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Colorectal cancer (CRC) is one of the most common cancers worldwide. The patient’s
prognosis largely depends on the tumor stage at diagnosis. The pathological TNM
Classification of Malignant Tumors (pTNM) staging of surgically resected cancers
represents the main prognostic factor and guidance for decision-making in CRC
patients. However, this approach alone is insufficient as a prognostic predictor
because clinical outcomes in patients at the same histological tumor stage can
still differ. Recently, significant progress in the treatment of CRC has been made due
to improvements in both chemotherapy and surgical management. Immunotherapy-
based approaches are one of the most rapidly developing areas of tumor therapy.
This review summarizes the current knowledge about the tumor microenvironment
(TME), immune response and its interactions with CRC development, immunotherapy
and prognosis.

Keywords: colorectal cancer, tumor microenvironment, immune cells, tumorigenesis, consensus molecular
subtypes, immunoscore

INTRODUCTION

Uncontrollable proliferation and metastasis of cancer cells within major organs, such as the liver and
lung, constitute the leading causes of death in CRC patients (1). Treatment options for CRC are
complex, but it must be emphasized that only some patients can undergo radical treatment of
metastases in the sense of resection with curative intent. The treatment is usually based on combined
chemotherapy targeting primarily the vascular endothelial growth factor receptor (VEGFR) or the
epidermal growth factor (epidermal growth factor receptor–EGFR) signaling pathways (2).
Unfortunately, not all patients can be treated by these selective drugs, especially EGFR inhibitors.
Modern immunotherapy methods significantly expand the possibilities of treatment for patients
suffering from this serious disease. This review summarizes the current knowledge about the tumor
TME and the immune processes involved in the development, growth and prognosis of CRC.

METHODS

We searched for keywords “immunotherapy colorectal cancer”, “tumor infiltrating lymphocytes
colorectal cancer” and “PD-L1 colorectal cancer” in the database PubMed, which gave us a total of
794 studies. After discarding duplicates, we obtained 320 studies that were scanned. We excluded
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240 studies unrelated to the topic, thus acquiring 65 studies that
were used as a basis for this review. Further 44 papers were
identified by cross-referencing.

Colorectal Cancer Tumorigenesis
Three major pathways of CRC tumorigenesis have been
thoroughly described: chromosomal instability (CIN),
microsatellite instability (MSI), and the CpG island methylator
phenotype (CIMP) pathway (3). The tumor mutation burden
(TMB) is an emerging biomarker in multiple tumor types. Highly
mutated tumors are thought to harbor an increased neoantigen
burden, making them immunogenic and responsive to
immunotherapy (4). CIN is the most common type of genetic
instability, present in 70%–85% of CRC, impacting chromosome
copy number and structure (5). The CIMP pathway may
contribute to silencing the tumor suppressor and DNA repair
genes due to hypermethylation (6). The prevalence of CIMP
varied from 21% to 27% cases of CRC across geographical
regions. In some patients, both pathways may coexist; the
most common combination is that of CIMP and MSI (7).

The third pathway, MSI, is a result of DNA mismatch repair
deficiency (dMMR) caused by the inactivation of genes encoding
proteins responsible for repairing DNA errors, mainly occurring
during replication. The prognosis of tumors developing through
MSI pathway is better than that of other pathways (8). Please note
that the terms MSI tumors and dMMR tumors are usually used
interchangeably and they will be used in this way also in this
paper, with the reference to MMR preferred when speaking of the
pathway and the termMSI preferred when speaking of the type of
tumor. According to established guidelines, MSI is determined by
a panel of microsatellite markers, commonly mononucleotides
(9). Microsatellites are short repetitive DNA sequences of
uniform length containing one to six bases. They are located
in the non-coding regions of the genome and, less frequently, they
were also identified in the regulatory or coding regions. They are
highly polymorphic between subjects, but within an individual,
their length is stable and uniform (10). dMMR CRCs produce a
higher number of neoantigen types than MMR-proficient ones,
which, consequently, leads to the greater activation of the
immune system (11). MMR deficiency has been detected in
approximately 15%–20% of CRC (12, 13). The sporadic
microsatellite-unstable phenotype usually results from
epigenetic silencing of the mismatch repair gene mutL
homolog 1 (MLH1). Germline mutations of one of the
broader groups of mismatch repair genes (MLH1, MSH2,
MSH6, and PMS2) are typical of hereditary Lynch syndrome
(14). MSI tumors are often poorly differentiated with mucinous
features or a medullary growth pattern, although they can also
resemble more typical CRCs with tubular or cribriform
growth patterns and less pronounced mucus formation
(15). Patients with MSI tumors have a more favorable
prognosis than those with MS-stable tumors, which has
been explained by the generally strong cytotoxic CD45RO
+ lymphocyte infiltration resulting from high TMB and
consequently high neoantigen load (16–18). Densities of
CD3+ and CD8+ cells are higher in this group of tumors,
but the densities of CD4+ and transcription factor forkhead

