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Warming-induced expansion of trees and shrubs into tundra vegetation will

strongly impact Arctic ecosystems. Today, a small subset of the boreal woody

flora found during certain Plio-Pleistocene warm periods inhabits Greenland.

Whether the twenty-first century warming will induce a re-colonization of a

rich woody flora depends on the roles of climate and migration limitations in

shaping species ranges. Using potential treeline and climatic niche modelling,

we project shifts in areas climatically suitable for tree growth and 56 Greenlandic,

North American and European tree and shrub species from the Last Glacial Maxi-

mum through the present and into the future. In combination with observed tree

plantings, our modelling highlights that a majority of the non-native species find

climatically suitable conditions in certain parts of Greenland today, even in areas

harbouring no native trees. Analyses of analogous climates indicate that these

conditions are widespread outside Greenland, thus increasing the likelihood

of woody invasions. Nonetheless, we find a substantial migration lag for Green-

land’s current and future woody flora. In conclusion, the projected climatic

scope for future expansions is strongly limited by dispersal, soil development

and other disequilibrium dynamics, with plantings and unintentional seed

dispersal by humans having potentially large impacts on spread rates.
1. Introduction
Arctic vegetation is changing in response to increasing temperatures over the

past decades [1]. Satellite imagery indicates increased productivity [2], while

repeated-photographic studies report greater shrub cover [3,4], increased tree

growth at the boreal–tundra ecotone [5], and northward expansions of trees

[6,7]. These vegetation changes will trigger several feedback loops with the cli-

mate system [8] and may have profound effects on ecosystems [9]. Do these

changes mark the beginning of a greener future Arctic in which tundra vege-

tation is transformed by the expansion of a rich boreal woody flora, similar

to the situation during Pliocene and certain Pleistocene warm periods (cf.

[10,11])? Recent evidence suggests that shrubs are currently expanding locally

across the entire Arctic, although at regionally varying rates [12]. Possible mech-

anisms explaining such regional variation include soil disturbance and changes

in biotic interactions such as herbivory, while dispersal limitation has received
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very limited attention. Nonetheless, dispersal dynamics

could be important and especially so in certain parts of the

Arctic, such as Greenland owing to its isolated position,

rugged topography [13,14] and massive inland icecap.

Greenland’s current vegetation is dominated by Arctic

tundra, with subarctic forest–tundra vegetation only occur-

ring inland in southern Greenland [15,16]. The flora of

Greenland has relatively few vascular plant species relative

to other Arctic regions [17], with currently only four native

tree and large shrub species, Sorbus groenlandica, Alnus viridis
ssp. crispa, Betula pubescens and Salix glauca, and the low-

growing Juniperus communis being the only conifer presently

native to Greenland. This floristic poverty may not only

reflect the contemporary climatic conditions, but also persist-

ent historical effects of Greenland’s nearly full ice cover

during recent glaciations, largely prohibiting in situ survival,

and its isolated position, limiting postglacial immigration.

A number of introduced North American and Eurasian tree

and shrub species are currently growing and reproducing

in Greenland [18,19] (figure 1), suggesting that Greenland’s

woody flora may be in disequilibrium with climate by lacking

some species that could physiologically occur there due to

dispersal constraints on their establishment in Greenland.

Dispersal limitation is an increasingly recognized cause of dis-

equilibrium dynamics [20] (i.e. directional climate-driven

vegetation changes that occur with a lag relative to the climatic

driver [21]), and it is obvious that long generation times,

barriers, habitat fragmentation, soil development and com-

petition might slow down migration rates tremendously

[22]. Notably, dispersal limitation and related disequilibrium

dynamics are reported for the range limits of some northern

tree species at the boreal-Arctic treeline [14,23,24] as well as

within the boreal zone [25]. However, the extent to which the

current Greenlandic tundra vegetation is the result of post-

glacial dispersal constraints on the migration and subsequent

spread of shrubs and trees within the region remains unknown.

A better understanding of these warming-induced vegetation

dynamics is crucial for improving our ability to project vege-

tation changes and resulting feedbacks in Greenland under a

warmer future climate.

The vegetation history of Greenland provides evidence for

pronounced vegetation changes in response to increased temp-

eratures. In the Late Pliocene and beginning of the Pleistocene

(ca 2 Myr ago), Greenland was at times almost ice-free and

boreal forests expanded across large areas [10]. Macrofossil

remains from northeastern Greenland show the presence of

subarctic forest–tundra with a rich boreal shrub and tree

flora, consisting of species and genera such as Picea mariana,
Thuja occidentalis, Taxus, Betula sect. Albae, A. viridis ssp.
crispa and the now extinct Larix groenlandii and Myrica
arctogale [11,26,27]. In some Middle Pleistocene interglacial epi-

sodes, southern Greenland was also covered by rich boreal

forest, including species of Picea, Abies, Pinus, Taxaceae,

Alnus and probably also Betula and Populus [28,29]. During

the Last Interglacial (ca 130–100 kyr ago) when summer temp-

eratures in Greenland were 4–68C warmer than at present [10],

Alnus cf. viridis ssp. crispa and B. pubescens [30] reached as far

north as Jameson Land in central eastern Greenland [30],

while vegetation in southern Greenland was dominated by

Alnus and the temperate fern Osmunda. However, boreal coni-

fers such as Picea were not present or at least not common [28].

