
Frontiers in Psychiatry | www.frontiersin.or

Edited by:
Chad A. Bousman,

University of Calgary, Canada

Reviewed by:
Anna Blasiak,

Jagiellonian University, Poland
Dominic Landgraf,

Ludwig Maximilian University of
Munich, Germany

Urs Albrecht,
Université de Fribourg, Switzerland

*Correspondence:
Agorastos Agorastos

aagorast@auth.gr

Specialty section:
This article was submitted to

Molecular Psychiatry,
a section of the journal
Frontiers in Psychiatry

Received: 11 December 2018
Accepted: 19 December 2019
Published: 28 January 2020

Citation:
Agorastos A, Nicolaides NC,

Bozikas VP, Chrousos GP and
Pervanidou P (2020) Multilevel

Interactions of Stress and
Circadian System: Implications

for Traumatic Stress.
Front. Psychiatry 10:1003.

doi: 10.3389/fpsyt.2019.01003

REVIEW
published: 28 January 2020

doi: 10.3389/fpsyt.2019.01003
Multilevel Interactions of Stress and
Circadian System: Implications for
Traumatic Stress
Agorastos Agorastos1,2*, Nicolas C. Nicolaides3, Vasilios P. Bozikas1,
George P. Chrousos3,4 and Panagiota Pervanidou4

1 Department of Psychiatry, Division of Neurosciences, Faculty of Medical Sciences, School of Medicine, Aristotle University
of Thessaloniki, Thessaloniki, Greece, 2 VA Center of Excellence for Stress and Mental Health (CESAMH), VA San Diego
Healthcare System, San Diego, CA, United States, 3 First Department of Pediatrics, Division of Endocrinology, Metabolism
and Diabetes, School of Medicine, National and Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital,
Athens, Greece, 4 Unit of Developmental & Behavioral Pediatrics, First Department of Pediatrics, School of Medicine, National
and Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, Athens, Greece

The dramatic fluctuations in energy demands by the rhythmic succession of night and day
on our planet has prompted a geophysical evolutionary need for biological temporal
organization across phylogeny. The intrinsic circadian timing system (CS) represents a
highly conserved and sophisticated internal “clock,” adjusted to the 24-h rotation period of
the earth, enabling a nyctohemeral coordination of numerous physiologic processes, from
gene expression to behavior. The human CS is tightly and bidirectionally interconnected to
the stress system (SS). Both systems are fundamental for survival and regulate each
other’s activity in order to prepare the organism for the anticipated cyclic challenges.
Thereby, the understanding of the temporal relationship between stressors and stress
responses is critical for the comprehension of the molecular basis of physiology and
pathogenesis of disease. A critical loss of the harmonious timed order at different
organizational levels may affect the fundamental properties of neuroendocrine, immune,
and autonomic systems, leading to a breakdown of biobehavioral adaptative mechanisms
with increased stress sensitivity and vulnerability. In this review, following an overview of
the functional components of the SS and CS, we present their multilevel interactions and
discuss how traumatic stress can alter the interplay between the two systems. Circadian
dysregulation after traumatic stress exposure may represent a core feature of trauma-
related disorders mediating enduring neurobiological correlates of trauma through
maladaptive stress regulation. Understanding the mechanisms susceptible to circadian
dysregulation and their role in stress-related disorders could provide new insights into
disease mechanisms, advancing psychochronobiological treatment possibilities and
preventive strategies in stress-exposed populations.

Keywords: circadian system, circadian clocks, stress, trauma, HPA axis, autonomic nervous system,
glucocorticoids, sleep
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INTRODUCTION

Living organisms consist of highly complex biological systems
with the ability to preserve a complex dynamic balance state with
a constant oscillation around an ideal homeostatic condition
(nonequilibrium homeodynamic state) (1, 2). To achieve this,
organisms have developed a highly sophisticated and multifaceted
biological system, the so-called stress system (SS), which serves
self-regulation and adaptability of the organism to ongoing
intrinsic or extrinsic, real or perceived (i.e., subject-dependent
value attribution), altering challenges or stimuli, defined as
stressors (3). When stressors surpass a manageable severity or
temporal verge, the initiated stress response redirects energy
depending on the present needs to restore homeostasis (4–8).
Thus, stress is defined as the state of threatened homeodynamic
balance of the organism (6, 9). Repeated, ephemeral, and
motivating stress states lead to adaptive responses and are fairly
beneficial, while inadequate, aversive, excessive, or prolonged
stress may surpass the natural regulatory capacity and adjustive
resources of the organism and majorly affect adaptive responses
leading to cacostasis (i.e., negatively altered homedynamic state,
dyshomeostasis), and accumulated cacostatic load (6).

The understanding of the temporal relationship between
stressors and physiological stress responses is crucial for the
comprehension of the molecular basis of physiology and
pathophysiology of disease. Biological processes always take
place in an appropriate order, in order to synchronize required
homeostatic mechanisms. As life on earth has evolved in the
context of the earth’s rotation around its own axis, there was a
geophysical evolutionary need for temporal organization and
adjustment of internal activity and physiological processes to the
dramatic fluctuations in energy demands by the constant
rhythmic succession of night and day. This need has generated
a highly conserved and sophisticated internal molecular “clock,”
creating endogenous rhythmicity with a period adjusted to the
24-h rotation of our planet throughout phylogeny (10–12).

This intrinsic circadian (lat. circa diem – about a day) timing
system (CS) creates an internal representation of the external
Zeitraum (germ. time-space) and helps living organisms keep
track of time from a centrally created circadian rhythm (13, 14).
By orchestrating a dynamic milieu that oscillates with a 24-h
rhythm, the CS coordinates physiological processes and rhythmic
changes, from gene expression to behavior and prepares living
organisms for the anticipated cyclic challenges, promoting
homeostasis and environmental adaptation and creating an
evolutionary advantage to optimize survival (15–18). In order to
achieve this, the CS upregulates the SS before the organism’s active
phase and turns it down again for the resting and restorative phases.

The CS and the SS are both fundamental for survival and
regulate each other’s activity, through intimate reciprocal
interactions with each other at multiple levels (19, 20). An
intact communication between the CS and the SS is important
for maintaining homeostasis and environmental adaptation (21–
23). The SS is undoubtedly at the heart of circadian biology,
mediating temporal signals and vice versa (24). Investigating the
interactions between the two systems is essential to understand
pathophysiological pathways mediating risk for disease, as
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dysregulation in either of these systems may lead to similar
pathologic conditions (25).

In this review, following a general overview of the functional
elements of the two systems, we present their multilevel
interconnections, and discuss how excessive (i.e., traumatic)
stress can affect the harmonic central and peripheral interplay
between SS and CS.
THE HUMAN STRESS SYSTEM

The human SS consists of central and peripheral components.
The central, critically interconnected components of the SS are
mainly located in the hypothalamus and the brainstem, and
include: (a) the parvocellular neurons of corticotropine-
releasing-hormone (CRH), (b) the arginine-vasopressin (AVP)
neurons of the hypothalamic paraventricular nuclei (PVN), (c)
the CRH neurons of the paragigantocellular and parabranchial
nuclei of the medulla and the locus caeruleus (LC), (d) the
arcuate nucleus proopiomelanocortin-derived peptides alpha-
melanocyte–stimulating hormone (MSH) and beta-endorphin,
(e) other mostly noradrenergic (NE) cell groups in the medulla
and pons (LC/NE system), and (f) the central nuclei of the
autonomic nervous system (ANS) [cf. Figure 1]. These
neuroanatomical loci communicate with each other,
influencing their own activity, and interact with several other
brain subsystems, such as the mesocortical/mesolimbic
dopaminergic system, involved in reward and motivation and
the amygdala central nuclei, generating fear and anger (6, 9).

The peripheral components of the SS include: (a) the
hypothalamic-pituitary-adrenal (HPA) axis and (b) the ANS
comprised of (i) the sympathetic nervous system (SNS) and
sympatho-adrenomedullary (SAM) system and (ii) the
parasympathetic nervous system (PNS). The main terminal
peripheral effector molecules of the SS are the HPA axis-
regulated glucocorticoids (GCs; i.e., cortisol in humans), and
the SAM-regulated catecholamines (Cas; i.e., NE and
epinephrine). HPA axis and ANS have largely complementary
actions throughout the body and are increasingly studied
together (26), as integrated and interrelated components of an
internal neural regulation system. Findings suggest that the
appropriate regulation of the HPA-axis depends in part on
ANS, especially on vagal influences (27).

