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Pneumonitis and pulmonary fibrosis are predominant consequences of radiation expo-
sure, whether planned or accidental. The present study, demonstrates radioprotective 
potential of a formulation, prepared by combining podophyllotoxin and rutin (G-003M), in 
mice exposed to 11 Gy thoracic gamma radiation (TGR). Treated mice were observed for 
survival and other symptomatic features. Formation of reactive oxygen species (ROS)/
nitric oxide (NO) was measured in bronchoalveolar lavage cells. DNA damage and cell 
death were assessed in alveolar cells by terminal deoxynucleotidyl transferase dUTP 
nick-end labeling assay. Total protein (TP), lactate dehydrogenase (LDH), and alkaline 
phosphatase (ALP) were measured in bronchoalveolar lavage fluid (BALF)/serum of mice 
to assess lung vascular permeability. Interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), 
transforming growth factor-β1 (TGF-β1), cluster of differentiation 45, inducible nitric oxide 
synthase (iNOS), and nitrotyrosine were also estimated in lungs/BALF of differentially 
treated mice. Our observations revealed 100% survival in G-003M-pretreated mice 
against 66.50% in 11 Gy TGR exposed. Other symptoms like reduction in graying of 
hair, weight loss, and breathing rate were also observed in pretreated groups. Significant 
decline in ROS/NO and cell death in formulation pretreated mice were also observed. 
Decreased level of TP, LDH, and ALP in BALF/serum samples revealed G-003M-induced 
inhibition in lung permeability. Level of IL-6, TNF-α, and TGF-β1 in the lungs of these mice 
was found corresponding to control group at 8 weeks posttreatment. On the contrary, 
these cytokines raised significantly in 11 Gy TGR-exposed mice. Lung pneumonitis and 
fibrosis were found significantly countered in these mice. The observations revealed that 
G-003M could regulate immune system by curtailing radiation-induced oxidative and 
inflammatory stress, which has helped in minimizing radiation-inflicted pneumonitis and 
fibrosis.
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inTrODUcTiOn

Radiation-induced complications to the respiratory system are 
among one of the common causes of fatality. There are reports 
where radiation exposed patients were kept alive by supportive and 
prophylactic care but died few months later, predominantly due 
to pulmonary infections and pneumonitis (1). Radiation-induced 
pneumonitis and fibrosis in humans as well as in experimental 
animals have been repeatedly documented (2–5). Pneumonitis 
is evidenced by appearance of alveolar edema, infiltration of 
inflammatory cells, and extensive alveolar damage (6). Vascular 
injury, the early phase of an inflammatory response, mediates the 
release of certain pro-fibrotic cytokines such as fibroblast growth 
factor, transforming growth factor-β1 (TGF-β1), platelet derived 
growth factor (PDGF), etc. (7). Excessive inflammation acceler-
ates collagen and extracellular matrix formation, which may 
end up in tissue fibrosis (5, 7). Owing to high oxygen content, 
production of radiation-induced reactive oxygen species (ROS)/
reactive nitrogen species (RNS) is excessive in lungs. Increased 
ROS/nitric oxide (NO) perturbs alveolar epithelium and vascular 
endothelium, which may lead to recruitment of certain inflam-
matory cells in the lung parenchyma (5, 8). Cytokines [tumor 
necrosis factor-α (TNF-α), IL-1, interleukin-6 (IL-6), PDGF, 
fibroblast growth factor, and TGF-β1] released by inflammatory 
cells, consequentially lead to lung pathogenesis and subsequent 
loss in functional integrity of the organ (9). TGF-β1, secreted 
by numerous inflammatory, mesenchymal, and epithelial cells 
converts fibroblasts and other cell types into matrix-producing 
myofibroblasts finally leading to fibrosis (6, 9).

Exposure of radiation during therapies and radiological 
accidents (localized/whole body) has raised the need for devel-
opment of countermeasures (10). Many compounds investigated 
in past have demonstrated limited translational potential due 
to their toxic nature at therapeutic doses. Amifostine (WR 
2721), a synthetic sulfhydryl compound, is the only drug that 
has been approved by US Food and Drug Administration as a 
radioprotector (11). However, its use has been limited to head 
and neck cancer patients due to undesired signs and symptoms 
such as diarrhea, hypotension, hypocalcemia, and nephro- and 
neurotoxicity.

Lately, it was realized that natural resources due to their 
multi-targeted activity may be better choice for development 
of safe and effective countermeasures against radiation (12). 
Our group has also explored Podophyllum hexandrum derived 
phytomolecules (podophyllotoxin, podophyllotoxin glucoside, 
and rutin) against radiation exposure. Prophylactic application 
of our earlier formulation (G-002M), prepared by combin-
ing all the three bioactive molecules, has shown significant 
potential in minimizing damage to cellular biomolecules and 
enhanced survival in mice (13). Besides, the formulation has 
also revealed radioprotective effect in hepatopulmonary system 
of mice, predominantly by inhibiting radiation-induced ROS/
NO generation (14, 15). G-002M had also shown protection to 
other vital organs system such as bone marrow, gastrointestinal 
tract, spleen, and thymus against radiation injuries (13, 16–18). 
Attenuation of DNA damage detected by γH2AX foci formation 
in human blood leukocytes, mice, and rabbit blood exposed to 

radiation has been revealed by G-002M (19, 20). Reduction in the 
number of chromosomal aberration both in in vitro and in vivo 
model systems further strengthen its DNA protecting potential  
(18, 21). The signature compound, podophyllotoxin, present in 
the formulation is well reported to possess properties of cell-cycle 
arrest at G2/M phase, regulation of DNA repair pathway, and cel-
lular proliferation in both in vitro as well as in vivo model systems 
(16, 19, 21). Rutin, another compound present in the formulation, 
demonstrates strong proton donating and free radical stabilizing 
properties (16, 18). Bioinformatics studies have also strengthened 
the abovementioned statement (22).

