 
small, then equation [16] can be completely rewritten as 

θ(t +Δt)= θ(t) + βΔt(r(t) − θ(t)). (40) 

If θ(t) is taken as Et− Δt [r(t)], then the above equation (40) is precisely consistent with the theoretical model of adaptive expectations, 
which leads us to the formulation of equation (41) 

Et[r(t+Δt)]=Et− Δt[r(t)] + βΔt(r(t) − Et− Δt[r(t)]). (41) 

When a forecast error is observed, the current expectation can be adjusted by the previous forecast error, and a new expectation 
emerges. Thus, the long-run equilibrium level of short-term interest rates contains information on short-term interest rate expectations, 
which can be used as a basis for predicting the future paths of short-term interest rates. 

By substituting the estimates of the fixed and unobserved variables into equation (34), we can calculate the model-estimated term 
structure of the interest rate. As shown in Fig. 2, we estimate the 3-month (Fig. 2(a)), 6-month (Fig. 2(b)), 1-year (Fig. 2(c)), and 5-year 
Treasury bill rates (Fig. 2(d)) separately for comparison with the actual observed Treasury bill rates. The estimated (solid line) and 
observed (dashed line) values generally follow the same trend over time. This finding suggests that the model effectively captures the 
overall movement in treasury yields. The estimates follow the same trend as the actual observations, indicating an excellent in-sample 
fit. 

Fig. 2(a) shows a strong correlation between the estimated and observed rates, and the model captures the short-term fluctuations 
well. This suggests that in a sample, the model can accurately track the most immediate responses to changes in economic indicators 
and policies that affect short-term interest rates. Fig. 2(b) on 6-month rates also shows a good fit between the estimates and obser
vations but with a slight bias, suggesting that the model may not be able to fully capture all market dynamics at this slightly longer 
maturity. Nevertheless, the model captures the general trend well, indicating its validity at the short end of the yield curve. 

Fig. 2(c) on the 1-year rate shows good overall agreement between the model’s estimates and the market-observed rate, with the 
two lines tracking each other closely throughout the period. Some differences are evident, particularly during periods of market stress 
or economic uncertainty, but the model maintains a good fit, although the fit declines relative to shorter-term Treasury bills. Fig. 2(d) 
shows that the difference between estimated and observed rates is larger for 5-year Treasury bills than for shorter maturities. This 
reflects the challenges of forecasting long-term interest rates, which are influenced by economic and financial conditions. 

Nevertheless, the model follows a general downward trend in the observed rates, suggesting a reasonable medium-term fit, albeit 
with less precision than the short-term model, which fits short-term Treasury yields better than medium- and long-term Treasury 
yields, a finding supported by the results for the root mean square error. 

3.4. Dynamic features of short-term interest rate expectations 

As with the original Vasicek model, numerous other classical ATSMs share the characteristics of time-invariant long-run equi
librium levels. We theoretically show that this specification is a major cause of underestimating the volatility of short-term interest rate 
expectations in the model. Thus, an empirical comparison with the Vasicek model is sufficient to illustrate that our model is preferable 
in capturing the dynamics of long-horizon expectations of the short-term interest rate. As mentioned, the original Vasicek model 

Table 2 
Estimates of the original Vasicek mode parameters.  

parameters Estimated value Standard deviation t-value 

κ 0.1347 0.0082 16.47 
θ 1.11 2.06 0.5407 
λ 1.74 0.5352 3.25 
σ 0.5170 0.0114 45.53 
σ(1 /4) 0.3786 0.0075 50.47 
σ(1 /2) 0.1614 0.0037 43.40 
σ(1) 0.1194 0.0029 41.03 
σ(5) 0.2245 0.0048 46.72 
log-likelihood 1898.00  
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assumes that the short-term interest rate r(t) follows the Ornstein–Uhlenbeck process which is expressed in Equation (42) as: 

dr(t) = κ(θ − r(t))dt + σrdW(t). (42)  

With arbitrage-free constraints, the yield R(t, s) at time t of a discount bond with maturity s, t ≤ s, shown in equation (43), as: 

R(t, s)=
(

θ+
λσ
κ
−

σ2

2κ2

)

+
σ2

4κ3(s − t)
(
1 − e− κ(s− t))2

−

1
κ(s − t)

(
1 − e− κ(s− t))

(

θ+
λσ
κ
−

σ2

2κ2 − r(t)
)

. (43) 

This is the same as our preferred model with β = 0, so the original one-factor Vasicek model is our generalized model’s subclass. 
State-space models and Kalman filtering were also applied to estimate this model. Table 2 reports the estimation results. 

