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Despite recent advances in tuberculosis (TB) drug development and availability,

successful antibiotic treatment is challenged by the parallel development of

antimicrobial resistance. As a result, new approaches toward improving TB treatment

have been proposed in an attempt to reduce the high TB morbidity and

mortality rates. Host-directed therapies (HDTs), designed to modulate host immune

components, provide an alternative approach for improving treatment outcome in

both non-communicable and infectious diseases. Many candidate immunotherapeutics,

designed to target regulatory myeloid immune components in cancer, have so far proven

to be of value as repurposed HDT in TB. Several of these studies do however lack

detailed description of the mechanism or host pathway affected by TB HDT treatment.

In this review, we present an argument for greater appreciation of the role of regulatory

myeloid cells, such as myeloid-derived suppressor cells (MDSC), as potential targets for

the development of candidate TB HDT compounds. We discuss the role of MDSC in

the context of Mycobacterium tuberculosis infection and disease, focussing primarily on

their specific cellular functions and highlight the impact of HDTs on MDSC frequency and

function.

Keywords: regulatorymyeloid cells, myeloid-derived suppressor cells, Mycobacterium tuberculosis, host-directed

therapy, immunotherapy

INTRODUCTION

The global TB health concern is exacerbated by the emergence of drug-resistant Mycobacterium
tuberculosis (Mtb) strains. Other considerations, such as the substantial economic burden imposed
by the length of TB treatment and the associated drug toxicity, favor the development of novel
TB drugs (Islam et al., 2017). Surprisingly, the current pipeline for the development of new
antibiotic compounds against Mtb remains slim. TB therapeutic research is now focused on
the establishment of novel treatment strategies, such as host-directed therapies (HDTs), as an
adjunctive approach to the current treatment regimen. HDTs aimed at modulating host immune
homeostasis to ensure eradication of the invading pathogen, whilst simultaneously limiting
tissue pathology, appears most promising. Similar HDT approaches correcting aberrant host
pathways by way of targeting immune checkpoints, have shown huge success in cancer treatment
plans. While immunotherapeutics has placed much emphasis on active enhancement of adaptive
immune cell function through direct targeting of T-cell checkpoints, myeloid cells have recently
emerged as equally attractive immune targets (Burga et al., 2013). Regulatory myeloid cells, such
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as myeloid-derived suppressor cells (MDSC), constitute a key
innate immune checkpoint that impedes protective immunity
in cancer (Young et al., 1987; Gabrilovich and Nagaraj,
2009). Common signaling pathways and similarities in immune
regulation in malignancy and infectious disease, support the idea
that cancer immunotherapeutic discoveries, can guide TB HDT
strategies focused on pharmacological modulation of regulatory
myeloid cells. We discuss the unfavorable role of regulatory
myeloid cells in oncology, efforts to target MDSC in cancer
clinical trials, knowledge on their negative contribution to Mtb
control and highlight TB HDT compounds with potential to
manipulate MDSC.

REGULATORY MYELOID CELLS IN
TUBERCULOSIS: MYELOID-DERIVED
SUPPRESSOR CELLS

While the role of immunosuppressive regulatory T-cells have
been demonstrated (Singh et al., 2012; Larson et al., 2013),
the involvement of regulatory myeloid cells in TB, is not
yet fully appreciated. In this regard, one of the mechanisms
accounting for inadequate T-cell responses, is through defective
engagement of innate immunity (Daker et al., 2015). Therefore,
identification of new targets that regulate innate immune cell
function and promote optimal activity of protective anti-TB
immune responses, are likely to contribute to development of
effective HDT targets.

Myeloid cells are the first responders toMtb challenge during
pulmonary infection and are critically involved in the induction
of adaptive immunity, containment of bacilli and orchestration
of inflammation. The key contribution of innate immunity in
the initiation and regulation of adaptive immunity has led
to the design of immunotherapies modulating innate cells,
aimed at controlling diseases such as cancer (Qin et al., 2015).
While MDSC are considered crucial in curbing inflammation-
induced pathology, chronic or excess inflammation results
in accumulation of MDSC (Ostrand-Rosenberg and Sinha,
2009). Overabundant MDSC, in turn, produce inflammatory
mediators which recruit additional MDSC, thereby exacerbating
inflammation (Cheng et al., 2008; Sinha et al., 2008). MDSC
have also gained attention in the TB field due to their host
immunosuppressive potential and ability to harbor Mtb bacilli
(Knaul et al., 2014).MDSC frequencies are significantly expanded
in the blood of TB patients, but decrease in number following
successful TB chemotherapy (du Plessis et al., 2013). Several
lines of evidence demonstrate the detrimental effect of MDSC
on anti-TB immunity, including T-cell activation, proliferation,
trafficking, regulatory T-cell induction and T-cell cytokine
responses (du Plessis et al., 2013; Obregón-Henao et al., 2013;
Knaul et al., 2014; Daker et al., 2015). MDSC may also impair
phagocyte responses through production of IL-10 and TGF-β,
inhibiting DC and macrophage function, and polarizing these
cells toward a Th2 phenotypic response, as shown in tumor
biology (Knaul et al., 2014). Such impairments are likely to
affect Mtb control mechanisms, as well as the initiation and
maintenance of effective adaptive immunity. MDSC are not

only capable of regulating the intensity of T-cell responses
to particular antigens, but also determine the numbers and
activity of other immuno-regulatory cells. Given this immuno-
modulatory capacity, MDSC should be considered as potential
targets for fine-tuning the host response toMtb. The major value
of MDSC-immunotherapeutic strategies, is that these agents may
be combined with traditional TB treatment and other HDT
options to improve and optimize pathogen clearance.