When stressors exceed a certain severity or temporal
threshold, stressor-related information initiates a complex stress
response to induce remarkably consistent acute, normally
adaptive, and time-limited microphysiologic, mesophysiologic,
and macrophysiologic compensatory responses throughout
several effector tissues (4–8, 28). Together, these responses
represent a well-orchestrated and fine-tuned answer to
challenge in both the central nervous system (CNS) and the
somatic periphery (29).

The Autonomic Nervous System
The ANS, although not under overt voluntary direction
(autonomous), plays a crucial role in the preservation of a
homeodynamic balance by providing a rapidly responding
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control system for a plethora of physiological reactions to
physical, emotional, and cognitive challenges (30, 31). It is
especially the precise regulation of organ and tissue functions
through fine-tuning of the ANS limbs that is crucial for optimal
stress reactivity, adaptive responses, and health.

The exact ANS activity is fine-tuned through central and
peripheral autonomic reflexes and feedback mechanisms (32).
The central autonomic modulation does not simply rely on a
monolithic network of brain regions, but is instead regulated by
the central autonomic network (CAN), an internal central
autonomic regulation system featuring certain task and
division specificity (33). The CAN is additionally characterized
by bilateral interconnections, parallel organization, state-
dependent activity, and neurochemical complexity (30, 31,
34, 35). It includes the insular cortex, central nucleus of the
amygdala, hypothalamus, periaqueductal gray matter,
parabrachial complex, nucleus of the solitary tract (NTS), and
ventrolateral medulla (VLM) (36, 37) [cf. Figure 2]. The insular
cortex and amygdala mediate high-order autonomic control
associated with cognitive perception and emotional responses
through hypothalamic-brainstem pathways (30). NTS, PVN,
and VLM contain a network of respiratory, cardiovagal,
and vasomotor neurons, receiving afferent vagal sensory input
from thoracic and abdominal viscera and other cranial nerves.
These structures accordingly modulate the activity of
preganglionic autonomic neurons. CAN dysregulation can be
critically involved in stress-related disorders, as it may affect
downstream autonomic centers, thereby altering peripheral ANS
activity and cardiac function. CAN dysregulation (35, 38, 39)
may affect downstream autonomic core centers, thereby altering
peripheral ANS activity (39–41).
Frontiers in Psychiatry | www.frontiersin.org 3
Since the early 20th century, pragmatic and anatomic reasons
has led to a common division of the ANS into two, or sometimes
three peripheral tracts: the sympathetic, parasympathetic and,
the largest one, the enteric autonomic division, although they
practically mirror one larger control system (42, 43). Especially
the separation into SNS and PNS has led to enormous
misconceptions, the most serious being the view that the
two divisions are somehow in opposition to each other. On
the contrary, SNS and the PNS are rather in a dynamic
interdependent state and act on different time scales but in
concert and through numerous and multilevel, bidirectional
interactions to control the abovementioned autonomic
functions (44, 45), while autonomic dysregulation translates
into decreased dynamic adaptability, increased morbidity and
mortality (27, 30, 46, 47). In general, since both systems are
tonically active, the PNS can both assist and antagonize SNS
functions by withdrawing or increasing its activity (frequency of
neuronal discharge), respectively. This ANS characteristic is of
major importance and improves its ability to more precisely
regulate an effector’s function.

The Sympathetic Nervous System
The SNS originates in brainstem nuclei and gives rise to
preganglionic cholinergic (ACh) efferent fibers mostly projecting
to postganglionic sympathetic ganglia. The long postganglionic
neurons terminate outwards on effector tissues, mostly releasing
NE. Alternatively, preganglionic neurons may also directly
synapse with the modified postganglionic chromaffin cells of the
adrenal medulla. A sympathetic activation, thus, principally
releases NE (locally and to a lesser extent systematically from
the adrenal medulla) or adrenaline (systematically from the
FIGURE 1 | Basic anatomy of stress and circadian system related brain structures. AVP, arginine vasopressin; GABA, g-aminobutyric acid; DM SCN, dorsomedial
suprachiasmatic nucleus; IGL, thalamic intergeniculate leaflet; LC, locus caeruleus; RHT, retinohypothalamic tract; VIP, vasoactive intestinal peptide; VL SCN,
ventrolateral SCN.
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adrenal medulla) together with other neuropeptides in the body
(48). Sympathetic activation generally predominates during
emergency (fight-or-flight) situations and during exercise,
preparing the body for strenuous physical activity.

The Parasympathetic Nervous System
Whereas SNS activity depends on two peripheral branches
(neural and adrenal), parasympathetic activity is displayed only
by nerves. The preganglionic neurons of the PNS arise from
numerous brainstem nuclei and from the spinal sacral region
(S2–S4). The preganglionic ACh-axons are quite long and
synapse with short postganglionic neurons within terminal
ganglia close to or embedded to effector tissues. Accordingly,
PNS actions are mostly more discrete and localized compared to
the SNS, where a more diffuse and global discharge is probable.
The preganglionic neurons that arise from the brainstem exit the
CNS through the cranial nerves [N. occulomotorius (III); N.
facialis (VII); N. glossopharyngeus (IX); N. vagus (X)]. The vagus
nerve innervates the thoracic and abdominal viscera and has a
major physiological significance, as approximately ¾ of all
parasympathetic fibers originate from the vagus nerve (49).
The PNS stress response is mainly activated by the nucleus
ambiguus and the dorsal motor nucleus of the vagus nerve,
possibly after NTS stimulation. The PNS generally predominates
during resting conditions towards conserving and storing
energy or regulating basic body functions (e.g., digestion,
defecation, urination). Through its tonic properties, the PNS is
vital especially under resting conditions, and is, therefore,
Frontiers in Psychiatry | www.frontiersin.org 4
particularly implicated in the development of cardiovascular
diseases and other comorbidities (27, 50).

The Hypothalamus-Pituitary-Adrenal Axis
The HPA axis consists of the PVN, the pituitary corticotrophs
and the zona fasciculata of the adrenal cortex, which,
respectively, employ corticotropin-releasing hormone (CRH)/
arginine vasopressin (AVP), adrenocorticotropic hormone
(ACTH), and glucocorticoids (GCs, i.e., cortisol in humans) as
their signalling effector molecules [cf. Figure 2]. CRH and AVP
are released from the PVN into the hypophyseal system in
response to stimulatory signals from higher regulatory centers
(e.g., PFC) and reach the pituitary gland to stimulate the
secretion of ACTH. ACTH reaches the cortex of the adrenal
glands through release in the systemic circulation and stimulates
both production and secretion of GCs. Systemically released
GCs, in turn, besides their major actions, close a negative
feedback loop by suppressing the activation of the PVN and
the pituitary gland (6, 51).

Glucocorticoid Receptors and Signaling
GCs influence a myriad of physiologic functions and are essential
for the activation, maintenance, and downregulation of the stress
response. GCs mainly exert their pleiotropic effects through
genomic, nongenomic, and mitochondrial actions of the
intracellular cognate GC and mineralocorticoid receptors (GR,
MR), which function as a ligand-activated transcription factors
(4–9, 52–56). GR and MR are evolutionarily close, showing large
FIGURE 2 | Central and peripheral circadian system and their interconnections. AC, adrenal cortex; ACh, acetylcholine; ACTH, adrenocorticotropic hormone;
AD, adrenalin; AM, adrenal medulla; ANS, autonomic nervous system; AP, anterior pituitary; CAN, central autonomic network; CRH, corticotropin releasing
hormone; DM SCN, dorsomedial SCN; DMH, dorsomedial hypothalamus; GCs, glucocorticoids; HPA axis, hypothalamic-pituitary-adrenal axis; InC, insular
cortex; IGL, thalamic intergeniculate leaflet; ipRGC, intrinsically photosensitive retinal ganglion cells; LC, locus caeruleus; MLT, melatonin; MPA, medial preoptic
area; NE, norepinephrine; NTS, nucleus of the solitary tract; OT, optic tract; PNS, parasympathetic nervous system; PGAN, preganglionic autonomic neurons;
PGL, pineal gland; PVN, paraventricular nucleus; R&C, rodes and cones; RHT, retinohypothalamic tract; SCN, suprachiasmatic nucleus; SCG, superior cervical
ganlia; SNS, sympathetic nervous system; subPVN, subparaventricular area; VL SCN, ventrolateral SCN; VLM, ventrolateral medulla.
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homologies at their DNA-binding domain and sharing
many responsive genes. Upon ligand-binding, the receptors
dissociate from the interacting proteins (i.e., shock proteins
and immunophillins), translocate to the nucleus, form homo-
or hetero-dimmers and bind to specific DNA response elements
located in the regulatory regions of thousands responsive genes,
leading to their transactivation or transrepression (8, 52, 54–57).
GR and MR have complementary actions with respect to HPA
axis activity and reactivity (58). Altered GC-signaling, through
dysregulations at different levels of the HPA axis, may greatly
negatively affect the organisms’ physiology and could influence
life expectancy, as seen in many complex behavioral and somatic
disorders (e.g., depression, posttraumatic stress disorder, sleep
disorders, chronic pain and fatigue syndromes, obesity, diabetes
Type II and the metabolic syndrome, essential hypertension,
atherosclerosis, osteoporosis, autoimmune inflammatory, and
allergic disorders) (55, 59).