The estimation results show that all parameters are significantly non-zero except for the long-run equilibrium level θ. The mean 
reversion coefficient κ = 0.1347 is much smaller than the generalized model estimate of 1.82, and the volatility σ = 0.5170 is also 
smaller than the generalized model estimate of 0.7580. Thus, the original Vasicek model overestimates the persistence of short-term 
interest rates and underestimates volatility. As the original Vasicek model sets the long-run equilibrium level θ to a constant, it 
subjectively rejects the dynamic property of θ It has the effect of imposing the persistence of the short-term interest rate, which should 
have been captured by the dynamic process of θ, on that of r. 

Fig. 3 also compares the short-term interest rates estimated using the original Vasicek model with those estimated using the 
generalized Vasicek model. The short-term interest rate trend estimated by the two models is consistent, but the distance between the 
neighboring peaks and troughs of the oscillation estimated by the original Vasicek model is shorter, indicating less volatility and 
persistence. This empirical result confirms the validity of the analysis. 

Using equations [6,20], the original and generalized Vasicek models can be used to estimate the expectations of short-term interest 
rates at different horizons. Fig. 4 plots (a), (b), (c), and (d), comparing the expectations of short-term interest rates for different time 
horizons estimated by the original and generalized Vasicek models. Fig. 4(a) 1-month horizon expectation, Fig. 4 (b) 6-month horizon 
expectation Fig. 4 (c) 1-year horizon expectation Fig. 4 (d) 2-year horizon expectation. First, Fig. 4(a) shows the one-month horizon 
expectations for which the estimates of both the Vasicek models are very close to each other, following the same trend and being close 
from 2011 to 2016. This finding suggests that the two models perform similarly in terms of short-term expectations. For 6-month 
expectations, some differences between the two models began to emerge, but owing to interruptions, the figures have not been 
fully checked. Typically, as the time horizon increases, the differences in model assumptions begin to have a more pronounced effect 
on the estimates. 

However, expectations at the 1-year horizon are shown in Fig. 4(c), where clear differences between the models begin to emerge. 
The original Vasicek model produces much lower and less volatile estimates than the generalized model, suggesting that it may not 
fully capture the dynamics that affect long-term interest rates. The estimates for the 2-year horizon show that the original Vasicek 
model produces an almost flat line, suggesting little change in short-term interest rates predictable over this period. By contrast, the 
estimates from the generalized model are much more volatile, reflecting the dynamics of the economy over the 2-year horizon. 

Overall, the estimates from the original Vasicek model become progressively less volatile and more linear as the expected maturity 
increases from one month to two years, suggesting a lack of responsiveness to factors that typically cause changes in long-term interest 
rates. By contrast, the generalized Vasicek model estimates retain their volatility and do not show the same degree of flattening, 
suggesting that the model is more sensitive to the dynamics affecting interest rates at such maturities. This comparison highlights the 
potential limitations of the original Vasicek model in capturing long-term expectations, and suggests that the generalized model may 
reflect expectations of future short-term interest rates more accurately and dynamically. 

Fig. 3. Comparison of short-term interest rates estimated by the original Vasicek model and by the generalized Vasicek model.  
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4. Conclusion 

Arbitrage-free affine term structure models are currently the most effective in explaining the relationship between yields to 
maturity, the maturities of non-default risk bonds, and their dynamic changes over time. In this model class, short-term interest rate 
dynamics are expressed as mean reversion diffusion processes, and the long-run equilibrium level of the short-term interest rate is 
constrained to be constant. Through mathematical deduction, we find that the invariant long-run equilibrium level causes expectations 
of short-term interest rates to lack dynamism. Thus, inspired by Cox et al. [10,23], we ascribe the stochastic property to the long-run 
equilibrium of the short-term interest rate in the Vasicek model. 

In contrast to Chen [21] and Balduzzi et al. [22], the dynamics of the long-run equilibrium level of the short-term interest rate are 
derived entirely from the short-term interest rate, without introducing additional uncertainties, in accordance with reality. With this 
new way of driving the short-term interest rate, we develop a two-factor affine arbitrage-free model of the term structure—the 
generalized Vasicek model, whose state factors are the short-term interest rate and the long-run equilibrium level of the short-term 
interest rate—and the original one-factor Vasicek model, a subclass of our generalized model. 