The present study demonstrates the radioprotective potential 
of a formulation (G-003M), prepared by combining two molecules 
podophyllotoxin and rutin, in the lungs of thoracic-irradiated 
mice. To reveal the efficacy of our formulation in inhibiting 
radiation-induced pneumonitis and fibrosis, various assays were 
performed. ROS/NO inhibition demonstrated antioxidant 
property of G-003M. Nitrosative stress modulation was revealed 
by studying the expression of inducible nitric oxide synthase 
(iNOS) and nitrotyrosine in lung tissues. DNA protecting ability 
of the formulation had been demonstrated by terminal deoxy-
nucleotidyl transferase dUTP nick-end labeling (TUNEL) assay. 
Anti-inflammatory potential of our formulation was evaluated by 
measuring infiltration of inflammatory cells in bronchoalveolar 
lavage fluid (BALF) [detected by cluster of differentiation 45 
(CD45) immunostaining]. Histological studies, revealing anti-
inflammatory potential of G-003M, signified the status of tissue 
injury. Reduction in radiation-induced fibrosis was confirmed 
by Masson’s trichrome staining/hydroxyproline (Hpl) content in 
lung tissues. Status of pro-inflammatory/pro-fibrogenic cytokines 
(IL-6, TNF-α, and TGF-β1) was measured to demonstrate immu-
nomodulating property of G-003M. The entire data generated 
during the current study collectively explained that G-003M 
has a significant potential of minimizing radiation-induced lung 
fibrosis and pneumonitis.

MaTerials anD MeThODs

reagents and antibodies
Goat anti-rabbit horseradish peroxidase (HRP) (sc-2030; CA, 
USA), anti-TNF-α (sc-52746), anti-nitrotyrosine (sc-32757), 
anti-CD 45 (sc-1178), and 3,3′-diaminobenzidine (DAB) sub-
strate (7304) were procured from Santa Cruz Biotechnology 
Inc. (TX, USA). Polyclonal anti-TGF-β1 (AV 37894), anti-
iNOS (N7782), 2′,7′-dichlorofluorescein diacetate (DCF-DA), 
diaminofluorescein diacetate (DAF-2), dimethyl sulfoxide 
(DMSO), trichloroacetic acid (TCA), chloramine-T, sodium 
acetate, isopropanol, p-dimethylaminobenzaldehyde, perchloric 
acid, trans-4-hydroxy-l-proline standard, and all other required 
chemicals were obtained from Sigma Aldrich (St. Louis, MO, 
USA). Mayer’s hematoxylin and eosin (H&E) stain was purchased 
from Fisher Scientific (Pittsburgh, PA, USA).

animals and γ-ray irradiation
Female C57BL/6 mice, an established model for studying 
radiation-induced pulmonary injuries (23), were selected for 
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the current study. Mice (24 ± 2 g), aged 8–10 weeks, taken from 
inbred colony (INMAS, Delhi, India), were used as per the 
protocols approved by Institutional Animal Ethics Committee 
(INM/IAEC/16/21), INMAS. Animals, maintained at controlled 
light and temperature conditions, housed in polypropylene cages 
containing sterile paddy husk were fed with standard food pellet 
(Amrut Laboratory Animal Feed, Maharashtra, India) and water 
ad  libitum. Anesthetized mice were exposed to thoracic irra-
diation (11 Gy) by 60Co gamma irradiator (Cobalt Teletherapy 
Bhabhatron-II, Mumbai, India), in specific holder designed to 
immobilize the animals. Throughout the study, radiation dose 
was maintained at 0.83 Gy/min. Dosimetry was carried out with 
Fricke’s chemical dosimetry method by institutional radiation 
safety officers.

experimental Design and Preparation of 
radioprotective Formulation
Randomly selected healthy animals were divided in four groups 
(six mice per group): non-irradiated control, G-003M only treated, 
11 Gy irradiated and G-003M + 11 Gy. Group G-003M + 11 Gy 
was administered with G-003M intramuscularly (5 mg/kg body 
weight of animal), −1  h to 11  Gy thoracic gamma radiation 
(TGR). Experiments were repeated twice.

The formulation used in the current study, coded as G-003M, 
is a combination of two bioactive molecules podophyllotoxin and 
rutin purchased from Sigma Aldrich (St. Louis, MO, USA) in their 
98% purity. To prepare G-003M freshly, both the compounds were 
dissolved in DMSO, which was 10% of the total injectable volume 
(20 µl in 200 µl of total injectable). Their molecular weight and 
chemical structure have already been revealed in a publication by 
Dutta et al. (13).

survival and symptomatic Monitoring of 
experimental Mice
A separate group of six mice was used for survival and symp-
tomatic monitoring studies. The animals were monitored daily 
for body weight, change in hair color, and survival. Survival was 
reported as percentage of animals surviving till 16  weeks after 
irradiation. The ratio of lung weight to body weight was used as 
lung weight coefficient (lung weight/body weight × 1,000). Mice 
from each treatment group were monitored for their breathing 
rate by using SA II (Model 1030, Small Animal Instruments, 
Inc., NY, USA) as per the manufacturer’s instructions. Breathing 
rate of six mice per group was recorded at 8 and 16 weeks post-
treatment in conscious mice in relatively calm position to avoid 
experimental error.

extraction of BalF and cellular counts
After tracheotomy, bronchoalveolar lavage was performed in sac-
rificed animals using 200 µl of warmed sterile phosphate-buffered 
saline (PBS). The solution was instilled five times into the trachea, 
and fluid was withdrawn gently (24). The aspirated fluids were 
pooled, immersed immediately in slurry of ice and centrifuged 
for 10 min at 2,000 rpm. The supernatants were separated into 
aliquots and kept frozen at −80°C until analysis. BALF cells were 
resuspended in 1 ml PBS and quantified with a hemocytometer 

by the conventional method. Out of the total BALF cells, number 
of macrophages was calculated based upon their morphological 
identification such as large size, eccentric nuclei, and abundant 
cytoplasm. BALF was centrifuged; smeared on clean glass slides, 
stained with May-Grünwald–Giemsa and observed in blind man-
ner under the microscope to confirm the ratio of macrophages 
and leukocytes, counted in hemocytometer.

Total Protein (TP), lactate Dehydrogenase 
(lDh), and alkaline Phosphatase (alP) 
activity in BalF/serum
Total protein, LDH, and ALP activity was measured in serum/
BALF samples of experimental animals. BALF was collected from 
sacrificed mice at different time intervals after treatment. For 
serum analysis, blood collected in plain vials was centrifugated at 
5,000 rpm for 10 min at 4°C. Separated serum was stored at −20°C 
until analysis. The level of TP, LDH, and ALP was measured in 
all the experimental mice by using fully automatic Biochemistry 
Analyzer (Erba; Model No: EM-360).

il-6 and TnF-α concentrations in BalF
The IL-6 and TNF-α contents were detected in BALF of differ-
entially treated mice by flow based Kits BDTM Cytometric Bead 
array (CBA) Flex Set (BD Biosciences, USA) according to the 
manufacturer’s instructions.