Only a small subset of the above-mentioned species occurs in

Greenland today. Cold temperatures and the large icecap of
the last glaciation allowed just a few Arctic species to persist

[31,32]. By the beginning of the Holocene, most of the coastline

became ice free and by 6 kyr ago, sea level and ice volumes were

close to present-day conditions [10], with higher summer temp-

eratures than at present [2,10]. The large majority of the present

flora of Greenland colonized postglacially from adjacent areas

in North America and Eurasia [33]. Some woody species such

as Empetrum nigrum s.l. and Vaccinium uliginosum recolonized

Greenland from the start of the Holocene, 10–11 kyr ago,

while long immigration lags are suggested by the later arrival

of others, Salix arctica, Sa. glauca, Betula nana and J. communis
ca 8–9 kyr ago, Betula glandulosa ca 6 kyr ago, and A. viridis
ssp. crispa and B. pubescens ca 4 kyr ago [34,35].

Here, we assess the postglacial and likely future

geographical responses of woody vegetation and species to

climatic warming in Greenland by a combination of physi-

ology-based treeline modelling, climatic niche modelling,

migration modelling, and analyses of potential source and

sink areas for immigrant woody species. First, we address the

importance of climate and postglacial migration lags as con-

straints on the current distributions of trees and shrubs in

Greenland. We do this by estimating (i) areas below the potential

treeline, (ii) the degree to which Greenlandic species occupy cli-

matically suitable areas within Greenland, (iii) which North

American and European species could potentially grow in

Greenland today, and (iv) when during postglacial times climate

became suitable for these species in Greenland, allowing us to

estimate immigration lag times. Second, we consider future cli-

mate scenarios to quantify the climate potential for twenty-first

century expansions of tree and shrub species across Greenland

and assess the likelihood that Greenland will be transformed

again by a re-colonization of a rich boreal woody flora, similar

to that occurring during the Pliocene and some Pleistocene

warm periods. We do this by (i) forecasting treeline shifts and

future climatically suitable areas for tree and shrub species, (ii)

computing future migration lags and areas likely colonized by

year 2100, based on specific dispersal distances and migration

rates, and (iii) estimating extent of and distance to areas with

analogous climates in Greenland, North America and Europe

to highlight areas most likely to become sources or sinks for

future immigrant or introduced woody species.
2. Material and methods
(a) Study species
We focused our analyses on 12 shrubs and trees native to Green-

land, as well as woody species with maximum heights greater

than or equal to 50 cm which occur in Arctic or subarctic areas

bordering Greenland, i.e. in North America and Europe (n ¼ 26;

see the electronic supplementary material, appendix S1 for further

information). Furthermore, we selectively added some of the non-

native tree and shrub species that are planted in Greenland today

(n ¼ 16), as well as a few taxa that occurred in Greenland during

the Late Pliocene and in warm interglacials during the Pleistocene

(n ¼ 2). In total, 56 species were analysed.

We used three types of information on the study species’ cur-

rent geographical ranges: occurrence records extracted from

GBIF (http://www.gbif.org), dot maps and range outlines (see

the electronic supplementary material, appendix S1 for sources

of the latter two). GBIF occurrences were filtered by selecting

records with geographical positions from either direct obser-

vations or specimen records, with a horizontal precision of the

geographical coordinates smaller than the resolution of the

http://www.gbif.org
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Figure 1. Areas suitable for trees according to the treeline model as well as current natural and planted occurrences of selected native and non-native tree and
shrub species. (a,b) Current projections of the treeline model with two Digital Elevation Models of different resolution: 30-m (light green) and 3000 (approx. 700-m,
dark green). Black circles indicate areas where non-native trees or shrubs have been planted (see the electronic supplementary material, appendix S2 for details).
Qinngua valley: locality with natural woodland vegetation mentioned in the text. In (b), black and grey dots represent known native occurrences of B. pubescens and
So. groenlandica, respectively. (c – f ) Projections of suitable areas for tree growth at (c) 2 kyr ago, (d) 4 kyr ago, (e) 6 kyr ago and ( f ) 9 kyr ago, respectively. (g – j )
Future projections: (g) A1b, 2050, (h) A1b, 2100, (i) A2, 2050 ( j ) A2, 2100. Past and future projections at the 3000 resolution. The number of GCMs for which
suitable conditions are projected is shown.