In humans, the glucocorticoid receptor (hGR) is encoded by
the NR3C1 gene, which is located in the long arm of chromo-
some 5 and consists of 10 exons. The alternative usage of exon 9a
or 9b gives rise to the two main receptor isoforms, the classic
hGRa and the hGRb (8, 52, 54–57). Ubiquitarilly expressed in
every tissue except the suprachiasmatic nucleus (SCN) of the
hypothalamus, the hGRa is primarily localized in the cytoplasm
of glucocorticoid target cells (57, 60). hGRb, exclusively localized
in the nucleus of certain cells (e.g., endothelial cells), acts mainly
as negative regulator of hGRa transcriptional activity (61, 62).
A growing body of evidence suggests that hGRb has its
own, hGRa-independent transcriptional activity and plays an
important role in insulin signalling, inflammation, and
carcinogenesis (63). The MR is encoded by the NR3C2 gene, is
located on chromosome 4 and also consisting of 10 exons (64).
MR is peripherally expressed in several tissues (e.g., adipose
tissue, kidney, endothelium, macrophages) and exerts vital
regulatory functions through its main endogenous MR ligand
as part of the renin-angiotensin-aldosterone system, among
others, in cell growth, renal and cardiovascular function,
metabolism and immunity.

Of particular importance are the GR and MR effects in the
CNS. While GR are expressed throughout the brain, MR are
abundantly expressed in limbic brain structures involved in
emotional processing, arousal and memory (i.e., hippocampus,
amygdala, prefrontal cortex) thus exerting a basal inhibitory
tone on GC secretion (65, 66). Interestingly, the MRs show a
tenfold higher affinity to cortisol than GRs and are largely already
occupied under basal cortisol levels, while GRs become gradually
occupied through cortisol peak levels (e.g., circadian peak,
acute stress) (58, 67), resulting in a regulative, MR-associated
threshold for HPA axis activation and stress sensitivity
(68). Thus, depending on receptor type, cell topology, tissue-
specific expression, their specific ligands (e.g., aldosterone) or
relevant enzymes (e.g., cortisol-inactivating enzyme 11b-
hydroxysteroid dehydrogenase type 2, 11bHSD2), HPA axis
activation differentially regulates the expression of various
target genes with different transcriptional potencies in response
to cortisol.
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In addition, GC may also signal through protein-protein
interactions between receptors and other important
transcription factors, including the nuclear factor-kB (NF-kB),
the activator protein-1 (AP-1), and the signal transducers and
activators of transcription (STATs). However, perhaps even
more importantly, GC exert also rapid, nongenomic actions,
mediated by membrane-bound MRs and GRs that trigger the
activation of kinase signal transduction pathways (8, 52, 54–57,
69). Membrane-bound MRs and GRs show lower GC affinity
than intracellular receptors and are increasingly occupied only
through higher cortisol concentrations, thus mainly playing a
crucial role in translation of rapid GC pulses in the initial phase
of HPA axis activation (70–72).
THE HUMAN CIRCADIAN SYSTEM

Circadian molecular oscillations are independently generated in
virtually every cell of living organisms, thus influencing
molecular biological processes over the course of the day.
However, it is the orchestration of these innumerable,
diverging and tissue-specific peripheral oscillations into a main
rhythmic symphony that is of vital importance for the promotion
of homeostasis in higher organisms. The CS represents an
extensive network of time-keeping mechanisms that creates
and maintains this cellular and systemic rhythmicity, through
temporal organization and coordination of many physiological
and transcriptional oscillating processes throughout several
structural levels in the organism (17, 18). In order to stay
adjusted to the geophysical time, the CS receives continuously
input by behavioral, hormonal, and environmental signals, a
process called entrainment.

The mammalian CS is organized in a hierarchical manner
with a central, pacemaking, and light-sensitive “master clock”
in the CNS and a peripheral, subordinated multioscillator
component (“slave clocks”), showing both top-down and
bottom-up organization based on positive and negative
endocrine, autonomic, and transcriptional regulatory feedback
loops (15, 73–75). The CS has three main functions as
(a) pacemaker through intrinsic and self-sustainable rhythm
generation, (b) internal Zeitgeber (germ. time-giver) with a
distinct rhythm output for peripheral synchronization, and
(c) Zeitnehmer (germ. time-taker) continuously receiving
time-shifting signals from external/secondary Zeitgebers
(e.g, nutrition, light, sleep, social activity) for proper time
entrainment of the intrinsic period to the environmental
cycle (76).

The Central and Peripheral Circadian
System
The central mammalian CS includes specialized signal
transduction mechanisms in the retina, the retinohypothalamic
tract (RHT), the suprachiasmatic nucleus (SCN), the superior
cervical ganglia, the pineal gland (PGL), the thalamic
intergeniculate leaflet (IGL), and the raphe nuclei (18, 77, 78)
(cf. Figures 1 and 2). The SCN is a bilateral paired structure with
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high cell density, consisting of 50,000 neurons (in humans)
displaying a synchronised rhythmic metabolic and electrical
activity, and is located in the anterior hypothalamus directly
over of the optic chiasm, next to the third ventricle. The SCN is
the integrative “master clock” of the organism, by integrating its
distinct primary pacemaker activity through intrinsic neural
firing and all received environmental Zeitgeber cues to a main
circadian rhythm (17, 18, 79–81). The most important Zeitgeber
is light. The SCN receives photic input (photoentrainment) from
the rod/cone photoreceptors and particularly from other
nonimage-forming photosensitive cells in the retina, the
intrinsically photosensitive retinal ganglion cells (ipRGCs) (77).
These melanopsin-containing cells have been shown to be
sensitive to light wavelengths (460–480 nm, i.e. blue light)
different from the classical visual system (i.e., rod and cone
cells) and they react slowly and tonically to luminance changes
(77, 82–87). The photic input transmitted from the ipRGC
through the retinohypothalamic tract to the SCN (88) and
from there to the upper part of the thoracic spinal cord, the
superior cervical ganglia and the PGL gland (89). The NPY-
containing pathway from the IGL and the serotonergic pathway
from the median raphe represent the two other main afferent
projections to the SCN (78). Taken together, anatomical routes
directly involved with the SCN are numerous, with up to 15
efferent and 35 afferent projections (78).

The peripheral, subordinated multioscillator component of
the CS (“slave clocks”) show a similar, tissue-specific, self-
sustained, and cell-autonomous rhythm generation machinery,
regulating several functions of their residing tissues, with one
essential difference to the central CS: These peripheral “slave
clocks” do not exchange phase information and must therefore
kept synchronized by the main integrative SCN rhythm via
different pathways (16), which leads to a 4-h optimal phase
synchronization delay of peripheral with respect to the central
CS rhythm (90). This synchrony gets mostly lost without an
input from the SCN (91), although other Zeitgebers, such as
nutrient, temperature, and social cues, can also entrain
peripheral clocks (92).

The Molecular Clockwork
In the past decades, mounting evidence has evolved our
understanding from the first discovered clock gene (Period or
PER) conserved from fruit flies to humans (93) to a complex
molecular clockwork generated at the cellular level by molecular
oscillators in all nucleus-containing cells of an organism (15, 74,
94). The intrinsic circadian rhythmicity of the biological clock is
based on a core set of clock genes intertwined with an
autoregulatory, delayed, interlocking transcriptional/translational
feedback (TTFL) loop machinery, coupled to several auxiliary
mechanisms and leading to mutual transcriptional activation and
repression, ultimately maintaining an approximately 24-h
oscillation, thus, reinforcing robustness and stability of the clock
(14, 15, 74, 94–97).