PHARMACOLOGICAL TARGETING OF
REGULATORY MYELOID CELLS

The phenotypic and functional diversity of cellular
subsets present within the myeloid compartment remains
underappreciated and poorly investigated in the context of TB.
The complexity of innate phagocytes in the lungs of TB patients is
particularly striking, suggesting that detailed characterization is
imperative to understanding the mechanisms of TB susceptibility
or protection (Silver et al., 2016). MDSC, purposed to regulate
inflammation, have gained attention due to their central role
in prevention of host anti-tumor immunity and subsequent
immune escape (Lesokhin et al., 2012). MDSC not only support
tumor cell metastasis, proliferation and angiogenesis, but
also create an immunosuppressive environment for cancer
cell evasion of host immunity and chemotherapy-induced
senescence, thereby promoting disease and treatment resistance
(Gabrilovich et al., 2012; Bronte et al., 2016; Kumar et al.,
2016). An area of intense research in the oncology field, is the
identification and targeting ofMDSCmechanisms andmolecules
supporting tumor escape. Reversal of MDSC function, inhibition
of MDSC recruitment or depletion of MDSC numbers, have
all shown promise in enhancing the activity of cancer vaccines
and therapies in preclinical models, with growing evidence from
clinical trials (Di Mitri et al., 2015; Draghiciu et al., 2015a).

STRATEGIES FOR REVERSING MDSC
IMPACT ON ANTI-TB IMMUNITY

Regulatory myeloid cells such as MDSC have been successfully
depleted with anti-Gr1+ antibodies in murine cancer models,
with an associated reduction in tumor burden (Condamine
et al., 2014). The Gr1+ antigen is, however, not present in
humans, and is also a non-specific granulocyte marker, making
this MDSC depletion strategy highly contentious (Xing et al.,
2016). These findings do, however, suggest that depletion of
MDSC is an effective immunotherapeutic approach. Other
MDSC depletion strategies have shown greater success as cancer
immunotherapy at pre-clinical and clinical trial level, and should
be considered as repurposed treatment options for TB (Draghiciu
et al., 2015a). MDSC targeting strategies can be categorized as
approaches to (1) block MDSC inducing factors, (2) reverse
MDSC functionality, and (3) differentiate MDSC into non-
suppressive cells (Figure 1 and Table 1). There is, however,
considerable cross-talk and overlap between these pathways, with
numerous feedback mechanisms necessitating investigations in
each stage of the TB disease spectrum.
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FIGURE 1 | Immunotherapeutic strategies aimed at targeting regulatory myeloid cell pathways to reduce, inactivate or differentiate MDSC.

INHIBITION OF MDSC EXPANSION AND
RECRUITMENT

Cytokines
In cancer, mediators known to enhance the expansion of
MDSC include interleukin-6 (IL-6), tumor necrosis alpha
(TNF-α), granulocyte-macrophage colony-stimulating factor
(GM-CSF), cyclooxygenase-2 (COX2), prostaglandins, stem-cell
factor (SCF), macrophage colony-stimulating factor (M-CSF),
vascular-endothelial growth factor (VEGF), IL-1β and IL-17
(Shipp et al., 2016). A recent study has shown that blocking of the
IL-6 receptor (IL-6R) or TGF-β in tumor-bearing mice, decreases
both monocytic and granulocytic MDSC subsets, alongside a
reduction in tumor growth and improvement in T-cell function
(Sumida et al., 2012). In contrast, results with GM-CSF treatment
have been variable (Ma et al., 2017). Mice deficient in IL-17R and
IFN-γR, also demonstrated lower MDSC levels and increased T-
cells that were associated with a reduction in tumor development
(He et al., 2010).

In TB, some of these cytokines are also being investigated as
potential targets in HDT approaches, but none have investigated
the effect on MDSC specifically. Instead, adjunctive cytokine
treatment as intervention in TB has, however, largely focused
on supplementation of mediators which activate macrophages to
promote mycobacterial killing or blockade of pro-inflammatory
cytokine signaling to limit lung damage (Condos et al., 1997,
2003; Vogt and Nathan, 2011). The majority of studies report
on IFN-γ treatment of TB and demonstrate a reduction in pro-
inflammatory cytokine production, enhancement of TB-specific
CD4 T-cell responses, enhanced sputum conversion and reduced

radiological involvement, although some inconsistent outcomes
have been reported (Park et al., 2007; Dawson et al., 2009). IFN-γ
treatment has also shown promise as HDT in a small study
on Cuban patients infected with non-tuberculous mycobacterial
lung disease, such asM. avium (Suárez-Méndez et al., 2004). This
suggests that some HDTs may also be beneficial in the treatment
of NTM. It was shown that IFN- γ improved the extent and
clearance rate of pulmonary and radiological symptoms of these
patients by themonth 18 time point (Suárez-Méndez et al., 2004).
Pre-clinical data on anti-TNF-α, anti-VEGF and IL-6R blockers
as TB HDT in TB animal models and case studies of severe
pulmonary TB patients have been encouraging (Okada et al.,
2011; Datta et al., 2015). It remains crucial to appreciate the
complex role of cytokines in TB immune regulation, necessitating
in depth characterization of the optimal cytokine dose and timing
to determine the cytokine’s effect on MDSC induction, and
resultantly on disease modulation.