The empirical results confirm that the model can better reflect the dynamic properties of the short-term interest rate and long-run 
equilibrium level, as well as the mean reversion of the short-term interest rate. Additionally, the long-run equilibrium level contains 
information on short-term interest rate expectations, which may provide a basis for predicting the future paths of short-term interest 
rates. As the original Vasicek model has the same specifications for the long-run equilibrium level of short-term interest rates as 
numerous other classical ATSMs, comparing the empirical performance of this representative model with our generalized Vasicek 
model, we find that the invariant long-run equilibrium level of short-term interest rates causes exaggerated persistence of short-term 
interest rates and underestimation of short-term interest rate volatility. Moreover, our generalized Vasicek model can provide better 
performance in capturing the dynamics of short-term interest rate and short-term interest rate expectations, especially long-horizon 
(2–5 years) expectations. 

However, this study does not establish a link between short-term interest rates, especially the long-run equilibrium level of short- 
term interest rates, and other macroeconomic variables. Therefore, in future research, we propose to build on the idea of Ang and 
Piazzesi [7] to introduce macro factors into the generalized Vasicek model, which can not only better represent the formation 

Fig. 4. Comparison of the expectations of short-term interest estimated by the original Vasicek model and by the generalized Vasicek. (a) 1-month 
horizon expectation (b) 6-month horizon expectation (c) 1-year horizon expectation (d) 2-year horizon expectation. 
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mechanism of short-term interest rate expectations and their influencing factors, but also further improve the model’s forecasting 
performance. 
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Appendix 1 

We initially assumed and subsequently verified that the solution of partial differential equation (32) has the following form: 

P(t, s, r, θ) = exp{ − A(t, s) − B(t, s)r(t) − C(t, s)θ(t)}, (A1)  

In equation (A1), for the nonrandom functions A(t,s), B(t, s) and C(t, s) to be determined. These are functions of the current time t ≥ 0, 
and the maturity T is fixed. In this case, 

Pt =( − A′(t, s) − B′(t, s)r(t) − C′(t, s)θ(t))P(t, s, r, θ),

Pr = − B(t, s)P(t, s, r, θ),

Pθ = − C(t, s)P(t, s, r, θ),

Prr =B2(t, s)P(t, s, r, θ),

where A′(t, s) =
dA(t,s)

dt , B′(t, s) = dB(t,s)
dt and C′(t, s) =

dC(t,s)
dt . Substitution into the partial differential equation (32) gives 

[( − B′(t, s)+ κB(t, s) − βC(t, s)− 1)r(t) + ( − C′(t, s) − κB(t, s)+ βC(t, s))θ(t)−

A′(t, s) − λσB(t, s)+
1
2
σ2B2(t, s)

]

P(t, s, r, θ) = 0. (A2)  

As the equation must hold for all r(t) and θ(t), both the term that multiplies r(t) and the term that multiplies θ(t) must be zero. 
Otherwise, changing the values of r(t) and θ(t) would change the value of the left-hand side of the equation, and hence it could not 
always be equal to zero. This gives us two ordinary differential equations in t: 

− B′(t, s)+ κB(t, s) − βC(t, s) − 1 = 0, (A3)  

− C′(t, s) − κB(t, s)+ βC(t, s) = 0. (A4)  

Setting these two terms equal to zero in equation (A2), we obtain 

A′(t, s)= − λσB(t, s) +
1
2

σ2B2(t, s). (A5)  

The terminal condition P(s, s) = e− (s− s)R(s,s) = 1 must hold for the values of r(s) and θ(s) in arbitrary s > 0, and this implies that A(s,
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s) = B(s, s) = C(s, s) = 0. Equations (A3), (A4) and (A5) and these terminal condition provide enough information to determine the 
functions A(t, s), B(t, s) and C(t, s) for 0 ≤ t ≤ s. They are given by equation (A6) (A7) (A8) 

A(t, s)=

[
λσκ

(β + κ)2 −
σ2κ2

2(β + κ)4

]

(s − t) +

[
λσβ

2(β + κ)
−

σ2βκ
2(β + κ)3

]