rstb.royalsocietypublishing.org
PhilTransR

SocB
368:20120479

3

climatic information (less than or equal to 8 km). The precision of

the geographical coordinates (as defined in [36]) was estimated

by taking into account the number of decimal digits of the lati-

tude and longitude and the position on the Earth with the

Harvesine formula. To reduce the effects of bias in GBIF occur-

rences, we randomly spaced the samples by only including at
most three records per 100 � 100 km. After digitalizing dot

maps and range outlines, we sampled within each range outline

presences by a geographically stratified random sampling (allow-

ing one record per 100 � 100 km). Pseudo-absences were

sampled outside the range outlines but only within the conti-

nents where the species naturally occur by random sampling of
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one absence per 100 � 100 km (see the electronic supplementary

material, appendix S3). In addition to the information on native

ranges, we compiled information on planting locations and

establishment success of tree and shrub species in Greenland

(see the electronic supplementary material, appendix S2).
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(b) Climatic data
Data on present-day climate were obtained from the Worldclim

dataset at 50 and 100 resolution (period 1950–2000, http://

www.worldclim.org/). Simulations of past climate were

obtained from a global ocean–atmosphere climate model with

a temporal resolution of 1000 years and a spatial resolution of

3.758 � 2.58 [37]. We selected several time points to cover the

late glacial and Holocene, starting with the Last Glacial Maxi-

mum (ca 21 kyr ago) and including 15, 12, 9, 6, 4, 2 kyr ago.

The simulations of past climate were first downscaled to 100 reso-

lution as described in [38] and subsequently disaggregated to 50

resolution. Climate data for the future were obtained from the

IPCC Data Distribution Centre (http://www.ipcc-data.org/) and

the WCRP Multi-Model Data (https://esg.llnl.gov:8443/data)

and initially downscaled to 3000 with the Worldclim (http://

www.worldclim.org) climate grids as baseline and subsequently

aggregated to 50 resolution. Six global circulation models (CGCM

v. 3.1, CSIRO-MK v. 3.5, GFDL-CM v. 2.1, ECHAM5/MPI,

PCM, UKMO-hadCM3) and two emission scenarios (A1B and

A2) [39] represented potential future climate. All six GCMs were

used to analyse future treeline shifts, while only the CGCM 3.1

was used in the climatic niche models. We mostly considered

two future time periods: 2041–2050 and 2091–2100, hereafter,

referred to as 2050 and 2100, but used decadal time steps for simu-

lating migration with MigClim [40]. Based on monthly values of

temperature and precipitation we derived three bioclimatic vari-

ables that are regarded as important in determining subarctic

and Arctic plant species distributions: average summer tempera-

ture, temperature of the coldest month and annual sum of

precipitation. All climate rasters were projected to the North Pole

Lambert Azimuthal Equal Area projection.
(c) Estimating the potential climatic treeline
The potential climatic treeline was estimated by an algorithm that

combined two criteria for the establishment of tree populations:

(i) a minimum of 94 days with a daily mean air temperature of

0.98C) and (ii) a mean air temperature during these days of at

least 6.48C [41,42]. First, daily mean temperatures at elevations

ranging from 0 to 2000 m with a 25 m interval were computed

based on monthly average temperatures (100 resolution) and a

standard adiabatic lapse rate of 0.55 K per 100 m. Second, the

highest elevation meeting all the above-mentioned criteria was

kept as the potential treeline for each of the 100 grid cells of

Greenland. Third, areas below the potential treeline were ident-

ified based on a Digital Elevation Model (DEM). The approach

described above is hereafter referred to as the treeline model.

We used two DEMs of different resolution. The 3000 SRTM

DEM (obtained from http://www.worldclim.org) was used for

all areas and times. With such coarse resolution, the treeline

model might fail to identify small areas with suitable microtopo-

graphic conditions in regions with large elevation differences.

Therefore, we applied the 30 m ASTER Global Digital Elevation

Model (obtained from http://asterweb.jpl.nasa.gov/) in certain

smaller regions under current conditions. These latter, computa-

tionally intensive, analyses were not possible for all of Greenland

but, as expected, showed less restrictive areas of tree growth

(figure 1) and suggest that the 3000 (approx. 700-m) projections

through time probably provide conservative estimates. While

the treeline definition used here follows [42], it is to some

degree a matter of convention and individual trees might find
suitable climate or microclimate outside the areas identified by

the model.

(d) Climatic niche modelling
Climatic niche models were calibrated with the 50 resolution data

and five commonly used algorithms, two machine learning

(random forest and Maxent), one parametric (generalized linear

models) and one semi-parametric (generalized additive models)

logistic regression, and one simple rectilinear envelope approach

(bioclim) [43]. Presences and pseudo-absences were weighted to

contribute equally to final models [44]. Model evaluation was car-

ried out by splitting the data in 80 per cent for calibration and

20 per cent for validation, and by using the true skill statistic

(TSS) [45], the area under the receiver-operating characteristic

curve (AUC) [46] and sensitivity. Model performance was gener-

ally good (AUC, 0.88+0.05; TSS, 0.68+0.12; sensitivity, 89.9+
3.9) and models calibrated on the full occurrence dataset (see elec-

tronic supplementary material, appendix S3) were used to project

past, current and future suitable climatic areas. Current projections

covered the Northern Hemisphere north of 308 latitude while all

projections of past and future suitable climate were computed

only within Greenland. We transformed the projected probabilities

into presence–absence using the TSS for optimizing thresholds for

splitting. We built simple summed ensembles of the projections

and generally considered the agreement among the majority of

the models (at least three) to provide high support for presence.