Central among the core TTFL are the transcriptional activator
“circadian locomotor output cycle kaput” (CLOCK), its
heterodimer partner “brain-muscle-ARNT-like protein 1”
(BMAL1), and the essential negative regulating circadian genes
Frontiers in Psychiatry | www.frontiersin.org 6
“Period 1, 2, and 3” (PER1-3) and “Cryptochrome 1 and 2”
(CRY1/2) (98). The activated CLOCK/BMAL1 heterodimer
binds to the enhancer box (E-box) response elements located
in the promoter region and stimulates the transcription of PER1-
3 and CRY1/2 at circadian dawn (circadian time 0, CT0). PER1-3
and CRY1/2 mRNA gets translated into proteins, which
accumulate by the end of the circadian day (CT12). Over the
course of the circadian night (CT12–CT0), inhibitory complexes
of PER1-3 and CRY1/2 with the caseine kinase 1ϵ and d, are
phosphorylated and translocate from the cytoplasm into the
nucleus and repress the transcriptional activity of the CLOCK/
BMAL1 in the SCN, shutting down PER1-3/CRY1/2
transcription (99). After degradation of nuclear PER1-3/CRY1/
2 complexes the next morning (CT0), the inhibition on CLOCK/
BMAL1 transcriptional activity is released and thereby a new
cycle starts over after approximately 24 h (79) [cf. Figure 3].
During the circadian day, PER1-3 and CRY1/2 transcription is
high in the SCN, leading also to high SCN electrical activity.
Besides this core negative feedback loop, there are also auxiliary
feedback loops that stabilize the transcriptional activity of the
core regulatory loop (94, 100–102). CLOCK/BMAL1
upregulates, for example, the expression of other clock-related
proteins, such as the reverse viral erythroblastosis oncogene
product a and b (REV-ERBa/b) and the retinoic acid
receptor-related orphan receptor a (RORa), which, in turn,
regulate BMAL1 expression. Genetic polymorphisms in these
clock genes are responsible for a great distribution of entrained
phases (chronotypes) between individuals, ranging from “larks”
to “owls,” with most individuals falling between these
extremes (103).

The transcription factors of both principal and auxiliary
TTFLs can modulate the expression levels of many clock-
responsive genes in various tissues, influencing a broad
spectrum of physiologic functions, such as hormonal
fluctuations, sleep/wakefulness, feeding, immune activity,
thermoregulation, energy household, and glucose metabolism
(14). These regulatory loops, receive adjustive input from related
influencing systems. Besides the strongest circadian entrainment
by light, other biological cues, such as nutrition and temperature,
can also influence the activity of the clock system. For example,
peripheral clocks can be influenced by food-related signals
through adenosine monophosphate-activated protein kinase
(AMPK), a tissue sensor and master regulator of energy
balance, which phosphorylates Per1-3 and Cry1/2 leading to
their degradation (104, 105). Similarly, temperature decrease can
represent a strong circadian cue, as the cold-inducible RNA-
binding protein CRBP accumulates under lower body
temperature in peripheral clocks (but not in the SCN) and
influences circadian gene expression (106).

Circadian System Interconnections and
Effector Pathways
The superior robustness and resilience of the distinct intrinsic
activity rhythm of the SCN is mainly preserved by the
synchronization of SCN neurons through intercellular coupling
to its neighbour cells in an action-potential-dependent manner
(107). There are different kinds of SCN neurons containing
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different neuropeptides, such as arginin-vasopressin (AVP),
vasoactive intestinal peptide (VIP), g-amino-butyric-acid
(GABA), glutamate , gastr in-re leas ing peptide , and
somatostatin. This large variety of neuropeptides within the
SCN ensures a rich diversity in signalling properties to effector
targets (108). According to its neurocircuit topology, the SCN
can be functionally divided into two subregions. The
dorsomedial shell region primarily produces AVP and gets
mainly innervated by the hypothalamus, while the ventrolateral
core region primarily produces VIP and receives photic input [cf.
Figure 1]. SCN output projections target many different brain
regions and modulate the activity of downstream neurohumoral
pathways in a rhythmic manner, herewith influencing a plethora
of physiological processes (14, 16, 109). The most important
effector targets of the SCN include: (i) hypothalamic centers
associated with activity, temperature, and sleep regulation, such
as the subparaventricular area (subPVN) and the dorsomedial
nucleus of the hypothalamus (DMH) (110), (ii) preautonomic
hypothalamic neurons, affecting vagal and sympathetic
autonomic centers in brain stem and spinal cord and, thus,
exerting circadian control throughout the body via ANS activity
Frontiers in Psychiatry | www.frontiersin.org 7
(80), and (iii) neuroendocrine hypothalamic centers responsible
for hormone secretion (e.g., CRH synthesizing PVN
parvocellular neurons) [cf. Figures 2 and 5]. The PVN is a
significant integrating center for energy homeostasis and
distribution center of circadian rhythmicity to the body, as its
parvocellular neurons project to the median eminence to control
the release of ACTH and thyroid-stimulating hormone (TSH) in
the anterior pituitary (i.e., hypothalamic-pituitary-adrenal axis,
HPA axis; hypothalamic-pituitary-thyroid axis, HPT axis), and
also innervates the sympathetic limb of the ANS (22).

In addition, the central CS, exerts its synchronizing effects
also through humoral (i.e., endocrine/paracrine) signals. The
main effector of the central CS and essential synchronizing
hormone is pineal melatonin (MLT) (111–114), whose
secretion is strictly modulated by the SCN and sympathetic
fibers originating from the superior cervical ganglia (112, 113,
115–117). Reversely, MLT is a direct modulator of the SCN
neuron electrical activity (118, 119), as SCN expresses a high
number of MLT receptors (MT) (120), while it also interacts with
“clock” gene TTFLs in the SCN, and so modulates circadian
rhythms and adjustment to environmental photoperiod changes
FIGURE 3 | Principal and auxiliary transcriptional/translational feedback loops of the circadian system. AMPK, adenosine monophosphate (AMP)-activated protein
kinase; BMAL1, brain-muscle-arnt-like protein 1; CHRONO, ChIP-derived repressor of network oscillator; CLOCK, circadian locomotor output cycle kaput; CRYs:
cryptochromes; Csnk1ϵ/d, casein kinase 1ϵ/d; P, phosphate residue on the phosphorylated molecules; PERs, periods; RORa, retinoic acid receptor-related orphan
nuclear receptor a. REV-ERBa, reverse viral erythroblastosis oncogene product alpha.
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(121). MLT modulates central and peripheral oscillators and
related secondary molecular pathways mainly by cell-specific
control through G-protein-coupled MLT membrane receptors
MT1 andMT2 (118) and GABAergic mechanisms (119, 122, 123)
[cf. Figure 4]. MT is broadly distributed in the body and are vital
for immunomodulation, endocrine, reproductive and
cardiovascular regulation, cancerogenesis, and aging.
Additionally, MLT interacts with cytoplasmic factors (i.e.
quinone-reductase-II/MT3 receptors, calmodulin) and nuclear
receptors (i.e. retinoid acid receptor related orphan and Z
receptors, ROR, RZR), while numerous other actions of MLT
are receptor independent (e.g., radical scavenging) (114, 124–
128). MLT concentration reaches high levels at night (plasma
peak between 0200 h and 0400 h), overlapping with decreases
in core body temperature, alertness, and performance (111,
113). The sharp elevation of nocturnal cerebrospinal fluid
(CSF) MLT exerts substantial protective effects and is
responsible for nocturnal tissue recovery after the daily free
radical brain damage due to high oxygen utilization (129).
Frontiers in Psychiatry | www.frontiersin.org 8
These multifaceted chronobiotic regulatory actions have led to
the recognition of MLT as one of the most pleiotropic biological
signals in photoperiodic species (114, 130). On the other hand, it
is important to note that the majority of laboratory mouse strains
do not produce melatonin and thus challenge the importance of
MLT in related animal findings (131).

Finally, sleep acts restorative in concert with the CS, but also
independently, towards optimizing the internal temporal order
(132). Sleep propensity and sleep stage timing, regulated through
the subPVN and DMH, are bidirectionally associated with
circadian gene expression in the SCN (133), but also strongly
modulated by MLT levels (119, 134–138).
INTERACTIONS BETWEEN THE HUMAN
CIRCADIAN AND STRESS SYSTEM

The human CS and SS are closely and bidirectionally
interconnected at multiple central and peripheral functional
FIGURE 4 | Multilevel interactions between the circadian system and the hypothalamic-pituitary-adrenal (HPA) axis. AC, adrenal cortex; CRH, corticotropin releasing
hormone; GCs, glucocorticoids; ipRGC, intrinsically photosensitive retinal ganglion cells; MT, melatonin receptor; PVN, paraventricular nucleus; RHT,
retinohypothalamic tract; RNS, reactive nitrogen species; RORa, retinoic acid receptor-related orphan receptor a; ROS, radical oxygen species; RZRb, retinoid acid
receptor related Z receptor b; SCN, suprachiasmatic nucleus; SCG, superior cervical ganlia.
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levels (19, 22, 23, 139–148). The circadian properties of the HPA
axis are so distinct, that, along with MLT, GCs have been
established as a robust measure of CS output activity.
Additionally, MLT and GCs can also feedback at various levels
and influence the main circadian rhythm themselves.
Interestingly, the phase angle between CORT and MLT onset,
the two major hormonal output signals of the CS and the HPA
axis, has been identified as a potential useful biomarker in human
stress-related research (149).