Enzymes and Transcription Factors
In cancer, several of the cytokine mediators targeted by TBHDTs,
trigger activation of the transcription factor, signal transducer
and activator of transcription 3 (STAT3), which activates the
signaling pathway mediating tumor-MDSC induction (Gao
et al., 2007). In cancer, STAT3 is critically involved in MDSC
expansion by stimulating expression of immature myeloid cell
(IMC) genes involved in MDSC development (Tartour et al.,
2011; Sansone and Bromberg, 2012; Table 1, Figure 1). STAT3
is phosphorylated by the tyrosine kinase Janus kinase/signal
transducer and activator of transcription (Jak/Stat) pathway
(Nicolas et al., 2012). Agents targeting these kinases in cancer
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TABLE 1 | Agents affecting regulatory myeloid cell pathways have been tested as immunotherapeutics in cancer, some of which have also shown promise when

evaluated in TB.

Host-directed

therapy

Regulatory myeloid response to

host-directed therapy in cancer

References Host-directed therapy in TB? References

(1) INHIBITION OF MYELOID-DERIVED SUPPRESSOR CELL EXPANSION AND RECRUITMENT

Anti-IL-6R Reduction of both granulocytic and

monocytic MDSC subsets, reduction

in tumor growth and improved T cell

functions.

Murine model.

Sumida et al., 2012 Experimental stages—effect on MDSC, in the

context of TB, yet to be evaluated.

Troublesome results being found in M.tb infection

model where blockade of IL-6R results in an

increase in susceptibility to infection in mice.

Murine infection model.

Okada et al., 2011

Etanercept

Anti-TNF-α

Reduced MDSC frequencies in the

blood with simultaneous delayed

tumor growth and volume. Potentially

a CD8T cell-dependent mechanism.

Murine and human model.

Bayne et al., 2012;

Atretkhany et al., 2016

Experimental stages—effect on MDSC, in the

context of TB, yet to be evaluated.

Troublesome risk of anti-TNF-α treatment resulting

in reactivation of active disease, especially in latent

infection cases.

Human infection model.

Wallis, 2009

Anti-GM-CSF Variable results. These included the

impairment of GM-CSF-mediated

MDSC differentiation in the

supernatant of cancerous lesions

following treatment with neutralizing

anti-GM-CSF antibodies, as well as

reduced MDSC accumulation in the

spleen following GM-CSF knockout.

Murine model.

Dolcetti et al., 2010; Ma

et al., 2017

Experimental stages—effect on MDSC, in the

context of TB, yet to be evaluated.

GM-CSF appears to confer a protective role in TB

owing to its activation of macrophages to inhibit

intracellular M.tb growth, therefore, a GM-CSF

targeted therapy may prove detrimental to the host.

Murine and human infection model.

Robinson, 2017;

Rothchild et al., 2017

Anti-VEGF Reduced numbers of circulating

VEGFR1-expressing MDSC which

may restore immunocompetency.

Murine and human model.

Kusmartsev et al., 2008 Experimental stages—effect on MDSC, in the

context of TB, yet to be evaluated.

In a TB model, anti-VEGF treatment promotes

vascular normalization, reduces hypoxic areas

within the TB granuloma and thereby provide

improved delivery mechanisms for current

anti-Tuberculosis therapies.

Murine and human infection model.

Datta et al., 2015

Anti-IL-17R +

Anti-IFN-γR

Reduced MDSC numbers, increased

number of T cells, and reduced tumor

development.

Murine model.

He et al., 2010 Experimental stages.

Anti-IL-17R has been shown to reduce the

granulocytic subset of MDSC in a murine TB model.

Murine infection model.

Freches et al., 2013;

Lombard et al., 2016;

Segueni et al., 2016

Sunitinib Tyrosine

kinase inhibitor

(multitargeted)

Inhibition of STAT3 through the

inhibition of the Jak/Stat pathway

reverses MDSC expansion.

Murine and human model.

Chen et al., 2015a;

Draghiciu et al.,

2015b,c; Ko et al.,

2009; Xin et al., 2009

Effect on MDSC, in the context of TB, yet to be

evaluated.

N/A.

Gefitinib Tyrosine

kinase inhibitor

(targets EGFR

mutations)

S100A9+ MDSC-derived

macrophages in the tumor

microenvironment mediate resistance

to tyrosine kinase inhibitors targeting

EGFR mutations.

Human model.

Maemondo et al., 2010;

Feng et al., 2018

Experimental stages—effect on MDSC, in the

context of TB, yet to be evaluated.

Gefitinib has been shown to inhibit STAT3 which is

crucial for the expansion of MDSC, making it a

promising target for directed therapies.

Murine and human infection model.

Stanley et al., 2014;

Sogi et al., 2017

Imatinib Tyrosine

kinase inhibitor

(targets ABL

family)

Reduces the number of MDSC, as

well as the levels of arginase 1, to

those of healthy control patients.