If not noted otherwise, the reported results are based on the

majority of models. All models were computed with biomod2

[47] in R v. 2.15.1 [48], and for Maxent, we used v. 3.3.3 k [49].

(e) Likely colonized area, migration lags and required
migration rates

To shed light on the likelihood of tree and shrub expansion in

Greenland in the near future, we used three approaches: we

(i) estimated past immigration lags based on pollen-based arrival

dates [34,35] and when during postglacial times climate became

suitable for native and non-native species in Greenland, (ii) simu-

lated the likely spread and likely colonizable area of native species

by year 2100 with estimated dispersal distances and a cellular auto-

maton, MigClim [40], and (iii) used observed migration rates and a

simple distance-based approach to compute future likely colon-

ized areas (suitable areas that can be reached by year 2100 given

a realistic migration rate), migration lags (how long it will take suit-

able areas to be reached by year 2100 given a realistic migration

rate), as well as migration rates required to reach a given area by

year 2100. See electronic supplementary material, appendix S5

for details on these analyses.

( f ) Areas of analogous climates
We identified and mapped areas in North America and Eurasia

with analogous climates in Greenland, as well as areas in Green-

land with analogous climates on the two continents. Following

the methodology used in Ohlemüller et al. [50], we used a

range of climatic niche breadths to quantify the extent of and dis-

tance to climatically analogous areas; narrow to wide niche

breadths indicate climatically analogous areas for species with

a narrow to wide climatic tolerance range. We restricted search-

ing for analogous climates to the mainly boreal and Arctic

climate zones north of 308N (see the electronic supplementary

material, appendix S4). Using the same climate variables as for

the niche models, each grid cell in North America and Eurasia

was compared with each grid cell in Greenland and each grid

cell in Greenland was compared with each grid cell in North

America and Eurasia (see the electronic supplementary material,

appendix S4 for details).

http://www.worldclim.org/
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https://esg.llnl.gov:8443/data
http://www.worldclim.org
http://www.worldclim.org
http://www.worldclim.org
http://www.worldclim.org
http://www.worldclim.org
http://asterweb.jpl.nasa.gov/
http://asterweb.jpl.nasa.gov/
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3. Results
(a) Potential treeline in Greenland
Current areas below the potential treeline at the 3000 and 30 m

resolution mainly occur in southern Greenland and around

Kangerlussuaq, inland in western Greenland (figure 1). These

areas generally overlap or are close to the known localities of

natural woodland and forest plantations, but are considerably

larger in some regions and fail to project certain plantation and

woodland sites in others, e.g. the ‘Kussuaq plantation’ and the

natural woodland vegetation in Qinngua valley in southwest

Greenland. Potential areas for tree growth are estimated to

first appear at 9 kyr ago and are expected to expand consider-

ably towards year 2100 (figure 1), with three of six GCMs even

projecting suitable areas for tree growth in northern Greenland.
 ocB
368:20120479
(b) Climatically suitable areas and migration constraints
for trees and shrubs native to Greenland

When comparing the observed distribution of Greenland’s

native species with projected areas of suitable conditions, we

find high agreement for half of the native Greenlandic species,

i.e. B. nana, E. nigrum s.l., J. communis, Rhododendron lapponicum
s.l., Sa. glauca and V. uliginosum (figure 2; electronic sup-

plementary material, appendix S3). For the remainder,

generally species with higher temperature requirements, we

also project considerable areas outside the currently observed

distribution as climatically suitable. These areas are, especially,

in east- and southeast Greenland (B. pubescens, So. groenlandica,
Rhododendron tomentosum, A. viridis s.l.) as well as small

(B. pubescens) or larger (B. glandulosa, A. viridis s.l.; figure 2)

areas around Kangerlussuaq. For Sa. arctica, a high Arctic

species, large areas in southern Greenland, south of the species

current distribution, were projected suitable. A majority of the

climatic niche models (three or more) indicate that suitable

climates have been present in Greenland since 9 kyr ago

for B. pubescens and J. communis, since 12 kyr ago for A. viridis
ssp. crispa and B. glandulosa, and since 15 kyr ago or 21 kyr ago

for the rest of the native species (electronic supplementary

material, appendix S3; figure 4). Given pollen-based arrival

dates, immigration lags ranging between 900 and 13 000

years are estimated for the native species (see the electronic

supplementary material, appendix S5). By year 2100, many

species are projected to find substantial suitable areas north

of their current ranges (figure 3; electronic supplementary

material, appendix S3). New suitable areas and the largest

increases in potential species richness are projected for cen-

tral-west Greenland around Nuuk and Kangerlussuaq and

northwards, as well as on the east coast, notably on Jameson

Land (figure 3), also for the relatively tall-growing B. pubescens
and A. viridis ssp. crispa (figure 2; electronic supplementary