Measurement of rOs/nO induced by γ 
radiation
Intracellular ROS/NO generation was measured in BALF cells by 
flow cytometry and fluorescence microscopy, 1 h posttreatment. 
ROS were detected using ROS-sensitive fluorescent dye DCF-DA 
(Sigma Co., St. Louis, MO, USA). The cells (2 × 104/ml), washed 
with PBS, were incubated for 15  min with DCF-DA (10  µM) 
dye. Generation of ROS was studied using flow cytometer (BD 
Accuri™ C6, Becton Dickinson Biosciences, USA) and imaged 
with fluorescent microscope (Model No. BX-63, Olympus, Japan). 
To study NO formation, the cells were stained with NO-sensitive 
fluorescent dye 4,5-DAF-2. Data were analyzed with Image J soft-
ware, and photographs were processed using Adobe Photoshop 
software (San Jose, CA, USA).

Western Blotting
Proteins isolated from the frozen lung tissues were quantified 
by Bradford method (25). Denatured protein was subjected 
to 12% SDS-PAGE and transferred to Whatman PROTRAN 
nitrocellulose transfer membrane (Sigma). After blocking the 
non-specific sites with 5% (w/v) skimmed milk for 2  h, the 
membranes were incubated overnight at 4°C with primary 
antibodies anti-TGF-β1 (1:1,000)/iNOS (1:1,000)/nitroty-
rosine (1:1,000). The membranes were then incubated with 
HRP-conjugated goat anti-rabbit IgG (1:5,000) for 2 h at room 
temperature. Immunoreactive bands were visualized using an 
enhanced chemiluminescence detection system. Densitometry 
was performed on the resulting autoradiograph using Image Lab 
software of BioRad Gel Documentation System (Gel Doc XR; 
Cat. No. 1708195).
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lung Weight coefficient and histology
Whole lung was excised from animals dissected at different 
time intervals. Lung tissues, individually from all the mice, were 
weighed after blotting. Lung weight coefficient was calculated 
by using the formula (lung weight/body weight  ×  1,000). For 
histological and immunohistochemical studies, lung tissues were 
fixed in 10% formalin. In separate groups of animals, whole lung 
was used for determining Hpl content.

histological analysis and Fibrosis 
estimation Using Masson’s Trichrome 
staining
Differentially treated mice from all the groups were dissected 
at different time intervals following treatment. The lung tissues, 
excised individually from each mouse, were fixed in 10% formalin 
solution and dehydrated in series of alcohol. Paraffin-embedded 
tissues were sectioned at thickness of 5 µm with a semiautomatic 
microtome (Spencers, Gurgaon, India). The slides were stained 
with H&E to evaluate architectural changes in lung tissues. The 
extent of damage was assessed by Eldh et al. method (26). Images 
were obtained by using digital camera mounted on BX-63, 
Olympus microscope. Quantification of damage was performed 
by scoring from 0 to 4 based on the amount of area affected by 
interstitial inflammation, alveolar wall thickening, and peribron-
chial inflammation (26).

The sections stained with Masson’s trichrome were subjected 
to Ashcroft score for evaluating lung fibrosis (27). Severity of 
the fibrosis was graded and scored on a scale of 0–8. Ten fields 
per  sections from the individual mice were randomly selected 
and scored at 400× magnification. Assessment was performed in 
double-blind fashion. After whole section examination, fibrosis 
score was evaluated as mean score of all the fields.

lung hpl content
Hydroxyproline content in lung tissues of all the differentially 
treated mice was determined by colorimetric assay (28). Briefly, 
individual tissue was homogenized with 2  ml distilled water 
and incubated with 125 µl of 50% TCA on ice for 20 min. After 
centrifugation, the pellet was mixed with 1 ml hydrochloric acid 
(2 N) and baked at 110°C for 14–18 h until charred and dry. The 
acid dried samples were then re-suspended in 2  ml deionized 
water and mixed with 500 µl 1.4% chloramine-T in 0.5 M sodium 
acetate/10% isopropanol. After 20  min incubation at room 
temperature, 500 µl of Ehrlich’s solution (1.0 M p-dimethylam-
inobenzaldehyde in 70% isopropanol/30% perchloric acid) was 
added, mixed and incubated at 65°C for 15 min. Absorbance of 
each individual sample was measured at 550 nm. Concentration 
of lung Hpl was calculated by Hpl standard curve prepared by 
serial dilutions of trans-4-hydroxy-l-proline standard (Sigma,  
St. Louis, MO, USA). Samples were assayed in triplicate.

Detection of cell Death Using TUnel 
assay
Cell death was detected by the TUNEL method using TUNEL 
apoptosis detection kit (catalog no. 17-141; Upstate Technology, 
Lake Placid, NY, USA). Briefly, 5 µm sections were deparaffinized, 

dehydrated through series of alcohol and incubated with protein-
ase K [1/24 (v/v) in PBS] for 15–30 min at 37°C. After stopping 
proteinase K digestion reaction with PBS, the samples were incu-
bated with terminal deoxynucleotidyl transferase end-labeling 
cocktail (a mixture of terminal deoxynucleotidyl transferase 
buffer, biotin-dUTP, and terminal deoxynucleotidyl transferase in 
ratio of 90:5:5, respectively) for 60 min at 37°C. Following wash-
ing and blocking, avidin–fluorescein isothiocyanate (1:10) was 
applied to the samples and incubated in dark for 30 min at 37°C. 
The slides were washed with PBS, counterstained with propidium 
iodide, and visualized under fluorescent microscope (Model No. 
BX-63, Olympus, Japan). Dead cells were quantified by counting 
the TUNEL+ cells using pseudo-colored overlay images prepared 
by ImageJ software (National Institutes of Health, Bethesda, MD, 
USA). Percentage of TUNEL+ cells was obtained against the total 
number of nucleated cells (propidium iodide counter stained) in 
10 different fields per tissue section.