Human model.

Giallongo et al., 2014 Experimental stages—effect on MDSC, in the

context of TB, yet to be evaluated.

Imatinib reduced the number of granulomatous

lesions and bacterial load in a murine TB model.

Murine and human model.

Napier et al., 2011;

Kalman et al., 2017

5-Fluorouracil

(5-FU)

Antimetabolite –

Thymidylate

synthase inhibitor

Reduces the number of MDSC

without affecting other lymphocyte

and myeloid population frequencies,

except those of B cell population

frequencies which are increased.

Murine model.

Vincent et al., 2010 Experimental stages—effect on MDSC, in the

context of TB, yet to be evaluated. Potential

mycobacterial resistance threatens further

investigation of this therapy in the context of TB.

in vitro infection model.

Singh et al., 2015

Gemcitabine

Antimetabolite –

DNA synthesis

inhibitor

Suzuki et al., 2005; Le

et al., 2009

Effect on MDSC, in the context of TB, yet to be

evaluated.

Potentially increases the risk of reactivation of M.tb

infection or increases susceptibility to M.tb infection

in cancer patients.

Not Applicable.

(Continued)

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4 September 2018 | Volume 8 | Article 332

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


du Plessis et al. Myeloid Cell Targets in Tuberculosis

TABLE 1 | Continued

Host-directed

therapy

Regulatory myeloid response to

host-directed therapy in cancer

References Host-directed therapy in TB? References

MiR-155 Inhibitor Reduces the expansion of the MDSC

population within tumor-bearing mice

and tumor growth.

Murine and human mode.

Fabani et al., 2010; Li

et al., 2014

Experimental stages—effect on MDSC, in the

context of TB, yet to be evaluated.

Inconclusive evidence exists that MiR-155 is indeed

disease-promoting and needs to be investigated

further.

Murine and human infection model.

Huang et al., 2015; Iwai

et al., 2015; Wagh et al.,

2017; Etna et al., 2018

MiR-21 Inhibitor Li et al., 2014; Chen

et al., 2015b; Drakaki

et al., 2017

Experimental stages—effect on MDSC, in the

context of TB, yet to be evaluated.

Murine infection model.

Wu et al., 2012

(2) INHIBITION OF MYELOID-DERIVED SUPPRESSOR CELL FUNCTION

Nor-NOHA

Arginase-1

Inhibitor

Delays tumor growth by reversing

MDSC function.

Murine model.

Rodriguez et al., 2003,

2004

Experimental stages.

Nor-NOHA inhibits ARG1 in phagocytes, resulting in

the reduction of mycobacterial growth and lowering

of IL-10 production.

Murine and human infection model.

Talaue et al., 2006; de

Oliveira Fulco et al.,

2014; Mason et al.,

2015

NO-aspirin NOS

and COX-2

Inhibitors

Reverse MDSC-mediated

immunosuppression in both in vitro

and in vivo cancer models, with

marked reductions in MDSC

frequencies and delayed tumor

growth.

Murine and human model.

Wu and Morris, 1998;

Fiorucci et al., 2000;

Bronte and Zanovello,

2005; Corazzi et al.,

2005; Molon et al., 2011

NO-aspirin yet to be tested.

Conflicting aspirin data.

NO inhibitor findings contradict NO-aspirin data as

NO inhibitors resulted in heightened bacterial

burdens, increased lung pathology and reactivation

of latent infection.

Murine infection model.

Chan et al., 1995; Botha

and Ryffel, 2002; Byrne

et al., 2007

IDO Inhibitors Successful inhibition of MDSC

expansion in tumors and reduced

immunosuppressive effects.

Human model.

Wang et al., 2014;

Holmgaard et al., 2015

Experimental stages.

Effect of IDO-i have yet to be evaluated.

Blocking of IDO does, however, reduce clinical

manifestations of TB and alter granuloma

organization.

Murine, macaque and human infection model.

Hirsch et al., 2016;

Gautam et al., 2018

PDE-5 Inhibitors

Sildenafil and

Tadalafil

Reversal of MDSC functions and

augmentation of anti-tumor immunity

via the inhibition of the degradation of

cyclic guanosine monophosphate

(cGMP). This results in a reduction of

ARG1 and iNOS expression.

Murine and human model.

Serafini et al., 2006;

Noonan et al., 2014

Experimental stages—effect on MDSC, in the

context of TB, yet to be evaluated.

Murine and Rabbit infection model.

Subbian et al., 2011,

2016; Maiga et al.,

2013, 2015

COX2 Inhibitors

Indomethacin

and Etoricoxib

Downregulation of the production of

ARG1 and iNOS by MDSC, resulting

in the reduction of suppressive MDSC

functions. May also reduce MDSC

numbers or block MDSC activation.

Murine model.

Rodriguez et al., 2005;

Veltman et al., 2010;

Fujita et al., 2011

Experimental stages.

COX2-i enhance Th1 immunity and downregulate

the frequency of M.tb-induced Tregs, but their

MDSC-specific effects have not yet been evaluated.

Murine and human infection model.

Hernández-Pando et al.,

2006; Tonby et al., 2016

PD-L1 Inhibitors MDSC-mediated immunosuppression

is abrogated.

Murine and human model.