material, appendix S3). The key shrub species B. nana is

projected to find suitable climatic conditions in most parts of

ice-free Greenland by the end of this century (figure 2; elec-

tronic supplementary material, appendix S3). Nonetheless,

the migration simulations and estimated likely colonized

areas suggest that mainly local to regional geographical expan-

sions are to be expected by year 2100, despite the large

increases in climatically suitable areas (figures 2 and 3; elec-

tronic supplementary material, appendix S5). Furthermore,

we estimate that Greenland’s native species require more

than 2000 years (median, ca 5700 years) to reach all areas
climatically suitable by the year 2100 (electronic supplement-

ary material, appendix S5) or, if these areas should be

colonized by the year 2100, a migration rate of 3–29 km yr– 1

would be required (figure 2; electronic supplementary

material, appendix S5).

(c) Climate potential and migration constraints for
North American and Eurasian trees and shrubs
in Greenland

The majority of the climatic niche models (three or more)

support the availability of suitable climate conditions in

Greenland for 46.5 per cent of the analysed North American

and Eurasian species (see the electronic supplementary

material, appendix S3), while 71.4 per cent was supported

by at least one model. In several cases, only the minority of

models project the presence of species already planted and

reported to grow well in Greenland, e.g. Betula pendula,
Larix sibirica, Larix laricina, Pic. mariana, Picea glauca, Picea
abies, Pinus sylvestris and Populus balsamifera (see the elec-

tronic supplementary material, appendices S2 and S3).

Generally, the models project that most of the non-native

species would find suitable conditions in southern Greenland

and further north along the west coast around Nuuk

(figure 3). A bit further north around Kangerlussuaq, we pro-

ject suitable conditions for fewer species, e.g. Pinus contorta
(figures 2 and 3; electronic supplementary material, appendix

S3). According to the majority of the climatic niche models,

suitable climates became available in Greenland before

9 kyr ago for the majority (96%) of the non-native species

finding suitable climates in Greenland today, suggesting

immigration lags of at least 9000 years (see the electronic sup-

plementary material, appendix S5). Climate tends to become

suitable later for non-native than native species, and from

12 kya ago onwards suitable area for native species has

been significantly larger than for non-native species (figure

4). Substantial additional areas, notably around Nuuk, Kan-

gerlussuaq and Jameson Land, are projected to become

suitable for many more tree and shrub species in the future

(figure 3), including species of genera such as Larix and

Picea that were common in Greenland in earlier warm periods

(see the electronic supplementary material, appendix S3). The

future estimated likely colonized areas, migration lags (mini-

mum, ca 2500; median, ca 8500 years) and required migration

rates (7–29 km yr– 1), however, indicate that natural expan-

sions by the year 2100 are likely to be at a local scale

(figure 2; electronic supplementary material, appendix S5).

(d) Source and sink areas with analogous climates
Potential source areas for immigrants into Greenland are

areas in neighbouring regions with climates similar to those

on Greenland. Eurasia has larger potential source areas than

North America, but these areas are on average more distant

to Greenland than those in North America (see the electronic

supplementary material, appendix S4, figure S4.2). As

expected, potential source areas mainly occur in the Arctic,

but there are also some in mountain ranges in western North

American and Scandinavia as well as in the Alps (figure 5a–c).

Among potential source areas, Baffin Island, Svalbard and

parts of Ellesmere Island harbour the climate conditions that

are the most common in Greenland (figure 5a–c). In contrast,

potential source areas in Iceland have climates that are
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Figure 2. Current, future and past climatically suitable areas of three native tree and shrub species and one non-native tree species. (a – d ) Projected currently
suitable conditions across the Northern Hemisphere. The numbers of models (0 – 5) projecting presence are shown. (e – h) Projected currently suitable areas in
Greenland. Insets show these areas for the regions on Greenland currently occupied by each native species (computed with a convex hull encircling all occurrence
records). (i – l ) Future suitable conditions (year 2100) according to the A1b and A2 scenarios and the CGCM 3.1 global circulation model. Within the areas suitable
according to the A1b scenario, the time required to colonize all climatically suitable areas (i.e. migration lags in years computed based on observed migration rates
and a simple distance-based approach) are shown. Likely colonized areas by the year 2100 are shown in light green. Dark green areas (year 0) represent the
approximated current range. The insets in (i – k ) indicate the likely colonized area by year 2100 according to the MigClim migration simulation (see the electronic
supplementary material, appendix S5). (m – p) Past suitable conditions. The timing (kyr ago) of the first appearance of climatically suitable conditions is shown.
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relatively rare in Greenland. Potential sink areas for immi-