immunohistochemical studies
Lung tissue sections were processed to evaluate immunohisto-
chemical expression of CD45, TGF-β1, TNF-α, iNOS, and nitro-
tyrosine. Deparaffinized sections were passed through graded 
series of ethanol (100, 90, 70, and 50%), and slides were washed 
in distilled water. Subsequently, the sections were incubated with 
0.3% H2O2 for 30 min to block endogenous peroxidase activity 
before performing heat-induced antigen retrieval. After antigen 
retrieval in sodium citrate buffer (10 mM sodium citrate, 0.05% 
Tween 20, pH 6.0), slides were washed, and expression of antigens 
was detected by applying DAB substrate solution. The sections 
were counterstained with hematoxylin, dehydrated, mounted, 
and scored for immunopositive cells under a light microscope. 
Inflammatory infiltrates were evaluated by counting CD45+ 
aggregates in 10 randomly selected fields, per lung tissue section. 
Results were obtained by scoring the sections blindly by at least 
two individuals.

statistics analysis
Statistical tool SPSS (Statistical Package for Social Science; 
Windows version 10.0) packed program was used for finding 
significance values of data. Values were expressed as mean val-
ues ± SEM and for analysis of differences between the groups. 
One-way ANOVA was used with Newman–Keuls post  hoc 
test. Statistical differences are presented at probability levels of 
p < 0.05, <0.01, and <0.001.

resUlTs

g-003M improves survival and Other 
symptomatic Features
Radiation-induced pneumonopathy is associated with body 
weight loss and compromised survival. Therefore, we evaluated 
the effect of G-003M on survival, body weight, and other symp-
tomatic features of irradiated mice. Percent survival in thoracic-
irradiated C57BL/6 mice was measured in all the experimental 
groups. In radiation only group, all the animals survived up to 
8 weeks postirradiation; however, in 10 weeks survival reduced 
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FigUre 1 | (a) Percent survival of female C57BL/6 mice (8–10 weeks old) exposed to thoracic gamma radiation (11 Gy) and pretreated with G-003M formulation. 
Survival was recorded up to 16 weeks postirradiation (n = 6 for each group). (B) Body weight was recorded at different time intervals after experimentation. Data are 
reported as means ± SEM from six mice for each experimental group. (c) Pattern of change in hair color of mice in irradiated thoracic region. (D) Effect of G-003M 
on breathing rate of 11 Gy thoracic-irradiated mice. Breathing rate of individual mice was measured at 8 and 16 weeks posttreatment. Data represent the average 
breathing rate value obtained from six mice from each experimental group.
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to 83.33%. Survival in this group further dropped to 66.50% 
by 14 weeks (Figure 1A). In G-003M pretreated groups, all the 
animals survived up to the last time point of the study (16 weeks 
of experimentation) (Figure 1A). The body weight of control and 
G-003M only treated mice increased in natural way with time. 
However, in TGR treated group, weight loss was insignificant in 
first 4 weeks of radiation exposure. A remarkable fall (18–20%) 
in body weight was recorded within 8–16  weeks in this group 
(Figure 1B). In G-003M pretreated group, weight loss was much 
less (8–10%; p  <  0.001) in comparison to the corresponding 
radiation-treated group (Figure 1B). After 8 weeks of irradiation, 
hair of the C57BL/6 mice turned gray in the thoracic region, the 
area of exposure (Figure 1C). In irradiated group, this gray color 
band was extremely apparent in comparison to G-003M treated 
mice. G-003M only treatment exhibited same hair color as in 
control group.

g-003M Mitigates increased Breathing 
rate in irradiated Mice
Radiation manifests lung injury in the form of acute pneumonitis 
and fibrosis. Development of fibrosis in lungs usually results in 
difficult breathing and increase in breathing rate in experimental 
animals as well as in humans (29, 30). In this study, increased 
breathing rate, yet not significant, was observed in irradiated 
animals by 8 weeks of radiation exposure, and it was markedly 
higher (fourfold; p < 0.001) at 16 weeks in comparison to respec-
tive untreated controls of the same age (Figure  1D). However, 
in G-003M-administered mice, breathing rate was much less 

(p <  0.001; G-003M +  11 Gy vs. 11 Gy) when compared with 
irradiated mice at 16  weeks of experimentation (Figure  1D). 
Treatment of G-003M only exhibited normal breathing rate in 
mice at all the time intervals.

g-003M reduces generation of rOs, 
nOs, and nitrosative stress
Radiation induces damage predominantly by generation of 
ROS and NO in cellular milieu. In the current study, formation 
of ROS and NO was measured in BALF cells of experimental 
mice at 1  h post-TGR exposure. As evident in Figures  2A–C, 
ROS formation was found to be markedly (p < 0.001) elevated 
in BALF cells of TGR-exposed mice in comparison to controls. 
NO production, measured by using fluorescent dye 4,5-DAF-2, 
was also prominently raised in irradiated group (Figures 2D,F). 
However, pre-irradiation administration of G-003M significantly 
(p < 0.001) countered both ROS and NO production in BALF 
cells of irradiated mice. In G-003M only treated group no ROS 
and NO formation was evident at 1 h after treatment.

Radiation-induced nitrosative stress was assessed by expres-
sion of iNOS and nitrotyrosine in lungs of experimental mice. 
Peroxynitrite (ONOO−), a RNS, is detected in the tissues as 
nitrotyrosine, which is a stable product formed by reaction of 
ONOO− with tyrosine. Figures  3A,B show iNOS and nitro-
tyrosine expression measured by immunohistochemistry and 
immunoblotting techniques in different treatment groups. 
Immunohistochemical study revealed that both iNOS and nitro-
tyrosine staining was not evident in lungs of control mice but 
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FigUre 3 | Effect of G-003M on nitrosative stress in 11 Gy thoracic-irradiated lungs. (a) Immunohistochemical expression of inducible nitric oxide synthase (iNOS) 
and nitrotyrosine in lungs of differentially treated mice (200×). (B) Western blotting of iNOS and nitrotyrosine in lungs at 8 weeks postirradiation treatment. 
Densitometry analysis represents iNOS (c) and nitrotyrosine (D) expression normalized to β-tubulin. Scale bar 100 µm. Data are represented as means ± SEM from 
six mice for each group. *p < 0.01, **p < 0.001.