Pilon-Thomas et al.,

2010; Kleffel et al.,

2015; Sharma and

Allison, 2015b;

Kleinovink et al., 2017

Experimental stages—effect on MDSC, in the

context of TB, yet to be evaluated.

Promising results have been shown in a TB model

with the restoration of T cell responsiveness,

cytokine secretion and proliferation, however

immune reactivation responses are troublesome.

Human infection model.

Hassan et al., 2015;

Reungwetwattana and

Adjei, 2016

Calprotectin

(S100A8/9)

Inhibitor

Inhibition of MDSC function resulting

in reduced tumor growth.

Murine model.

Sinha et al., 2008 Experimental stages—effect on MDSC, in the

context of TB, yet to be evaluated.

Upregulation of calprotectin in serum of TB patients

is known to correlate with disease severity and

pathology. Calprotectin is, therefore, a promising

target for directed therapeutics.

Murine infection models.

Kang et al., 2011; Gopal

et al., 2013

(3) MATURATION/DIFFERENTIATION OF MYELOID-DERIVED SUPPRESSOR CELLS INTO NON-SUPPRESSIVE CELLS

ATRA Retinoid-

activated

transcriptional

regulator activator

Maturation of early myeloid cells into

fully differentiated,

non-immunosuppressive cells via the

upregulation of GSH which reverses

MDSC suppressive functions.

Murine and human models.

Kuwata et al., 2000;

Gabrilovich et al., 2001;

Luo and Ross, 2006;

Nefedova et al., 2007;

Nakanishi et al., 2008;

Gabrilovich and Nagaraj,

2009

Experimental stages.

Effect of ATRA on MDSC in a TB model has been

somewhat successful with an observed restoration

of T cell numbers, reduced bacterial burden and

lung pathology.

Murine infection models.

Knaul et al., 2014
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patients are being investigated in an attempt to reverse MDSC
expansion. For example, the tyrosine kinase inhibitor (TKI)
sunitinib, blocks MDSC expansion in cancer patients and tumor
bearing mice (Chen et al., 2015a; Draghiciu et al., 2015b,c).
Furthermore, STAT3 overexpression in myeloid cells trigger
expansion of MDSC and upregulate S100A9, which directs
MDSC accumulation (Cheng et al., 2008; Wu et al., 2011). In
TB, protein kinase inhibitors have also emerged as attractive
candidates in the development of antimicrobial drugs. The TKI,
gefitinib, a FDA-approved compound for the treatment of non-
small-cell lung carcinoma, has recently been tested in human
TB due to its ability to inhibit the epidermal growth factor
receptor (EGFR) and activate autophagy to restrict bacterial
growth. Gefitinib demonstrated in vitro and in vivo efficacy
against Mtb infection, although the involvement of MDSC has
not been considered (Stanley et al., 2014; Sogi et al., 2017). The
TKI, imatinib, has also shown therapeutic efficacy in TB mouse
models, leading to the initiation of a pre-clinical study on Mtb
infection in a non-human primate model, but again, the role of
MDSC was not investigated (Napier et al., 2011; Kalman et al.,
2017). Inhibitors of protein kinase R are also being screened in TB
mouse models, whereas other anti-cancer kinase inhibitors such
as sunitinib, malate and curcumin analogs with known effects on
tumor-derived MDSC induction, remains to be tested in TB.

Cytotoxic Agents
In cancer, selected cytotoxic cancer agents have also been
used to deplete MDSC through a yet undefined mechanism(s).
For example, 5-fluorouracil (5-FU) and gemcitabine treatment
reduces the number of MDSC without affecting the frequency
of T-cells, dendritic cells, NKT- or NK-cells, yet increases the
B-cell population (Le et al., 2009; Vincent et al., 2010). In TB,
the effect of 5-FU on host immunity, more specifically, MDSC,
has not been tested, and although its direct bactericidal action
against Mtb has been reported, mycobacterial resistance to 5-FU
continues to be a concern (Singh et al., 2015). Efforts evaluating
5-FU as TB HDT has been directed to investigation on inhibitors
of phosphodiesterase-5 (PDE-5), which has a known effect on
MDSC function (see section Phosphodiesterase Inhibitors).

Micro-RNA
With antisense technology improving, targeting of microRNAs
(MiR) by immunotherapeutics is increasingly considered (Li
et al., 2014). In cancer, MiR-155 and MiR-21 are critically
required for the expansion of MDSC in tumor-bearing mice
and to facilitate tumor growth; miR 93-106b cluster regulate
expression of PD-L1 on MDSC; while a specific role for
miR-142-3p has recently been suggested in cancer through
preventing differentiation of myeloid cells (Li et al., 2014;
Chen et al., 2015b). The role of MiR in TB continues to be
unraveled, as reports emerge of Mtb facilitating expression of
MiR-155 to disrupt the process of autophagy (Wagh et al.,
2017; Etna et al., 2018). Although MiR-155 is responsive to
TB therapy, it remains inconclusive if its expression is disease
promoting, as MiR-155 knockout mice are susceptible to Mtb
infection (Iwai et al., 2015; Wagh et al., 2017). MiR-21 is also
upregulated following Mtb infection, reportedly to escape the

host immune response by downregulating the genes for TNF-
α and IL-6 (Wu et al., 2012). Also in TB, HDT manipulation
of other miR, controlling key myeloid functions, has also been
proposed. Although not yet tested in clinical trials, Mtb induced
expression of miR-142-3p targets an actin-binding protein
leading to reduced phagocytosis in primary human macrophages
(Bettencourt et al., 2013). MiR-106b-5p was also specifically
upregulated in human macrophages following Mtb infection to
reduce function by lowering cathepsinS expression and favoring
Mtb survival (Pires et al., 2017). Greater understanding of MiR
function and regulation, also in the context of regulatory myeloid
cells is, however, required before therapeutic targeting of host
MiR becomes a reality. This is likely to be accompanied by
the requirement of cell-specific delivery techniques, to avoid
potential off-target immunological effects (Iannaccone et al.,
2014).