Influence of the CS on SS Activity and
Reactivity
The HPA axis shows distinct circadian activity at rest with a
robust diurnal oscillation of circulating GCs (i.e., cortisol,
CORT) concentrations, rapidly rising in the middle of the
biological night and peaking in the early morning, reaching
their nadir before the habitual inactive phase onset (19, 141,
142, 150). SCN ablation completely abolishes the GC circadian
rhythm, suggesting that HPA axis activity is driven by the central
CS (151). In addition, the CS has a major influence on the ANS.
Major human cardiovascular markers, such as heart rate, blood
pressure, baroreflex, heart rate variability (vagal measure),
plasma epinephrine, and norepinephrine levels (sympathetic
measure) and their response to stressors exhibit robust
circadian variations with a distinct peak of sympathetic activity
Frontiers in Psychiatry | www.frontiersin.org 9
and nadir of parasympathetic activity in the morning hours
(152–157). By doing so, the HPA axis and SNS activity are
believed to prepare the organism for the higher energetic
demand associated with typical external and internal stressors
of the waking phase (24).

Neurohumoral Interactions
The CS orchestrates the circadian activity and reactivity of the
HPA axis through both hormonal and neuronal pathways. There
are three main pathways of CS influence on the HPA axis: (i)
direct SCN influence on HPA axis at the hypothalamic level, (ii)
SCN innervation of the adrenal glands through indirect,
multisynaptic autonomic innervation, and (iii) peripheral
rhythms of local adrenal clocks, all three involved in the
steroidogenic pathway and the ACTH-dependent transduction
cascade in the zona glomerulosa and zona fasciculata of the
adrenal gland (158) [cf. Figures 2 and 5]. The first pathway
includes direct and indirect (through subPVN and DMH)
neuronal projections of the SCN to CRH/AVP containing
neurons of the medial parvocellular PVN modulating the
circadian secretion of CRH and AVP (108, 146, 159, 160).
Through the second pathway, the SCN transmits photic
information via multisynaptic autonomic innervation (i.e.,
preganglionic intermediolateral projections to the spinal cord
and splanchnic nerve innervation) to the adrenal medulla and
FIGURE 5 | Multilevel interactions between the circadian system and the hypothalamic-pituitary-adrenal (HPA) axis. ACTH, adrenocorticotropic hormone; APG,
anterior pituitary gland; AVP, arginine vasopressin; BMAL1, brain-muscle-arnt-like protein 1; CA, catecholamines; CLOCK, circadian locomotor output cycle kaput;
CRH, corticotropin releasing hormone; CRYs, cryptochromes; HSD, hydroxysteroid dehydrogenase; ipRGC, intrinsically photosensitive retinal ganglion cells; GCs,
glucocorticoids; GR, glucocorticoid receptor; PERs, periods; PVN, paraventricular nucleus; REV-ERBa, reverse viral erythroblastosis oncogene product alpha; RHT,
retinohypothalamic tract; RORa, retinoic acid receptor-related orphan nuclear receptor alpha SCN, suprachiasmatic nucleus.
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from there through catecholamines to the cortex (161), thus both
modulating the diurnal ACTH sensitivity of the adrenal cortex
and stimulating the GC circadian release in light exposure
conditions through an HPA axis-independent manner of direct
interaction with the own peripheral rhythm of the adrenal gland
(i.e., PER1 and StAR gene expression) (7, 140, 162–169).
Interestingly, SCN neurons display connections to SNS and
PNS, indicating that the SCN is not only essential for the
physiologic autonomic diurnal fluctuations seen in humans
(153, 155, 157), but also involved in both activation and
deactivation of neuronal innervation of the adrenal in a
circadian circle (80). The intrinsic circadian rhythm of adrenal
glands in metabolic activity and GC release even in culture has
been shown very early in literature (170), while clock genes
expression was repeatedly reported in the following years (140,
164, 165, 171, 172). However, additional adrenal-intrinsic
mechanisms depending on systemic cues, such as food-
entrainable oscillators of the gland, could influence the diurnal
rhythms of GC secretion (173, 174). Another very important
mechanism for shaping the GC circadian rhythm is their own
systemic levels, exerting a negative feedback regulation of ACTH
release (175). The sensitivity of this feedback mechanism is
highest during the trough point of the circadian glucocorticoid
rhythm depending only MR at this time, while both MR and GR
are involved at the GC peak-point lowest sensitivity (175).
Finally, MLT, apart from its direct modulating effect on the
SCN (176), has been also shown to directly influence GC
production and release by the adrenal gland, as well as
acetylation rhythms of GR, GR translocation to the nuclei and
transcriptional activity (125, 172, 177, 178). MLT has been found
to prevent adrenal response to ACTH (177, 179) and directly
inhibit CORT production through MT1 adrenal receptor
activation, possibly through their action on the Type II 3b-
HSD (3b-Hydroxysteroid-dehydrogenase/D5-4 isomerase)
enzyme activity, which catalyzes the biosynthesis of hormonal
steroids through the oxidation and isomerization of D5-3b-
hydroxysteroid precursors to D4-ketosteroids (180). Taken
together, this illustrates the multilevel circadian “gating”
control on the physiological GC secretion rhythm through
SCN, HPA axis and ANS activity, GC and MLT levels, feeding
and the robust intrinsic rhythm of the adrenal gland itself,
involving clock gene expression in the metabolism and
secretion of GCs (80, 140, 141).

In addition, MLT acts directly through MT1/MT2 on the
electrical activity in SCN neurons (118, 119) and interacts with
the “clock” gene (PER1/2, CRY1/2, CLOCK, BMAL1, etc.)
proteasome TTFL in the SCN, thus being crucial for circadian
entrainment in photoperiodic species (121).

Molecular Interactions
The neurohumoral interactions between CS and SS described
above, have further molecular underpinnings at the cellular level,
where the GR plays a fundamental role. For example, findings
suggest that the CLOCK/BMAL1 heterodimer behaves as a
reverse-phase negative regulator of hGRa in the periphery,
antagonizing the physiologic actions of diurnally fluctuating
Frontiers in Psychiatry | www.frontiersin.org 10
GCs. Through a region enclosed in the C-terminal part of
the CLOCK protein, CLOCK/BMAL1 physically interacts
with the ligand-binding domain of hGRa and acetylates the
hGRa at multiple lysine residues, thereby reducing GR’s affinity
to its cognate glucocorticoid response elements (GREs) and,
thus, leading to decreased hGRa-induced transcriptional
activity of glucocorticoid-responsive genes (144, 181–184). GR
transactivational activity fluctuates in a circadian fashion and in
reverse phase with CLOCK/BMAL1 mRNA expression (182)
and leads to a higher hGRa acetylation and decreased tissue
glucocorticoid sensitivity in the morning, mirroring the circadian
pattern of serum CORT concentrations (183). In addition,
a CLOCK-mediated posttranslational modification of hGRa is
involved with the nuclear localization signal 1 (NL1), altering the
cytoplasm-to-nucleus translocation of the receptor
following ligand-induced activation, and indicates that the
hGRa acetylation by CLOCK is linked to several molecular
mechanisms (182). Moreover, Lamia and collaborators
demonstrated that CRY1/2 interacted with the carboxyterminal
domain of hGRa, thereby reducing the DNA-binding of the
receptor and its transcriptional activity (185). Interestingly, the
effect of a specific clock gene deletion on circulating GCs seems
to depend on the specific TTFL missing member, suggesting that
alteration of the positive or negative limb of the core clock
feedback loop may have opposing effects on stress regulation.
Accordingly, BMAL1 (TTFL positive limb gene) deletion leads to
low adrenal ACTH sensitivity throughout the circadian circle,
supporting constant low GC levels and insensitivity to acute
stress (186). Genetic deletion of CRY1/2 (TTFL negative limb
genes) leads to nonoscillating and elevated GC levels due to
impaired feedback inhibition (185, 187). In contradistinction, the
PER1/CRY1 complex reduces the maximal GR transactivation
but not the efficacy of the receptor (184). Furthermore,
CHRONO (ChIP-derived repressor of network oscillator),
which is encoded by a BMAL-target gene, interacted with
BMAL1, CRY2 and DEC2 and recruited the histone
deacetylase 1 (HDAC1) to the transcriptional machinery,
ultimately repressing the principal transcriptional loop (188).
CHRONO is also able to acetylate the hinge region lysine cluster
of GR, reducing its DNA-binding and thus indicating that this
protein might play a fundamental role in the interaction of the
CS with the SS (182, 188, 189). More recent in vitro and in vivo
studies also showed that REVERBa, in interaction with heat-
shock-protein (HSP) 90, influences the stability and nuclear
localization of GR in the liver and provides another link
between the CS, metabolism and glucocorticoid actions (190,
191). In addition, transcriptional cofactors of nuclear receptors
(e.g., PGC1a) has recently been also implicated in circadian clock
function (192), while interacting with the GR (193). Similarly,
HSP, forming a dynamic complex with the GR in the cytoplasm
(i.e., before GC binding and nuclear translocation), also display a
circadian regulation through systemic circadian temperature
changes, thus contributing to clock entrainment in peripheral
tissues (194, 195). Finally, FKBP5, a chaperone protein of
particular interest involved in directing activated GRs to the
nucleus and implicated in a number of stress related psychiatric
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disorders, is also rhythmically expressed in most tissues (196),
suggesting its involvement in circadian gating of GC signals.