FigUre 2 | Effect of G-003M on reactive oxygen species (ROS)/nitric oxide (NO) formation in bronchoalveolar lavage cells of 11 Gy thoracic-irradiated mice.  
(a) Histogram representing changes in ROS formation in bronchoalveolar lavage fluid (BALF) cells detected by ROS-sensitive fluorescent dye 
2′,7′-dichlorofluorescein diacetate, 1 h posttreatment. (B) Bar graph indicating the mean fluorescence intensity (MFI) detected at a 488 nm excitation and a 535 nm 
emission using flow cytometer. (c) Fluorescence microscopic images of radiation-induced ROS formation in BAL cells from the lungs of differentially treated mice. 
(D) Histogram representing NO generation in BALF cells at 1 h posttreatment. NO was detected by staining the cells with NO-sensitive fluorescent dye 
4,5-diaminofluorescein diacetate. (e) Bar graph indicating the MFI. (F) Fluorescence microscopic images of NO generation in BAL cells. Images were viewed at 
1,000× under fluorescence microscope. Scale bar 10 µm. Data are represented as means ± SEM from six mice for each group. **p < 0.001.
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significantly apparent in irradiated animals (Figure 3A). iNOS 
expression increased from first week and maximum at 8 weeks of 
posttreatment. Nitrotyrosine staining was intense in alveolar mac-
rophages and at the site of injury (Figure 3A). Immunoblotting 
of iNOS and nitrotyrosine in lung tissues further validate these 
findings. Intense band of iNOS and nitrotyrosine was detected 
in irradiated group in comparison to controls (Figures 3B–D). 
However, iNOS and nitrotyrosine expression was not as marked 

as that of irradiated groups with the pretreatment of G-003M 
(Figures 3A,B). Expression of iNOS and nitrotyrosine was simi-
lar to controls in animals that were treated with G-003M only.

g-003M inhibits radiation-induced cell 
Death of Pulmonary cells
Free radicals produced by radiation play an important causa-
tive role in cell death. In the current investigation, cell death 
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FigUre 4 | G-003M protects pulmonary cells from radiation-induced cell death in 11 Gy thoracic-irradiated mice. DNA fragmentation was performed in lung 
sections using in situ terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) method. (a) Representative micrographs of TUNEL (green) and PI (red) 
double staining in differentially treated mice at 1 week postradiation. (B) Bar graph showing the average number of TUNEL+ cells in lungs. Images were viewed at 
200× under fluorescence microscope. Scale bar 100 µm. Data are represented as means ± SEM from six mice for each group. **p < 0.001.

FigUre 5 | Effect of G-003M on bronchoalveolar lavage fluid (BALF) of irradiated mice. (a) Representative images of May-Grünwald–Giemsa stained cells from 
BALF of differentially treated mice. Control and G-003M only groups showing normal epithelial cells and macrophages. Enhanced number of inflammatory cells in 
BALF of 11 Gy thoracic-irradiated mice. Noticeable reduction in the number of these inflammatory cells in G-003M-pretreated irradiated group. Magnification 
1,000×. (B) Total BALF cellular counts and (c) macrophages counts in BALF. Scale bar 10 µm. Data are represented as means ± SEM from six mice for each 
group. a = 11 Gy vs. controls, b = G-003M + 11 Gy vs. 11 Gy. *p < 0.05; **p < 0.001.
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was detected in lung tissues by using TUNEL assay. As evident 
in Figures  4A,B, remarkable increase in the number of dead 
(TUNEL+) pulmonary cells was observed in 11 Gy thoracic-irra-
diated group as compared to untreated controls. Administration 
of G-003M formulation, 1 h prior to radiation, indicated signifi-
cant (p < 0.001) reduction in the number of TUNEL+ pulmo-
nary cells showing efficacious function of formulation against 
radiation-induced cell death (Figures 4A,B). No TUNEL+ cells 
were observed in control and G-003M only treatment group.

g-003M Modulates Depletion of Total 
BalF cellular counts including 
Macrophages
Recruitment of inflammatory cells into the lung has been associ-
ated with radiation-induced pneumonitis. Anti-inflammatory 
effect of G-003M formulation was evaluated by measuring BALF 
cells in lungs of irradiated mice. Nearly sixfold increase was 
seen in BALF cellular counts at 1  week of radiation exposure 
(Figures 5A–C). The number of these inflammatory cells amplified 
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TaBle 1 | Level of lactate dehydrogenase (LDH), total protein (TP), and alkaline phosphatase (ALP) in serum/bronchoalveolar lavage fluid (BALF) of differentially treated 
C57BL/6 mice.

Time intervals groups serum BalF

lDh (U/l) TP (g/dl) lDh (U/l) TP (g/dl) alP (U/l)

1 week Control 547.53 ± 15.23 2.52 ± 0.21 102.33 ± 23.56 0.00 ± 0.00 18.51 ± 3.30
G-003M only 458.42 ± 12.63 2.58 ± 0.23 113.47 ± 25.69 0.04 ± 0.00 15.60 ± 2.55
11 Gy 1,211.35 ± 11.56a** 2.59 ± 0.26 218.95 ± 20.25a** 0.30 ± 0.02a** 20.00 ± 3.56
G-003M + 11 Gy 727.23 ± 31.37b** 2.84 ± 0.28 115.80 ± 15.36b* 0.13 ± 0.01b** 15.00 ± 2.35

4 weeks Control 560.21 ± 17.56 5.42 ± 0.45 109.56 ± 15.36 0.03 ± 0.00 23.50 ± 3.50
G-003M only 489.10 ± 12.25 5.46 ± 0.42 125.64 ± 12.57 0.02 ± 0.00 28.52 ± 2.50
11 Gy 703.10 ± 19.25a* 5.25 ± 0.48 249.00 ± 21.32a** 0.35 ± 0.03a** 29.00 ± 3.60
G-003M + 11 Gy 605.00 ± 21.20b* 5.56 ± 0.38 233.00 ± 20.12 0.20 ± 0.01b* 11.00 ± 2.30