grants into Greenland are areas in Greenland with climates

similar to those in neighbouring regions. Sink areas for
North American and Eurasian species are in particular found

around Kangerlussuaq and in northern Greenland. Climate

conditions here are analogous to those across large parts of
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Figure 3. Current (a,d ) and future (b,e) potential diversity, and (c,f ) their difference (future minus current) for studied non-native tree and shrub species that find suitable
climates in Greenland today (a – c; n¼ 26) and for all native Greenlandic tree and shrub species (d – f ; n¼ 12). Future projections are according to the A1b scenario for
2091 – 2100 and the CGCM 3.1 global circulation model. Insets indicate the current observed diversity (d) and its difference (f ) with the future potential diversity.
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North America (wide niche breadths only) and Eurasia

(figure 5). In contrast, eastern Greenland climates are rare

across the Northern Hemisphere (figure 5).
4. Discussion
Greenland could be greener today. Our treeline and niche

models provide evidence that suitable climatic conditions

occur in Greenland for the majority of the non-native boreal

species we studied. Areas climatically suitable for tree growth

and several non-native species are particularly projected for

southern and central-western Greenland (figures 1–3). Overall,

these areas coincide with occurrences of native trees and tall

shrub species, as well as successful plantings of several non-

native coniferous genera (Abies, Larix, Picea, Pinus, Thuja and

Tsuga) and broad-leaved trees (Populus, Sorbus and Alnus;
figure 1; electronic supplementary material, appendix S2). In

addition, in southern Greenland cones or fruits have been

observed for 18 planted non-native tree species, resulting in

self-sown offspring for at least L. sibirica, Pic. glauca, Pinus
contorta, Salix alaxensis and Po. balsamifera (figure 1; electronic

supplementary material, appendix S2). Biogeochemistry veg-

etation modelling [51] also supports a natural vegetation of

cold-tolerant evergreen needle-leaf forest across large areas in
southern Greenland. In central-western Greenland some

native and non-native species even find suitable conditions in

areas that naturally harbour no tree species at all. Around

Kangerlussuaq, several non-native species are reported to grow

relatively well (e.g. L. sibirica, Pinus contorta, Pic. glauca, Pic.
mariana, Po. balsamifera and Sa. alaxensis, figure 1; electronic sup-

plementary material, appendix S2). Additionally, the native

species B. pubescens and A. viridis do not grow here naturally,

although niche models, the vegetation modelling of Kaplan

et al. [51], and plantings indicate suitable climatic conditions.

Our modelling results, together with the additional evi-

dence discussed earlier, provide evidence for climate-range

disequilibrium and strong migration lags for some native

species within Greenland, as well as immigration lags for

many currently non-native coniferous and broad-leaved

cold-tolerant species. Among these are several species and

genera that represent taxa also found in Greenland during

Pliocene and certain Pleistocene warm periods, notably

Alnus, Betula, Abies, Picea, Larix, Myrica, Populus, Tsuga and

Thuja [11,26,28,29]. For example, Pic. mariana and the now

extinct Greenlandic species Larix groenlandii [52] (closely

related to the present-day northern larches L. gmelinii,
L. laricina, L. sibirica and L. decidua) were important com-

ponents of the rich subarctic forest–tundra that occurred in

northeastern Greenland ca 2 million years ago. Thuja was
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also part of this vegetation. It is the western North American

species Thuja plicata rather than the eastern North American

T. occidentalis for which suitable areas are projected, although

it was the latter that occurred in Greenland in Plio-Plioecene.

Generally, among the non-native species, it is mainly species

from the western North America that are projected to find

large suitable areas in Greenland, e.g. Picea sitchensis, Abies
lasiocarpa, Picea engelmannii and Pin. contorta. In contrast,

the projected suitable areas for species with continental or

eastern ranges in North America tend to be relatively small.
This probably reflects the relative oceanic conditions in

Greenland. The analyses of analogous climates support this

pattern, highlighting that such climates are particularly wide-

spread in western North America (figure 5). In summary,

given its present climate southern Greenland could be

greener today, with a rich boreal woody flora similar to

that occurring during past warm periods (figure 3).

The expected near-future climatic changes will increase the

climatic scope for the expansion of trees and shrubs in Green-

land. Treeline and niche models project substantial increases

in the areas climatically suitable for trees and shrubs by year

2100—expanding even to northern Greenland. Large increases

in the number of native and non-native species for which there

will be suitable conditions are in particular projected for cen-

tral-western Greenland (around Kangerlussuaq and Nuuk)

and Greenland’s central-east coast (figure 3).