INHIBITION OF MDSC FUNCTION

Enzyme Inhibitors
Arginase-1
In cancer, a critical mechanism whereby MDSC induce
lymphocyte suppression is by local depletion of essential amino
acids required for T-cell proliferation. Tumor-MDSC highly
express the enzyme arginase-1 (ARG1) which catabolizes l-
arginine to urea and ornithine (Wu and Morris, 1998; Bogdan,
2001), thereby inhibiting T-cell proliferation through decreased
CD3-theta chain expression (Rodriguez et al., 2003, 2004). In
lung cancer, treatment with the arginase inhibitor Nω-hydroxy-
L-arginine (nor-NOHA) delays tumor growth by reversing
MDSC function (Rodriguez et al., 2004). In TB, Nor-NOHA
inhibition of ARG1 in phagocytes has also shown promise,
through its reduction of mycobacterial growth and lowering of
IL-10 production in vitro (Talaue et al., 2006; de Oliveira Fulco
et al., 2014).

iNOS
In cancer, MDSC also generate oxidative stress by increasing
levels of reactive oxygen species (ROS) and inducible nitric oxide
(iNOS) with resultant immunosuppressive effects (Bronte and
Zanovello, 2005; Youn et al., 2008). ROS and iNOS activity
also steers the production of harmful peroxynitrites, H202 and
NO (Schmielau and Finn, 2001; Youn et al., 2008; Table 1,
Figure 1). Although NO is crucial, in TB, to mycobacterial
control, nitrogen and oxygen intermediates suppress T-cell
function by nitration of the T-cell receptor (Nagaraj et al.,
2007), induction of T-cell apoptosis (Mannick et al., 1999),
reduction of MHC expression(Harari and Liao, 2004) and
reduction of CD3-theta chain expression (Schmielau and Finn,
2001). NOS inhibitors have been shown to reverse MDSC-
mediated immunosuppression in both in vitro and in vivo cancer
models (Wu and Morris, 1998; Bronte and Zanovello, 2005).
For example, nitro-aspirin (NO-aspirin), a new molecule in
which aspirin is covalently linked to a NO-group, suppresses
the production of ROS and provides feedback inhibition to
iNOS (Fiorucci et al., 2000). In vitro and in vivo models of
NO-aspirin treatment have also been shown to reduce MDSC
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numbers, reverse MDSC induced inhibition of T-cell responses
by reducing CCL2 chemokine nitration and delay tumor growth
(Molon et al., 2011). NO-aspirin also inhibits the COX-2 enzyme,
another MDSC inducer (Corazzi et al., 2005). In TB, information
on aspirin as HDT has been conflicting, but the effect of NO-
aspirin remains to be investigated (Byrne et al., 2007). In spite of
this, findings frommurine TB emphasize NO as vital component
in innate immune control of Mtb, and argues against the use
of NO inhibitors as these result in heightened bacterial burden,
increased lung pathology and mortality (Chan et al., 1995) and
reactivation of latent Mtb infection (Botha and Ryffel, 2002).

Phosphodiesterase Inhibitors
Phosphodiesterase-5 (PDE-5) inhibitors (PDE-5-i), such as
sildenafil and tadalafil, have good safety profiles as these have
been used for decades to treat pulmonary hypertension, cardiac
hypertrophy and erectile dysfunction. PDE-5-i were shown
to reverse MDSC function in cancer patients and augment
anti-tumor immunity by inhibiting the degradation of cyclic
guanosine monophosphate (cGMP), leading to reduction in
ARG1 and iNOS expression (Serafini et al., 2006; Noonan
et al., 2014). Promising pre-clinical findings demonstrate that
treatment with PDE-5-i improve T-cell responses, delay tumor
growth and abrogate Treg proliferation in several cancer types
(Serafini et al., 2006). This has resulted in a number of
clinical trials on PDE-5-i in cancer, including a study evaluating
whether treatment of oropharyngeal carcinoma patients with
tadalafil could enhance T-cell tumor infiltration (NCT00843635);
whether tadalafil can improve responses to dexamethasone
chemotherapy (NCT01374217), if sildenafil treatment improves
the outcome of non-small cell lung carcinoma (NCT00752115),
or if tadalafil in combination with a novel vaccine and
gemcitabine chemotherapy or radiation therapy, improves cancer
outcome (NCT01342224).