(s − t)2
−

σ2β2

6(β + κ)2(s − t)3
+

[
λσκ

(β + κ)3 −
σ2βκ

(β + κ)5 −
σ2κ2

(β + κ)5

]

e− (β+κ)(s− t)+

σ2κ2

4(β + κ)5e− 2(β+κ)(s− t) −
σ2βκ

(β + κ)4 (s − t)e− (β+κ)(s− t) −
λσκ

(β + κ)3 +
σ2βκ

(β + κ)5 +
3σ2κ2

4(β + κ)5 , (A6)  

B(t, s)=
β

β + κ
(s − t) +

κ
(β + κ)2

[
1 − e− (β+κ)(s− t)], (A7)  

C(t, s)=
κ

β + κ
(s − t) −

κ
(β + κ)2

[
1 − e− (β+κ)(s− t)]. (A8)  

Appendix 2 

Theorem 1. Let the characteristic polynomial of A which is a square matrix of order n is. As shown in equation (A9) 

c(λ)= det(λI − A) = λn + cn− 1λn− 1 + ⋯ + c1λ + c0. (A9)  

If D = d/dt, then each element of the matrix exponential function eAt satisfies the linear differential equation: c(D)y = 0, and Φ(t) = eAt is the 
unique solution of the linear matrix differential equations as shown in equation (A10), equation (A11) 

Φ(n) + cn− 1Φ(n− 1) + ⋯ + c1Φ′ + c0Φ = 0, (A10)  

Φ(0)= I,Φ′(0) = A,⋯,Φ(n− 1) = An− 1. (A11)  

If 

A= − Κ0 =

(
− κ κ
β − β

)

,

then 

det(λI − A)=
⃒
⃒
⃒
⃒
λ + κ − κ
− β λ + β

⃒
⃒
⃒
⃒= λ2 + (β+ κ)λ.

According to Theorem 1, Φ(t) = eAt is the unique solution of the linear matrix differential equation 

Φ″(t)+ (β+ κ)Φ′(t) = 0,Φ(0) = I, (0) = A. (A12)  

As characteristic values of the matrix A are 0 and − (β + κ), the general solution of the differential equation (A12) is: 

Φ(t)=C1 + C2e− (β+κ)t, (A13)  

where C1 and C2 are two constant matrices of order n. The boundary condition Φ(0) = I and Φ′(0) = A imply C1 = I + 1
β+κ A and C2 = −

1
β+κ A. According to Theorem 1, substituting into equation (A13) yields equation (A14). 

eAt = e− Κ0 t =

⎛

⎜
⎜
⎜
⎝

β
β + κ

+
κ

β + κ
e− (β+κ)t κ

β + κ
(
1 − e− (β+κ)t)

β
β + κ

(
1 − e− (β+κ)t) κ

β + κ
+

β
β + κ

e− (β+κ)t

⎞

⎟
⎟
⎟
⎠
. (A14) 

Since eA′t = (eAt)
′ that is derived from the definition of matrix exponential function, we obtain equation (A15) 
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∫Δt

0

e− Κ0uΣ0Σ0
′e− Κ0

′udu=
∫t

t− h

e− Κ0uΣ0Σ0
′(e− Κ0u)

′du. (A15)  

The details of e− Κ0u and Σ0 are known, so simple matrix and integral computations can give equation (A16) 

∫Δt

0

e− Κ0uΣ0Σ0
′e− Κ0

′udu=
(

a11(Δt) a12(Δt)
a21(Δt) a22(Δt)

)

σ2, (A16)  

where 

a11(Δt)=
β2

(β + κ)2Δt+
2βκ

(β + κ)3

(
1 − e− (β+κ)Δt)+

κ2

2(β + κ)3

(
1 − e− 2(β+κ)Δt),

a22(Δt)=
β2

(β + κ)2Δt −
2β2

(β + κ)3

(
1 − e− (β+κ)Δt)+

β2

2(β + κ)3

(
1 − e− 2(β+κ)Δt),

a12(Δt)= a21(Δt)=
β2

(β + κ)2 h +
β(κ − β)
(β + κ)3

(
1 − e− (β+κ)Δt) −

βκ
2(β + κ)3

(
1 − e− 2(β+κ)Δt).

References 

[1] O.A. Vasicek, An equilibrium characterization of the term structure, J. Financ. Econ. 5 (2) (1977) 177–188, https://doi.org/10.1016/0304-405x(77)90016-2. 
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