While climatically possible, how likely is a recolonization

of Greenland by a richer boreal flora in the near future? For

the tree and shrub species currently not growing in Green-

land, the main question is whether they naturally can reach

Greenland at all. Our findings suggest that Greenland’s cur-

rent tree and shrub flora is strongly shaped by postglacial

immigration lags of many thousands of years. By comparing

pollen-based estimates of first arrival with the time at

which climate first became suitable, we estimate immigration
lags of 900–13 000 years for Greenland’s native tree and

shrub species (see the electronic supplementary material,

appendix S5). Non-native species have, by definition, failed

to colonize Greenland, representing immigration lags for

most species of at least 9000 years, even for those present in

nearby northeast North America (electronic supplementary

material, appendix S5). Generally, non-native species tend

to have had less time for colonization (i.e. climate became

suitable later) and the area of suitable climate available

through time has been smaller than for native species

(figure 4), potentially contributing to their failure to establish

by natural means in Greenland. Broad geographical patterns

of analogous climates in the regions around Greenland may

also contribute to these immigration failures. Areas in north-

ern Greenland and around Kangerlussuaq harbour the

climatic conditions that are most widespread in North Amer-

ica and Eurasia, while eastern Greenland climates seem to be

rare outside Greenland (figure 5). This could partly explain

this region’s low observed species richness [17]. Furthermore,

Iceland harbours climatic conditions that are relatively rare in

Greenland, especially with regard to temperature of the cold-

est month. Thus, Iceland and eastern Greenland seem to be

poor stepping-stones for the many Eurasian species, which

potentially could grow in western Greenland.

Since species currently not found in Greenland have not

been able to colonize during the past several millennia, despite

the presence of suitable climatic conditions in Greenland, it is

unlikely that these species will do so in the near future. The

Last Interglacial offers an interesting analogy here. During

this period, temperatures in Greenland were 4–68C warmer

than today and within the range of what is expected for Green-

land in year 2100 [2]. The climate was so mild that the

temperate fern Osmunda was common in southern Greenland

[28]. Still, the vegetation was dominated by Alnus, and perhaps

Betula (cf. [30]), while conifers appear to have been absent
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Figure 5. Areas of analogous climate. Analogous climates were calculated with niche breadths of 5, 25 and 50% (columns 1 – 3, see text and electronic supplementary
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North America. The legend is plotted with Natural Breaks (Jenks). The values at the bottom of each plot give its range of values, with minimum values in red and
maximum values in blue.

rstb.royalsocietypublishing.org
PhilTransR

SocB
368:20120479

9

throughout this approx. 10 000 year period [28], despite the

existence of a climate that must have been suitable for many

conifer species. Hence, migration constraints may strongly

shape vegetation development on even multi-millennial

time scales.

For native and non-native tree and shrub species already

growing in Greenland, it is equally unlikely that the projected

expansions will rapidly occur naturally on a Greenland-wide

scale during the current century. Our migration modelling

suggests future migration lags of several millennia and locally

restricted spread by year 2100 (figures 2 and 3). Hence, the

near-future vegetation development is likely constrained

considerably by lags in dispersal, as well as other processes,
such as soil development and succession, together leading to

long-term disequilibrium and spatially variable vegetation

dynamics [21]. Long, geographically variable delays in treeline

expansion are also suggested by simulated treeline expansion

lags of 150–250 years in Alaska [25] and millennia in Siberia

[53], and by palaeoecological estimates of multi-millennial

lags in expansions of certain tree species at some treelines

in northern Canada [14,23,24]. Importantly, colonization of

B. pubescens onto glacier forelands in Norway today takes up

to 200 years below the treeline, but was delayed by a further

450 years after the initial Holocene warming, perhaps reflecting

long distances to source populations [54]. Even when climate is

suitable and seed sources present within local landscapes,
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succession to forest on deglaciated terrain often takes many

decades or centuries [54,55].

Many factors might reduce and/or enhance future

migration rates; topographic barriers [13,14], fragmentation

[56], microsite availability, physical disturbance regimes (e.g.

fire [57,58]), permafrost degradation [59], human disturbance

[60] and biotic interactions (e.g. herbivory, animal burrowing,

seed dispersers and competition). Notably, herbivory has

recently been highlighted as an important process limiting

shrub expansion in Greenland [61]. At the same time,

populations of large avian and mammalian herbivores, perma-

frost, runoff, fire and many other factors create disturbances

potentially enhancing seedling establishment [62,63]. In fact,

seedling establishment is regarded as a key constraint on

reproduction in Arctic plant species [64] and could be a

major determinant of the speed and extent of future expansion

of shrubs and trees in the Arctic. The importance of compe-

tition and fragmentation has been highlighted by modelling

studies taking population dynamics, competition and disper-

sal into account [56,65], and several studies indicate that

topographic barriers may strongly delay treeline advances

[13,14]. The potential migration paths along the rugged coast-

line of Greenland are highly fragmented, and the future

potential habitats of many species are isolated. In consequence,

the species will not easily reach these fragmented habitats by

natural migration, similar to the strong dispersal limitation

modelled for alpine plants with isolated occurrences in the

Alps [66].