In TB, the severe side effects associated with thalidomide,
has led to the consideration of analogs, such as PDE-i, with
similar potential to inhibit TNF-α (Aragon-Ching et al., 2007).
PDE-i have been shown to decrease TB disease severity, reduce
lung pathology and bacillary load in mouse models (Subbian
et al., 2011, 2016; Maiga et al., 2013, 2015). The effect of PDE-i
on immune cell phenotypes and function during human Mtb
infection and TB disease remains poorly defined, but future and
ongoing trials could cast more light on the impact of PDE-i on TB
host immune responses, and necessitate evaluation of the effect
on MDSC (NCT02968927).

Cyclooxygenase Inhibitors
Prostaglandin-E2 (PGE-2) has both pro-inflammatory and
immune-suppressive properties and is synthesized by cyclo-
oxygenase-2 (COX2). MDSC highly express the PGE-2 receptor,
E-prostanoid 4, which, upon binding, induces ARG1 (Rodriguez
et al., 2005). In cancer, Treatment of MDSC with COX inhibitors
(COX2-i) have shown to down-regulate their production of
ARG1 and iNOS, thereby reducing MDSC suppressive function
(Veltman et al., 2010). COX2-i may thus target MDSC on
multiple levels, either by reducing their numbers or by blocking
their activation (Rodriguez et al., 2005; Fujita et al., 2011). In

TB, COX2-i also significantly improved host immunity to Mtb in
animal models by enhancing Th1 immunity (Hernández-Pando
et al., 2006). In vitro treatment of TB patients’ blood samples with
the COX2-i, indomethacin, a nonsteroidal anti-inflammatory
drug, downregulated the frequency of Mtb-induced Tregs
and impaired T-cell proliferation and antigen-specific cytokine
responses (Tonby et al., 2016). Although this study did not
consider the effect on regulatory myeloid cells, an ongoing trial
evaluating the impact of the COX2-i, etoricoxib, on immune-
mediated host clearance of Mtb, will allow for assessment of
MDSC functionality (NCT02503839).

Indoleamine 2,3-Dioxygenase Inhibitors
Monocytic MDSC also express high levels of the enzyme
indoleamine 2,3-dioxygenase (IDO) that mediates
immunosuppression through a mechanism involving regulatory
T-cells (Tregs) (Holmgaard et al., 2015). In cancer, inhibition of
IDO successfully blocks expansion of MDSC in tumors, as well
as reducing the immunosuppressive effects of MDSC in IDO
deficient mice (Yang, 2009; Wang et al., 2014; Holmgaard et al.,
2015). Mtb is also a potent inducer of IDO (Hirsch et al., 2016).
In TB, even though the mycobacterial burden in IDO-deficient
mice is comparable to those of wild type mice (Blumenthal
et al., 2012), a recent report demonstrated that blocking of
IDO decreases both the clinical manifestations of TB as well as
microbial and pathological correlates in macaques by altering
granuloma organization (Gautam et al., 2018). Additionally,
IDO inhibitors may reduce the number of MDSC in the lungs of
TB patients, however this remains to be tested.

Checkpoint Inhibitors
In cancer, tumor-derived MDSC highly express programmed
death ligand-1 (PD-L1), which engages the PD-1 receptor on
T-cells, resulting in an exhausted phenotype (Jiang et al., 2015;
O’Donnell et al., 2017). Blocking of PD-L1 abrogated MDSC-
induced immune suppression in a murine melanoma model
(Kleffel et al., 2015; Kleinovink et al., 2017).

In TB, the use of a PD-L1 checkpoint inhibitor has shown
some promise in an in vitro model through its restoration
of T-cell responsiveness to TB antigens, cytokine secretion
and proliferation (Sharma and Allison, 2015a). Similarly, TB
treatment has been shown to reduce expression of the genes
responsible for PD-L1 expression on T-cells and natural
killer cells (Hassan et al., 2015). However, by reactivating
the immune system through treatment with this checkpoint
inhibitor, two cancer patients have developed active TB
disease (Reungwetwattana and Adjei, 2016). This highlights the
complexities associated with modulation of immune regulatory
molecules, such as PD-L1, which are upregulated on multiple
immune cell subsets in a range of disease conditions (Shen et al.,
2016). Even so, inhibition of PD-L1 on immune regulatory cells
such as MDSC in TB, merits further investigations.

In cancer, the calcium-binding pro-inflammatory alarmin,
calprotectin (S100A8/9), is highly expressed on murine tumor-
derived MDSC and contributes to the induction of MDSC
(Sinha et al., 2008). Interference with S100A8/A9 signaling
inhibits MDSC function, leading to decreased tumor growth
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(Sinha et al., 2008). In TB patients, serum abundance of
S100A8/9 correlates with disease severity while also mediating
neutrophilic inflammation and lung pathology in Mtb-infected
experimental animals (Kang et al., 2011; Gopal et al., 2013).
Given the association of S100A8/9 with MDSC, current TB
treatment strategies and lung inflammation may thus benefit
from targeting this molecule, with the expectation that it could
limit immunosuppression and neutrophilic influx.

MATURATION/DIFFERENTIATION OF
MDSC IN NON-SUPPRESSIVE CELLS

Differentiation of MDSC into mature myeloid cells without
immunosuppressive functionalities is another promising
immunotherapeutic strategy. Various studies have shown
enhanced MDSC levels in the bone marrow and spleen of
vitamin-A deficient mice (Kuwata et al., 2000; Walkley et al.,
2002).