8 weeks Control 603.23 ± 10.25 5.89 ± 0.47 125.25 ± 12.56 0.09 ± 0.00 28.36 ± 3.50
G-003M only 509.30 ± 12.15 5.26 ± 0.43 168.15 ± 10.78 0.04 ± 0.00 25.51 ± 2.32
11 Gy 897.80 ± 12.36a** 5.55 ± 0.54 1,194.66 ± 312.74a** 0.40 ± 0.05a** 50.00 ± 5.23a**
G-003M + 11 Gy 614.00 ± 15.63b** 5.69 ± 0.39 302.5 ± 38.5b** 0.23 ± 0.01b** 40.00 ± 4.50b*

16 weeks Control 861.00 ± 129.13 5.72 ± 0.04 403.52 ± 110.92 0.12 ± 0.06 30.39 ± 2.30
G-003M only 745.00 ± 131.23 5.66 ± 0.34 512.69 ± 99.65 0.10 ± 0.05 28.56 ± 3.27
11 Gy 2,375.50 ± 218.77a** 5.72 ± 0.39 1,278.56 ± 177.48a** 0.42 ± 0.04a** 65.00 ± 5.45a**
G-003M + 11 Gy 1,162.50 ± 115.82b** 5.43 ± 0.31 765.23 ± 125.82b** 0.26 ± 0.02b** 45.00 ± 7.25b*

Values are expressed as mean ± SEM of serum and BALF collected individually from all the groups of experimental animals. Experiments were performed in duplicate having six 
animals in each group.
a11 Gy vs. control.
bG-003M + 11 Gy vs. 11 Gy.
*p < 0.01.
**p < 0.001.
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further and was maximum (about 14-fold increase; p < 0.001, 
11 Gy vs. controls) at 16 weeks of study in this group. When num-
ber of macrophages was calculated, marked (p < 0.001) increase 
was observed from 4 to 16 weeks in irradiated group as compared 
to their respective controls. Interestingly, G-003M-pretreated 
mice showed significantly less number of macrophages and other 
BALF cells at all the time intervals of study when compared with 
irradiated groups. However, values were still higher in compari-
son to respective controls (Figures 5B,C). The number of BALF 
cells was found similar to controls in G-003M only treatment 
group at all the time intervals.

g-003M reduces radiation-induced lung 
Permeability and cell Damage
Radiation induces endothelial injury resulting in increased 
vascular permeability in lungs. Lung permeability and cellular 
damage were assessed in the current study by evaluating TP 
content, LDH, and ALP activity in serum/BALF of experimental 
mice. TGR resulted markedly enhanced (p < 0.001) level of pro-
teins in BALF of irradiated groups in the first week of treatment 
(Table 1). The level of protein continued to rise significantly in 
BALF of irradiated animals with the advancement of time. No 
change in protein level was recorded in serum samples of irradi-
ated animals. TGR-exposed mice showed nearly 1.5-fold increase 
in LDH activity in serum and BALF samples even in first week 
of treatment (Table 1). The level of LDH was found to increase 
in this group up to 16 weeks of study in both serum and BALF 
samples. No significant increase in ALP activity was observed 
within 4  weeks in BALF of irradiated animals. However, the 

activity increased significantly (p < 0.001) at 8 weeks and found 
to be very high (twofold increase) at 16 weeks of study in this 
group. Pretreatment of G-003M significantly declined the level 
of TP, LDH, and ALP in BALF/serum of irradiated animals at all 
the time points of study. However, values of protein, LDH, and 
ALP in BALF of irradiated animals were higher in comparison to 
respective controls (Table 1). G-003M only treatment exhibited 
no significant changes in the level of TP, LDH, and ALP in BALF/
serum of mice at any studied time interval.

g-003M attenuates radiation-induced 
changes in lung architecture and Fibrosis
Pulmonary inflammation and fibrosis were estimated by histo-
logical studies. H&E and Masson’s trichrome-stained slides were 
observed for radiation-induced inflammatory cells infiltration 
in pulmonary alveoli and appearance of fibrosis at later phase. 
Infiltration of inflammatory cells and alveolar wall thickening 
was observed in lungs of irradiated mice from 1 to 8 weeks postir-
radiation (Figure 6A, c,g). Congestion of the alveoli, presence of 
foamy macrophages around the bronchioles and severe interstitial 
edema was recorded in the lungs from 4 to 8  weeks of postir-
radiation (Figure 6A, k). Lung edema measured by calculating 
lung weight coefficient was found maximum at 8 weeks postir-
radiation treatment (Figure  6B). At later phase (8–16  weeks), 
acute pneumonitis was followed by marked fibrotic changes as 
evident in H&E stained sections (Figure 6, o). Lung damage score 
was maximum in irradiated animals at 16  weeks postexposure 
(Figure  6C). However, pre-administration of G-003M showed 
significantly less interstitial edema, infiltration of inflammatory 
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FigUre 6 | Effect of G-003M on lung inflammation and injury of 11 Gy thoracic-irradiated mice. (a) Representative light micrographs showing changes in lung 
histology at different time intervals. The alveoli in control group were normal on week 1 (a), 4 (e), 8 (i), and 16 (m). Irradiated lungs showing infiltration of inflammatory 
cells (c, arrow heads) and thickened alveolar septa (g, arrow) on 1 and 4 weeks. On week 8, alveolar edema (*) was visible and alveolar space was reduced by 
collagen deposition (k). Complete distortion of lung architecture and alveolar collapse on 16 weeks (o). In G-003M-pretreated groups inflammation, extent of lung 
damage and fibrosis was significantly less in comparison to irradiated groups on week 1 (d), 4 (h), 8 (l), and 16 (p). Lung sections were stained with hematoxylin and 
eosin and studied under light microscope (200×). Scale bar 100 µm. (B) Bar graph of lung weight coefficient from differentially treated groups. (c) Semiquantitative 
analysis of lung damage score. (D) Immunohistochemical staining of CD45+ leukocytes in lung of differentially treated mice at 4 weeks after treatment (1,000×). 
Representative photomicrograph from irradiated lungs shows intense CD45+ aggregates (arrows), indicating infiltration of inflammatory cells. G-003M-pretreated 
group representing less number of CD45+ cell aggregates in comparison to irradiated group. Control and G-003M only groups showing very few CD45+ cells in 
lung sections. Scale bar 10 µm. (e) Quantification of lung CD45+ inflammatory aggregates per section (10 fields) of individual mice identified by IHC staining. Data 
are represented as means ± SEM from six mice for each group. a = 11 Gy vs. controls, b = G-003M + 11 Gy vs. 11 Gy. *p < 0.05; **p < 0.001.
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cells, and alveolar wall thickening in irradiated lungs (Figure 6, 
d,h,l,p). The formulation significantly (p  <  0.01) lowered the 
values of lung weight coefficient in irradiated mice at all the time 
intervals, indirectly indicating reduction in radiation-induced 
pneumonedema. Lung damage score was also significantly 
minimized by G-003M pretreatment (Figure 6C). However, lung 
architecture was not completely normalized in this group in the 
study period. No pathological alteration in lung architecture was 
observed in the animals of G-003M only group.