Intentional plantings and unintentional anthropogenic

seed transport are likely to speed up migration rates of

some species, and increased economic and societal interests

in remote areas of Greenland (e.g. for exploration of min-

eral extraction, tourism and research) will further increase

the likelihood of invasions [67]. Our identification of vast

areas with Greenland-analogous climate conditions across

the Northern Hemisphere highlight potential source areas for

future introductions into Greenland. For example, the mid-

latitude mountainous areas in western North America are

climatically more connected to Greenland than those of

Eurasia (figure 5). Areas around the international airport in

Kangerlussuaq are potentially important regions for species

introduction as they have climatic conditions that are wide-

spread across large areas in North America and Eurasia

(figure 5). Our results underline that establishment of uninten-

tionally introduced seeds may become more likely in the near

future as more non-native species will find increasingly large

suitable areas in Greenland and may have strong impacts on

the realized vegetation changes by speeding up migration

rates. Nevertheless, a more predictable source of spread is the

already planted and naturalizing tree and shrub species,

which could produce fast local expansions in certain areas,

e.g. landscapes around urban areas. With a warmer climate,

plantings of trees and shrubs as ornamentals and for forestry

are likely to become more widespread in Greenland, and

thus reduce future migration lags [68].

The analyses presented here are not without uncertainties.

While some of the climate niche models failed to project

the distribution of species already growing in Greenland,

other models probably projected areas of suitable conditions

that were too broad, since foehn wind systems, soils and

extreme events were not considered. Hence, some species

might actually only occur within sheltered valleys within the

areas projected as suitable. It has been argued that important
climatic factors limiting tree survival and growth in Greenland

include the frequently occurring, desiccating foehn wind

events and sequences of unusual cold summers rather than

the cool average temperatures [18]. This idea is supported by

severe injuries on both native Betula and planted conifers fol-

lowing cool summers in 1983–1984 [19]. The degree of

damage due to dry foehn wind from the inland icecap can

vary substantially with local topography and might necessitate

finer spatial and temporal scale climate data than used here

[69]. Other limitations for past and future species projections

consist of the extent of the Greenland ice sheet through time

as all projections are made under present-day ice extent. Ice

extent in the past was obviously bigger [31], while the ice

sheet is expected to retreat in the future [70]. Further limitations

originate from uncertainties related with past climate simu-

lations. It is also important to note that the geographical seed

origin might play an important role for the survival of planted

trees [18]. Climate niche models for a species as a whole might

yield distinct projections from models of genetically distinct

populations [71,72]. Such variation between populations was

not taken into account here.

Several areas with known tree growth in southern Greenland

and around Nuuk are not predicted by the treeline model, indi-

cating that the model provides a conservative estimate of the

potential for tree growth across Greenland. There may be several

explanations for these underpredictions. First, the algorithm pre-

dicts core areas for tree growth (i.e. where population can persist

over long periods due to stable climate conditions over time);

hence, single individuals and smaller stands of trees may be

expected beyond the limits predicted by the model, and occur-

rences of B. pubescens and So. groenlandica are clearly found

outside the predicted areas (figure 1). Secondly, the model

might fail to identified small areas with suitable microtopograhic

conditions in regions with large elevational differences [68]

due to larger uncertainty in the macro-scale climate data and

the likely violation of the assumption of a constant adiaba-

tic temperature gradient in topographically heterogeneous

regions. This probably explains the failure of the treeline

model to predict the lush native forest–shrub vegetation of the

Qinngua valley in southern Greenland, as it is surrounded by

high mountain peaks in a topographically heterogeneous

region. Despite these uncertainties, we consider our conclusions

robust due to the broadly consistent results from the treeline

algorithm and the broad range of climatic niche modelling algor-

ithms, as well as their general consistency with areas of native

woodland or planted trees.

In conclusion, future warming is likely to allow growth of

trees and shrubs across much of ice-free Greenland by year

2100, and provide the potential for local expansion of subarc-

tic shrub ecosystems and boreal forest ecosystems in many

parts of the southern half of the region. Such expansion

would strongly affect Arctic biodiversity and ecosystems,

with feedbacks to the global climate system [8]. Shade-

intolerant species may be particularly vulnerable. Loss of her-

baceous species has already been documented in response to

increasing shrub cover [73–76] and richness of vascular

plants, mosses, as well as lichens tends to decrease from

medium-productive tundra to highly productive shrub-rich

tundra [77]. At the same time, the three-dimensional struc-

ture of expanding shrub vegetation might favour richer and

potentially more specialized animal and vertebrate commu-

nities [78–80]. Full realization of the projected expansions is

likely to take centuries or even millennia in many parts of
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Greenland. Immigration lags, within-region dispersal limit-

ation and related disequilibrium dynamics, including the

often multi-decadal or -centennial times needed for succession

into tundra or deglaciated areas—even after local species arri-

val—will lead to long protracted disequilibrium dynamics in

Greenland’s future vegetation. Thus, vegetation dynamics

will be highly variable in space, contingent on accessibility to

natural colonization, stochastic long-distance dispersal events

and with human introductions probably playing a major role.
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