Influence of the SS on the Central and
Peripheral CS
Apart from the influence on many important biological
processes, the rhythmic oscillations of the SS activity and
especially the HPA axis and GC rhythmicity exert a vital
synchronizing effect on the central and peripheral CS activity
(19, 23, 92). GCs, through binding to the hGRa, can efficiently
reset the activity of peripheral clocks (197–199), while they spare
the SCN, which maintains its master intrinsic circadian rhythm,
as it does not express GRs (158, 197). The attenuation of the
peripheral clocks by the phase-shifting effects of the GCs is then
normally restored by the influence of the SCN. However, the SS
has to directly influence the SCN through an alternative pathway,
as both stress exposure and exogenous GC application enhances
AVP and VIP mRNA expression and release in the SCN (200,
201), while acute stress exposure also leads to an upregulation of
Per1 and Per2 protein expression in the SCN (202). For example,
CORT and CRH are suggested to directly modulate PGL activity
and stimulate MLT synthesis, interfering in the daily adjustment
of the light/dark cycle (179, 203–206). In addition, GCs play an
important role in the adjustment of nutrition-related uncoupling
between the central and peripheral CS, as their high secretion
after feeding slows down the circadian uncoupling and restores
proper phasing (173, 207). GCs are, thus, not just a downstreal
hormonal output of central and peripheral clocks, but can also
influence the CS itself and interact with other clock outputs
toward a harmonious circadian regulation (141, 197), adding
another interaction level between the stress and the circadian
clock system. Alteration of the GC rhythm (e.g., through
exogenous GC administration) can, thus, attenuate the central
and peripheral circadian activity and vice versa (167, 208). Taken
together, the SS through its effectors efficiently adjusts the
circadian rhythm-linked output pathways of the body to
properly respond to stressors, providing resistance to stress
challenges in order to evade uncordinated circadian shifts (23).

Molecular Interactions
Diurnally circulating GCs vitally contribute to the development
of the CS activity by adjusting the phase of peripheral oscillators
(19, 148). GCs synchronizing effects mainly involve GR-related
phase shifting of peripheral circadian expression of several clock-
related genes (197, 209–216). All peripheral clocks express GR,
which translocate into the nucleus after activation and modulate
transcriptional activity of several clock genes (e.g., PER1/2) and
transrepressing genes expressing transcription factors of the
auxiliary TTFL (e.g., Rev-ERBa, RORa) through binding to
functional GREs in their promoter region (217–222). PER1
contains GRs in its regulatory sequences, while GRs influence
the expression of PER2 through binding to an intronic domain
(218). GCs lead herewith to upregulation of these genes, causing
a phase delay of peripheral clocks with respect to the SCN master
clock (218). A genetically, functionally (e.g., adrenalectomy) or
pharmacologically (i.e. externally administered corticosteroids)
attenuated GC diurnal rhythm has been shown to be associated
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with abolished or shifted circadian clock gene (e.g., PER1/2)
expression in several peripheral tissues (e.g., liver, preadipocytes,
kidney, bronchial epithelial cells, pancreas, bone tissue, cornea,
fibroblasts cardiac muscle tissue), despite the presence of an
intact molecular oscillator (167, 197, 208, 209, 215, 216, 223–
226). Even externally applied corticosteroids can entrain
molecular oscillation in peripheral clocks (215, 227) and have
been shown, for example, to speed up or slow down adaptation to
a new light-dark schedule after jetlag-induced circadian
desynchrony (198).

However, rhythmic GC signaling is also required for periodic
clock gene expression in certain brain regions outside the SCN,
suggesting an important role of the adrenal rhythm also for
higher brain functions in key stress-system-related regions (228).
Indeed, GR-mediated GC signaling is, for example, fundamental
for the rhythmic expression of PER2 in the amygdala (213, 229),
while adrenalectomy is shown to supress and extended GC
exposure to increase PER gene expression in the PVN, bed
nucleus of stria terminalis (BNST) and other limbic areas (219,
228, 230–232). GC-dependent circadian gene expression could
even be indirectly involved in a GC feedback pathway to the SCN
(233). For example, serotonergic projections of the raphe nucleus
to the SCN involved in light entrainment (234) show a GC-
dependent circadian transcription of tryptophan hydroxylase-2
(TH-2), an enzyme involved in serotonin synthesis (235).

Finally, the SAM/ANS constitutes another pathway in stress-
induced peripheral circadian entrainment. Administration of
adrenaline or noradrenaline has been shown to induce PER1/2
expression through the cAMP response element-binding protein
(CREB) signalling pathway (236–238). Furthermore, GR-related
GC effects and clock machinery also interact through a
modulation of catecholamine biosynthesis and degradation,
thus influencing time-of-day-dependent stress responses and
further reinforcing the interaction between the CS and the SS
(94, 239, 240). Catecholamine biosynthesis is both GC- and
clock-regulated, as TH (i.e., the main synthesis pacemaker
enzyme) is repressed by Rev-ERBa (241) and induced by
the GR-activated the nuclear orphan receptor NURR1
(NR4A2) (242). Similarly, catecholamine degradation depends
on the CLOCK/BMAL1-activated monoamine oxidase I
(MAO-A) and the GR-regulated catechol-O-methyltransferase
(COMT) (243).

Taken together, GC rhythms exert an accompanying
circadian signal which consitutes an additional level of security
to ensure proper circadian signalling input to the cell cycle
oscillating machinery, while, on the other hand, peripheral
clocks might gate this GR-specific input.
STRESS AND CIRCADIAN
MISALIGNMENT

Chronodisruption and Sleep Dysregulation
The human CS enables the nyctohemeral organization and
coordination of many temporal physiologic processes
promoting homeostasis and environmental adaptation (18). A
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misalignment of the human circadian rhythm is associated with a
critical loss of this harmonious biological timed order at different
organizational levels, which is defined as chronodisruption (244–
246). Chronodisruption-related cacostatic load with short- and
long-term pathophysiologic and epigenetic consequences (245–
247) can lead to a wide range of biological consequences in the
organism (246, 248–255). Chronodisruption may gradually
change the fundamental properties of brain systems regulating
neuroendocrine, immune, and autonomic function and denotes
a breakdown of appropriate biobehavioral adaptations to
challenges with increased stress sensitivity and vulnerability to
stress-related disorders (20, 256, 257).