To confirm infiltration of inflammatory cells in lungs after 
radiation exposure, immunostaining for common leukocyte 
marker CD45 was applied. Radiation caused a prominent increase 
(p < 0.001; 11 Gy vs. controls) in CD45+ cell aggregates in lungs 
of mice by 4–8 weeks after exposure (Figures 6D,E). These cells 

were predominantly distributed around the vesicular vessels and 
also found scattered in alveolar spaces. Significantly (p < 0.05) 
low number of CD45+ cell aggregates in the lungs of G-003M-
pretreated mice indicated less inflammation in comparison to 
irradiated (Figures  6D,E). CD45-staining intensity in G-003M 
only group was similar to controls at all the time intervals.

Lung fibrosis was also studied by histological grading of 
fibrosis according to the criteria of Ashcroft et  al. (27), using 
Masson’s trichrome-staining method (Figures 7A,B). Extensive 
deposition of collagen, as evident by light blue staining of colla-
gen fibers around vessels and bronchioles, was observed in lungs 
of irradiated mice (Figure 7A). However, G-003M significantly 
attenuated the deposition of collagen in lungs of irradiated mice 
indicating its anti-fibrotic potential (Figure 7A).
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FigUre 7 | Effect of G-003M on radiation-induced fibrosis in 11 Gy thoracic-irradiated mice. (a) Photomicrographs of Masson’s trichrome-stained lung sections 
from differentially treated experimental groups at 16 weeks posttreatment. No significant fibrosis was found in the lungs of control and G-003M only treatment 
groups. About 11 Gy thoracic-irradiated lungs sections showed intense collagen fibers dyed blue (arrows). Compared to irradiated group, collagen deposition/
fibrosis was significantly less in G-003M-pretreated irradiated group. Magnification 400×. (B) Evaluation of lung fibrosis by Ashcroft score at 16 weeks 
posttreatment. (c) Quantitative analysis of hydroxyproline content in lungs of experimental mice. Scale bar 50 µm. Data are represented as means ± SEM from six 
mice for each group. **p < 0.001.
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Hydroxyproline content, the major constituent of collagen, 
was also measured in the lungs of experimental mice. No sig-
nificant difference was recorded in Hpl content up to 8  weeks 
after radiation treatment in comparison to controls (Figure 7C). 
However, Hpl content was found remarkably increased (about 
10-fold) at 16 weeks of TGR exposure. G-003M pretreatment had 
significantly (p < 0.001) lowered Hpl content in lungs of irradi-
ated animals (Figure 7C). As a whole, the results indicated anti-
inflammatory and anti-fibrotic effects of G-003M formulation in 
lungs of irradiated mice. Hpl content was similar to controls in 
G-003M only treatment group at all the studied time intervals.

g-003M reduces expression of radiation-
induced inflammatory/Fibrogenic 
cytokines
Transforming growth factor-β1 is the key cytokine involved 
in progression of fibrosis. In the current study, expression of 
TGF-β1 was observed in lungs of mice by immunohistochem-
istry and further confirmed by western blotting (Figures 8A,B). 
Immunohistochemical staining revealed stronger expression of 
this cytokine in alveolar macrophages and lymphocyte of irradi-
ated lungs as compared to controls (Figure  8A). The intensity 
of expression was significantly higher at 8  weeks. Figure  8B 
demonstrates expression of TGF-β1 by western blotting in lungs 
of mice sacrificed at 8 weeks postirradiation. Significant increase 
in band intensity was observed in irradiated lungs in comparison 
to controls. Pretreatment of G-003M significantly declined the 

expression of this cytokine in 11  Gy-irradiated lung tissues 
(Figure 8). However, the expression of TGF-β1 in this group was 
still higher than controls. No significant alteration in the expres-
sion of TGF-β1 was seen in lungs of mice treated with G-003M 
only.

Tumor necrosis factor-α and IL-6 are the major pro-inflamma-
tory cytokines involved in lung inflammation. The concentration 
of TNF-α and IL-6 was measured in BALF of experimental mice 
at 4 and 8 weeks posttreatment by using flow based Kits BDTM 
CBA Flex Set (BD Biosciences, USA). The level of TNF-α was very 
high (p < 0.001) at 4 weeks (22.78 ± 3.50 pg/ml) and increased 
(119.41  ±  10.50  pg/ml) further by 8  weeks in BALF of irradi-
ated animals when compared to controls (2.00  ±  0.10  pg/ml)  
(Figure 8D). TNF-α expression was also located in lung tissues 
by immunohistochemistry (Figure  8C). Intense expression of 
this cytokine was observed in irradiated lungs at 8 weeks, con-
firming our previous finding. However, G-003M pretreatment 
significantly (p < 0.001) reduced (10.4 ± 2.10 pg/ml at 4 weeks 
and 20.58 ± 3.50 pg/ml at 8 weeks) the level of TNF-α in BALF as 
well as its immunohistochemical expression in lungs of irradiated 
animals (Figures 8C,D).