All-Trans Retinoic Acid
All-trans retinoic acid (ATRA) is a vitamin-A metabolite
that activates retinoid-activated transcriptional regulators
(Nakanishi et al., 2008). These factors activate target genes
resulting in the maturation of early tumor-associated myeloid
cells into fully differentiated, non-immunosuppressive cells
(Nefedova et al., 2007). In cancer, ATRA treatment also
up-regulates glutathione (GSH), a ROS scavenger, thereby
reversing MDSC immunosuppressive function (Nefedova et al.,
2007). Furthermore, ATRA treatment of MDSC led to their
differentiation into mature DC, granulocytes and monocytes,
through their upregulation of differentiation markers such as
HLA-DR (Lathers et al., 2004; Gabrilovich and Nagaraj, 2009).
On the other hand, ATRA also increases expression of the
transcription factor FoxP3, thereby inducing the development of
Tregs which are considered to be detrimental to anti-tumor and
anti-TB immunity alike (Ma et al., 2014). Despite this potential
deleterious side effect, several clinical trials are evaluating ATRA
as treatment option to modulate MDSC in cancer patients
(NCT00601796; NCT00618891).

In TB, ATRA and other retinoic acids have shown to enhance
anti-mycobacterial immune functions in phagocytes upon in
vitroMtb infection, which was dependent on its ability to reduce
total cellular cholesterol and increase lysosomal acidification
(Crowle and Ross, 1989; Wheelwright et al., 2014). Although
vitamin-A deficiency strongly predicts risk of incident TB
among HHC of TB patients, pre-clinical trials of vitamin-A
supplementation has not been promising, likely due to the
complex metabolic route required for conversion of vitamin-
A to the active ingredient, ATRA (Lawson et al., 2010; Visser
et al., 2011). The therapeutic impact of ATRA on MDSC has
been evaluated in a TB mouse model, demonstrating that
MDSC ablation restores T-cell numbers, reducesMtb burden and
decrease lung pathology (Knaul et al., 2014). More recently it was
also shown that ATRA augments autophagy of Mtb in human
and murine alveolar macrophages(Coleman et al., 2018) Further
experiments are however required to fully establish the impact

of ATRA on MDSC function in TB patients when employed as
adjunctive therapy.

TARGETING MDSC IN
NON-TUBURCULOUS INTRACELLULAR
INFECTIONS

In addition to their involvement in Mtb infections, MDSC
have versatile roles in other intracellular pathogenic infections
(Dorhoi and Du Plessis, 2018). Their effect during these
infections are governed by the pathogen species and the
course of infection. Targeting of MDSC in other intracellular
infections could thus involve either the reduction or expansion
of their suppressive capacity and/or frequency, depending on
their beneficial or detrimental impact on disease outcome. For
example, MDSC are increased in both clinical and experimental
viral infections such as HIV, SIV, and LP-BM5, contributing
to pathogen survival through TH1 immunosuppression as
observed by the correlation with viral load and CD4 T-cell
count (Gama et al., 2012; Vollbrecht et al., 2012; Garg and
Spector, 2014; O’Connor et al., 2016). Similar detrimental
effects have been reported for cytomegalovirus (CMV) infections
(Garg et al., 2017), with MDSC impairing viral clearance
(Daley-Bauer et al., 2012). MDSC accumulation has been
reported also for various non-tuberculous intracellular bacterial
infections. Staphylococcus aureus infections are sustained by
MDSC promoting an immunosuppressive environment and
impairingmacrophage responsiveness (Heim et al., 2015; Tebartz
et al., 2015), whereas MDSC frequencies in Francisella tularensis
infection correlate with the extent of tissue pathology, loss
of pulmonary function and host mortality (Periasamy et al.,
2016). Above mentioned depletion strategies might thus be
applicable to a broad range of intracellular bacterial infections,
although the timing of administration might require careful
consideration.

CONCLUSION

Tumors escape immune attack by a variety of mechanisms, often
complementary in their ability to induce immunosuppression.
Molecular interventions targeting innate immune cell regulatory
pathways are making great advances in the immune-oncology
field. Immune based cancer therapies are now also being
recognized for their ability to potentiate anti-pathogen immunity
when used in combination with classical treatment approaches.
As for cancer, TB is described as a chronic inflammatory
disease, characterized by a dysregulated immune profile. Data
from cancer research suggest that MDSC can also be disarmed
at pre-determined time points to redefine the outcome of
disease. Therapeutic targeting of regulatory myeloid cells, such
as MDSC and their molecular drivers, are, therefore, considered
to be an exciting new strategy to help ameliorate TB via
more effective and less-toxic strategies. Nevertheless, amongst
the several approaches of TB HDT being sought, targeting of
MDSC have not been explored, or their mechanistic involvement
in the success of selected HDT, not appreciated. There is,
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however, a pressing need to study key signaling pathways
and intermediates involved in the induction and function of
regulatory myeloid cells, to allow pre-clinical screening of
re-purposed drugs showing promise in oncology trials. For
instance, the impact of metabolic pathways on MDSC function
has only recently been recognized and requires investigation
in the TB context. It will also be important to identify
markers specific to MDSC, in particular, the predominant
monocytic subset, to advance identification and development
of suitable MDSC-targeting TB immunotherapies. We propose
that MDSC remain an under investigated regulatory myeloid
cell population that holds great promise in the TB HDT
field.
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