In human research, chronodisruption has been tightly
associated with sleep deprivation/dysregulation (SD) or phase
shifting (i.e., jet-lag, swift-workers) (81, 132, 258). Sleep acts in
concert with the central CS, but also independently towards an
optimal internal temporal order (132). Specific sleep stages are
closely related with specific clock gene expression in the SCN and
are tightly ruled by the CS (81, 132, 258). SD has been associated
with circadian-related gene expression alterations in humans
(259–262). In addition, SD also relates to various HPA axis
dysregulations (e.g., flattened CORT rhythm amplitude, blunted
CORT awakening response (CAR), increased but also decreased
diurnal CORT levels, higher CRH levels) and altered endocrine
stress reactivity (e.g., attenuated pituitary ACTH reactivity,
increased adrenocortical ACTH sensitivity) (257, 263–269), as
well as to altered autonomic regulation with increased sympatho-
adrenal and reduced vagal activity and blunted cardiovascular
autonomic rhythmicity and autonomic reactivity (257, 270–273).
Accordingly, chronodisruption in humans has been associated
with increased risk for cardiovascular morbidity, metabolic
consequences, inflammation, immune dysregulation,
psychiatric disorders and even elevated cancer risk (226, 240,
274–280). Interestingly, even circadian gene polymorphisms
have been associated with some similar consequences (281, 282).

Stress and Chronodisruption
In addition to other crucial circadian cues that can dysregulate
circadian rhythms (e.g., SD, nutrition, light), stress can also lead
to acute/reversible or sustained chronodisruption. Normally,
after exposure to stressors, the SS can transiently override the
CS creating a transient uncoupling of the central and peripheral
circadian rhythm, through a hGR-related phase shift of
peripheral clock-related genes (182, 197, 207, 212, 217, 221,
283). Thereby, the SCN is only indirectly influenced (198) and is,
thus, able to maintain its master rhythm and restore its initial
main phase to the periphery after stress termination (283, 284).
Indeed, subacute stressors have been experimentally shown to
have only transient impact on SCN-regulated rhythms in animal
research (285, 286). However, the stability of the SCN clock
appears to fade away after extensive acute or chronic physical,
psychological, inflammatory, or metabolic stress (25). For
example, in a study comparing single versus chronic social
defeat across two weeks, single stress exposure advanced only
the adrenal peripheral clock, while chronic stress also clocks in
the CNS (287). Animal research provides additional evidence
that chronic mild stress disrupts the regulated gene expression of
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several clock genes in several peripheral (287, 288), but also CNS
tissues, including the hippocampus, amygdala, PFC (202, 286,
289, 290) and the SCN (283, 284, 291, 292). Chronic stress
exposure in mice has been shown to alter the circadian properties
of the HPA axis (293, 294), while extensive physical stress after
surgery in humans leads to disturbances in MLT, CORT and core
body temperature rhythms (295). In addition, numerous human
and animal studies suggest that acute extensive and chronic
stress can affect major sleep centers of the brain (202, 205, 288,
289, 293–296) and, thus, influence sleep physiology leading to
both immediate and long-lasting sleep disruption (297–299).

Circadian-Phase-Dependent Stressor
Effects
Apart from the physiological circadian activity of the SS, the
stress responsiveness also displays diurnal sensitivity changes,
probably through differential interference of the SCN to different
brain areas (146, 159, 300). For example, acute psychological
stress, involving higher brain areas and the limbic system, as well
as acute physical external stress (i.e., restraint/immobilization,
foot shock, shaking stress) exert the largest stress response
during the rest phase (301, 302), when the HPA axis is less
responsive, while acute physiological internal stress (i.e.,
oxidative stress, hypoglycaemia, hemorrhage), relayed to the
PVN and brainstem, at the beginning of the activity phase
(303, 304), when the HPA axis is most sensitive to stimulation
(175). This appears reasonable, as acute physiological internal
stress represents a greater threat during the active phase of
animals, while acute external physical stressors (e.g., predator
attack) during the inactive phase, while animals are asleep.

Interestingly, further experimental findings in animals
suggest that repeated external stress exposure (i.e., chronic
stress) has a more detrimental effect when applied during the
inactive phase, (284, 305–308), while chronic psychosocial stress
(i.e. social-defeat paradigm) shows inverse effects and exerts
more detrimental effects during the active phase (307, 309) in
animal research. These results jointly suggest that the effect of a
stressor depends not only on the circadian phase of exposure, but
also on the interaction of the circadian phase with the stressor
type, as well as with the chronicity of the stressor (25, 310). For
example, both physical and psychological stress at the beginning
of the light phase leads to a phase advance, while at the beginning
of the dark phase to a phase delay of PER2 expression in
mice (286).
CHRONODISRUPTION AND TRAUMATIC
STRESS

The stress-related effects on internal rhythms described above
have supported a recent research focus on the potential causal
role of SD and chronodisruption in the acute pathophysiology
and the development of long-term effects of traumatic
stress exposure, suggesting that chronodisruption may
represent a potential underlying neurobiologic link (311–315).
The association between sleep and circadian disruption and
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psychopathology was first officially noted by Emil Kreapelin in
1883 (316) and has evolved through the years by numerous
biological findings (317).

Traumatic stress exposure may cause both immediate and
long-lasting SD (297–299), which may represent a central
pathway mediating the enduring neurobiological correlates of
trauma (297, 311, 312, 318–320) [cf. Figure 6]. For example,
several human cohort studies have repeatedly suggested that
early-life traumatic stress exposure is related to adult SD years
later, including global (i.e., insomnia), but also other specific
sleep pathologies, such as prolonged sleep onset latency,
shortened total sleep time, decreased sleep efficiency,
nightmare related distress, increased number of awakenings,
sleep apnoea, and higher nocturnal activity (321–332). Such
sleep dysregulation could further enhance maladaptive stress
regulation and precipitate the neurobiological correlates of
traumatic stress through impaired homeodynamic balance,
resulting in the extensive symptomatology and comorbidity of
trauma-related disorders (314, 333–350).

Posttraumatic Stress Disorder: When Time
Stands Still
Posttraumatic stress disorder (PTSD) is classified in DSM-5 as a
trauma- and stress-related disorder following a psychologically
distressing event outside the range of usual human experience
(351). Evidence of circadian dysregulation in PTSD mostly
originates from sleep research findings. According to DSM-5,
SD represents prominent clinical feature of the disorder with
very high prevalence (312, 320, 351), and is often closely related
to severity of PTSD psychopathology (352, 353) and resistant to
first-line treatments (354–356).

SD in PTSD is associated with sleep-related arousal
dysregulation (357) and include sleep avoidance, insomnia,
nightmares, hyperarousal states, sleep terrors and nocturnal
anxiety attacks, body-movement and breathing-related sleep
disorders (311, 320, 358–362), with increased sympathovagal
tone during rapid-eye-movement (REM) sleep, fragmented REM
sleep patterns, and reduced REM theta activity (311–313, 318,
363–365). Similar findings have been in animal and human SD
studies (366, 367). Interestingly, REM sleep disruption in the
immediate aftermath of a trauma (311, 318, 319), as well as sleep
impairment prior to traumatic stress exposure could represent
risk factors for PTSD development (368, 369). SD prior to
trauma have been specifically shown to be associated with a
2.5-fold increased risk of fulfilling PTSD criteria 3 months after a
trauma in general population admitted to a hospital or after
deployment in active military troops respectively (368, 369). SD
after trauma thus represents a rather core than secondary feature
of PTSD (297, 311, 312, 318–320, 370) and may be both a
precipitating and perpetuating factor of the disorder (371–373).

Besides SD, traumatic stress also affects neural correlates of
memory formation (374–376). Memory processing, formation
and consolidation are directly influenced by sleep (377–387).
Sleep promotes memory consolidation, particularly for
emotionally salient information (383), while SD reduces the
connectivity between amygdala and PFC (388) thus disrupting
memory consolidation (389–393), as repeatedly shown in PTSD.
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In addition to SD studies in PTSD, additional CS-related
evidence on chronodisruption in PTSD originates from genetic,
neuroendocrine, autonomic, and immune findings. For example,
genome-wide association studies have also implicated to core
circadian genes as PTSD candidate risk genes: pituitary adenylate
cyclase-activating polypeptide (PACAP) and retinoid-related
orphan receptor alpha (RORA-a) gene. PACAP is involved in
phase resetting in response to light (394–396) and RORA-a is
rhythmically expressed and regulates BMAL activity (397, 398).
Furthermore, as immune system activity tightly follows circadian
rhythms imposed by the SCN synchronisation (205, 399–405),
our recent first report on the loss of the typical peripheral
biphasic rhythm of IL-6 in combat stress exposed individuals
(406), is of particular importance.

Further neuroendocrine findings in PTSD repeatedly show
increased central CRH levels, altered HPA axis reactivity with
enhanced negative feedback inhibition and blunted circadian
CORT rhythm and CAR, while some studies—but not all—have
shown decreased circulating concentrations of CORT (407–419).
Similarly, patients with PTSD exhibit increased autonomic
reactivity, elevated central and peripheral norepinephrine
concentrat ions , higher basal hear t rate , increased
sympathovagal balance, blunted salivary alpha-amylase
awakening response and, most importantly, blunted diurnal
autonomic differences (341, 417, 420–427), suggesting central
neuroautonomic dysregulation leading to higher cardiovascular
risk in PTSD (415, 428, 429). In addition, disrupted MLT levels
in the first 48 h after traumatic stress exposure were shown to be
associated with a higher PTSD development risk (430).