Interleukin-6 concentration was also increased remark-
ably in BALF of irradiated animals in comparison to 
controls (2.80  ±  0.50  pg/ml). The level of IL-6 raised at 
4  weeks (22.60  ±  2.50  pg/ml) and then declined at 8  weeks 
(15.96 ±  2.80 pg/ml) in this group (Figure 8E). G-003M sig-
nificantly (p  <  0.001) reduced (11.76  ±  2.2  pg/ml at 4  weeks 
and 2.95 ± 2.22 pg/ml at 8 weeks) the level of this inflammatory 
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FigUre 8 | Effect of G-003M on expression of pro-inflammatory and fibrogenic cytokines. (a) Immunohistochemical expression of transforming growth factor-β1 
(TGF-β1) (arrows) in lungs of differentially treated mice (400×). Scale bar 50 µm. (B) Western blotting of TGF-β1 at 8 weeks postirradiation. Densitometry analysis 
represents TGF-β1 expression normalized to β-tubulin. (c) Immunohistochemical expression of tumor necrosis factor-α (TNF-α) in lungs of experimental mice 
(1,000×). Scale bar 10 µm. (D) Histogram representing TNF-α level in bronchoalveolar lavage fluid (BALF) of experimental mice. (e) Bar diagram indicating 
interleukin-6 (IL-6) level in BALF of experimental mice. Data are represented as means ± SEM from six mice for each group. **p < 0.001.
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cytokine in BALF of irradiated animals (Figure 8E). No signifi-
cant change in TNF-α and IL-6 was observed by G-003M only 
treatment in comparison to controls.

DiscUssiOn

Toxic endpoints in the form of radiation pneumonitis and pulmo-
nary fibrosis are frequent outcomes following radiological acci-
dents and therapies. Radiation-mediated lung injury generally 
fails to fully repair and the tissue enters in dysregulated process 
leading to malfunctioning of the organ. Radiation exposure elicits 
induction of ROS and other RNS mainly NO and peroxynitrite 
(ONOO−), which further amplify tissue damage (8, 31). Since 
ROS/RNS are prevalent in radiation-induced lung injuries, use 
of antioxidant molecules/enzymes has been frequented to reduce 
the formation of these species in the related organ (10). Current 
study reveals high antioxidant potential of G-003M, documented 
by significant scavenging of radiation-induced ROS/NO genera-
tion (Figure 2). The study reports excessive expression of iNOS 
and nitrotyrosine in alveolar macrophages and epithelial cells 
of irradiated lungs, confirming NO formation by these cells. 
Decrease in iNOS and nitrotyrosine expression by G-003M 
administration strengthens its NO scavenging potential. The 
ROS and NOS scavenging property of G-003M has been achieved 
major by the presence of rutin in this formulation. Rutin, a bio-
flavonoid, contains 10 hydrogen donor counts and 16 hydrogen 
acceptor counts attached at different positions. The process of 
donating and accepting hydrogen atom stabilizes free radicals 
and thus reduces ROS/NO generation. These findings are in 
consonance with our previous report where earlier formulation 

(G-002M) had shown decline in ROS/NO generation in the lungs 
of 7 Gy whole-body-irradiated mice (14). Our current findings 
are also in agreement with other reports revealing amelioration 
in radiation-induced lung damage by exogenous intervention of 
agents having high antioxidant potential (29, 32–34).

Radiation is known to cause apoptosis of lung epithelial cells, 
which may lead to desquamation of alveolar walls and capillary 
luminal dilatation resulting in increased vascular permeability 
and interstitial edema (35). Enhanced level of alveolar protein 
indicates increase in vascular permeability as direct injury 
by radiation (35). Similar to these reports, current study also 
reveals excessive proteins in BALF of irradiated mice indicating 
radiation-induced lung injury (Table 1). Various earlier studies 
have also demonstrated damage to lung parenchymal cells by 
increased levels of LDH and ALP (36). ALP activity in BALF 
has been known to be associated with damage of pneumocyte 
type II cell, playing important role in repair of damaged alveolar 
epithelial cells (37). Current study also reports elevated level of 
TP, LDH, and ALP in BALF/serum samples of 11 Gy-irradiated 
animals, which has been significantly ameliorated by G-003M 
pre-administration (Table  1). Our formulation could also 
minimize cell death in irradiated lungs and maintained cellular 
integrity and vascular permeability leading to retention of TP, 
LDH, and ALP activity in BALF.

Histological findings and CD45 immunostaining in the cur-
rent study have demonstrated significant reduction in radiation-
induced inflammation by G-003M pre-administration. Enhanced 
inflammation has been documented as one of the possible mecha-
nism of lung damage (5–7). Mechanistically, injured epithelial 
and other inflammatory cells produce a variety of cytokines and 
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FigUre 9 | Diagrammatic illustration showing the possible mechanisms by which G-003M is reducing radiation-mediated pneumonitis and pulmonary fibrosis. 
Thoracic exposure to radiation results in rapid production of reactive oxygen species (ROS)/nitric oxide (NO), leading to epithelial and endothelial cell damage 
followed by extensive infiltration of the immune cells. Further increase in the pro-inflammatory and pro-fibrogenic cytokines leads to activation of myofibroblast, thus 
causing fibrosis and death. Administration of G-003M formulation stabilizes the highly reactive free radicals (ROS and NO), thus preventing the epithelial and 
endothelial cell damage and further infiltration of the immune cells. G-003M promotes survival against radiation by modulation of inflammation, immune response, 
and events leading to pulmonary fibrosis.

chemokines, which amplify inflammatory response and trigger 
fibroblast proliferation in irradiated lungs (38). TNF-α is an 
important cytokine known to trigger the production of other pro-
inflammatory cytokines (39). Increased IL-6 has been reported 
for causing pneumonitis in post-thoracic radiotherapy patients 
(40). In the current study, radiation-induced overexpression of 
TNF-α and IL-6 in the lungs was found significantly curtailed by 
G-003M intervention, which had helped in reducing radiation-
induced pulmonary inflammation.

Transforming growth factor-β1, a pleiotropic growth factor, 
plays pivotal role in pulmonary fibrosis by promoting activa-
tion, proliferation, and differentiation of epithelial cells and 

collagen-producing myofibroblasts (41). TGF-β1 also promotes 
a variety of pro-inflammatory and fibrogenic cytokines such 
as TNF-α, IL-1β, and IL-13. This increase further perpetuates 
the fibrotic cascade (42). We have currently reported, G-003M 
mediated significant decline in the expression of TGF-β1 which 
otherwise could have culminated into lung fibrosis at late phase 
(Figures  8A,B). The declined accumulation of collagen shown 
by Masson’s trichrome staining (Figure  7A) and Hpl content 
(Figure 7C) in formulation-pretreated mice has also supported 
anti-fibrotic role of G-003M. In consonance, there are several 
reports stating the use of lignans and other polyphenols for reduc-
ing radiation-induced lung damage by countering inflammation 
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