Finally, PTSD has been frequently related to several other
comorbidities, such as chronic fatigue syndrome (CFS) (431–
434), fibromyalgia (435–439), rheumatoid arthritis (348), which
all share a very similar underlying neuroendocrinological profile
to PTSD (e.g., hypocortisolism, blunted diurnal CORT rhythm
and HPA axis reactivity) (440–445) and have all been repeatedly
associated with sustained chronodisruption (446–456).
CHRONOTHERAPEUTIC IMPLICATIONS
FOR PTSD

Current evidence suggests that SD and CD may have a vital
predispositional role in PTSD development (314), while their
effective treatment could be associated with substantial
improvement of overall PTSD symptomology (312, 457–459).
Nevertheless, SD is still often clinically addressed as a secondary
symptom in PTSD. Careful assessment and treatment of SD and
CD should therefore be an integral part in PTSD management
(356, 364, 371–373). Cognitive-behavioral sleep management in
PTSD constitutes a widely acceptable and effective treatment
option with durable gains and beneficial effects (356, 460–462).
In addition, the antihypertensives a-1 adrenoreceptor antagonist
prazosin and a-2 adrenoreceptor agonist clonidine, the synthetic
cannabinoid receptor 1 and 2 agonist nabilone and the
multilemodal antidepressant trazodone (i.e., serotonin-reuptake
inhibitor, 5-HT2A receptor agonist, histamine H1 receptor
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FIGURE 6 | Schematic model of trauma-related chronodisruption as underlying biological pathway leading to posttraumatic stress disorder (PTSD) and PTSD-
related comorbidities.
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antagonist, a-1 and a-2 adrenoreceptor antagonist) have been all
shown to be effective pharmacological approaches for PTSD-
related sleep disturbances and trauma-specific nightmares (463–
467). Standard pharmacological sleep management in PTSD,
however, may treat sleep quantity sufficiently, but often fail to
improve daytime functioning and restore CD in PTSD (132, 468).
Therefore, development of chronopharmacological interventions
that would restore CS-related alterations and herethrough
counteract changes in PTSD-related neurocircuitry could
represent interesting novel therapeutic strategies (469–472).

Melatonergic Treatment
Recent experimental findings emphasize on a pleiotropic, but
crucial role of MLT in mechanisms of sleep, cognition and
memory, metabolism, pain, neuroimmunomodulation, stress
endocrinology and physiology, circadian gene expression,
oxidative stress, and epigenetics, thus suggesting a potentially
beneficiary effect of an add-on melatonergic treatment in PTSD
(374, 473). Numerous studies have repeatedly confirmed the
efficacy of melatonergic treatment on almost every aspect of sleep
disturbance, while preserving a benign side-effect profile and
safety in both short- and long-term administration, with no
efficacy wear-off, withdrawal effects or dependence risk (119,
474–480). MLT and melatonergic agonists, were found roboustly
associated with (i) reduced sleep onset latency and increased
sleep propensity, efficiency, quality, and total sleep duration in
patients with insomnia, (ii) increased REM sleep percentage and
continuity, normalization of sleep patterns, body-movement and
breathing-related pathologies and improvements in subjective
measures of daytime dysfunction in neuropsychiatric patients
and (iii) advanced sleep/wake rhythm phase adjustment and
sleep and wake-up propensity in healthy adults (119, 134, 135,
138, 474, 477, 478, 480–486). In addition, MLT is known to
adjust and reset amplitude and phase of CNS (e.g., SCN,
hippocampus, pituitary pars tuberalis) and peripheral (e.g.,
adrenal gland) circadian-related gene expression (172, 177,
178, 180, 487–489) and to moderate the circadian regulation of
GR function (140, 141, 144, 183, 490). MLT also decreases
hypothalamic CRH levels and inhibit the ACTH-stimulated
CORT production in the primate and human adrenal gland
(172, 177–180, 487–489), thus attenuating the adrenocortical
secretory response in acute and chronic stress models (491–494).
With respect to the ANS, MLT entrain disrupted autonomic
rhythmicity by inhibiting central sympatho-adreno-medullary
(SAM) outflow and shifting autonomic balance in favour of vagal
activity (154, 495–498). Interestingly, research findings suggest a
direct enhancing effect of melatonergic transmission in stimulus
processing, memory consolidation, and conditional cued fear
extinction, especially under stress (499–502). Finally, immediate
melatonergic treatment directly after exposure to stress,
normalizes the altered expression of Per 1 and Per 2 genes in
hippocampal regions of rats, thus suggesting a possible
immediate preventing properties (202). MLT has been shown
to protect these hippocampal neurons from oxidative stress, by
preventing GC-related toxicity through decrease of receptor
translocation to nuclei in models of sleep deprivation and
chronic stress (503–506). Taken together, MLT and
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melatonergic agents could therefore represent a promising
adjuvant contribution to the clinical treatment and perhaps
prevention of stress-related syndromes and comorbidities in
mental disorders in general and PTSD in particular (124, 314,
471, 507–509).

Other Potential Treatment Possibilities
Further options for a pharmacological or nonpharmacological
manipulation of the interplay between CS and SS in order to
interfere in the pathophysiology of trauma-related disorders are
of theoretical interest and deserve thorough further investigation
through preclinical research and clinical confirmation.
For example, exogenous application of GCs and GC-analogs in
a time-of-day dependent fashion (i.e., as in immune therapy),
could contribute to a reset of peripheral clocks (55, 144,
510) or even contribute to PTSD prevention if applied
immediately after trauma exposure (511). On the other hand,
pharmacological GR-antagonism has been found associated with
insomnia symptoms improvement (512) and could also
represent a potential approach.

As sleep promotes memory consolidation, particularly for
emotionally salient information, sleep deprivation in the
beginning of the resting phase directly after traumatic stress
exposure may also decrease the risk of PTSD development
(513), possibly through reduction of mPFC-amygdala
connectivity (388, 390, 392). Furthermore, first findings suggest
that casein kinase 1ϵ, a closely related clock components
implicated in period determination, could represent a novel
target of pharmacological inhibition, thus stabilizing the
circadian clock against phase shift (472). Finally, it is important
to mention, that selective serotonine reuptake inhibitors (SSRI),
as first-line treatment option for PTSD, have been shown to exert
additional, CS-related effects. In particular, fluoxetine treatment
was shown to modulate the CS via phase advances of SCN
neuronal firing (514) and also normalize disrupted circadian
locomotor activity and hippocampal clock gene expression in a
genetic mouse model of high trait anxiety and depression (515).
CONCLUSIONS

In Plato’s cosmology, as presented in the Timaeus, time is
suggested to depend on the periodic regularity of movement,
which is secured and defined by the planets (516). This periodic
movement of our planet has contributed to the evolution of the
internal time-keeping system, that creates and maintains cellular
and systemic rhythmicity, through temporal organization of
physiologic processes throughout several structural levels in
the organism, the CS. The intrinsic rhythmicity of this system
is based on a core set of clock genes involved with an
autoregulatory transcriptional/translational feedback loop
machinery. By rephrasing Plato’s words, we could, thus, state
that human time depends on the periodic regularity of
transcription, which is secured and defined by the clock genes.
The award of the 2017 Nobel Prize in Physiology or Medicine to
J.C. Hall, M. Rosbash and M. W. Young “for their discoveries of
molecular mechanisms controlling the circadian rhythm” (517)
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is a testament to the fundamental importance of circadian clocks
and the molecular complexity of behavior regulation.

However, over the past seven decades, modern society has
cultivated a new, round-the-clock lifestyle, which enhances
temporal misalignment between internal (i.e., central and
peripheral) and geophysical circadian cycles. Given the close
interconnection between the CS and the SS at various levels,
internal desynchrony could synergistically contribute to the
development of a higher stress sensitivity and vulnerability for
stress-related disorders. Understanding the mechanisms
susceptible to chronodisruption following toxic stress exposure
and their role in a chronically dysregulated circadian network in
stress-related disorders could provide new insights into disease
Frontiers in Psychiatry | www.frontiersin.org 16
mechanisms, advancing psychochronobiological treatment
possibilities and enabling preventive strategies in stress-
exposed populations (74, 312, 518).
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