box P3 (Foxp3)+ cells were not affected by the MSI status of
the tumor (15, 19).

The Role of the Immune System in the
Prognosis and Treatment of Colorectal
Cancer
The immune system plays an important role in cancer control
and treatment response and the presence and quantity of key
immune cell subtypes within the TME of CRC are known to
possess prognostic potential (20). The phenotype and localization
of various immune cell types (B and T cells, natural killer cells,
tumor-associated macrophages and dendritic cells, myeloid-
derived suppressor cells, mast cells and cancer-associated
fibroblasts) in individual areas of the TME also constitute
important histopathological features of prognostic value (11).
Besides, immune checkpoint inhibitors, including cytotoxic
T-lymphocyte-associated antigen 4 (CTLA-4) inhibitors,
programmed cell death 1 (PD-1) and programmed cell death
ligand 1 (PD-L1) inhibitors have been associated with significant
improvement in various advanced cancers (21, 22). The role of
these factors will be discussed individually below.

Role of CTLA-4 in Colorectal Cancer
CTLA-4 is considered the “leader” of immune checkpoints as it
stops potentially autoreactive T cells as soon as the initial stage of
naïve T-cell activation, typically in lymph nodes (21). CTLA-4
blockade was shown to inhibit tumor progression by increasing
the effector T-cells activity and suppressing regulatory T cells
(Treg cells) (23). The Tregs population was associated with cancer
progression and metastasis. In hepatocellular carcinoma patients,
for example, Han et al. identified tumor-infiltrating human
CD4+CD69+ Tregs capable of suppressing CD4+ T cell
response via membrane-bound transforming growth factor
(TGF)-β1; the percentage of these cells significantly correlated
with tumor progression (24). It is important to realize that Tregs
have also the ability to inhibit the T cell-mediated immune
response against tumor cells in CRC (25–27). Xu et al.
reported that the function of tumor-infiltrating Tregs in a
cancer nest differs from their functions in cancer stroma. In
the latter, they act predominantly as inhibitors of inflammatory
anti-microbial response; in a cancer nest, however, they act as
suppressors of the anti-tumor response (28). The improved
understanding of the detailed mechanism could help us
develop new immunotherapy methods targeting CTLA-4
Tregs, ideally in specific locations.

PD-1 and PD-L1 Pathway in Colorectal
Cancer
A core concept in cancer immunotherapy is that tumor cells,
which would normally be recognized by T cells, have developed
ways to evade the host immune system by taking advantage of
peripheral tolerance and hiding from immune recognition (29).
The PD-1 pathway regulates previously activated T cells,
primarily in peripheral tissues (30). Takasu et al. positively
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correlated the activity of the PD-1 pathway with the expression of
Foxp3, which is widely known to be involved in the development
and function of Treg cells including CD4+CD25+ and
CD8+CD25+ cells (31, 32). Several studies have confirmed that
high Foxp3 expression in Treg cells allows tumor cells in various
types of human carcinomas to escape from immunological
surveillance and, in this way, promotes their proliferation and
tumor development (33, 34). Foxp3 can be expressed also by
cancer cells, which results in the secretion of immunosuppressive
cytokines such as IL-10 and TGFβ into the tumor
microenvironment, which might allow them to evade effector
T-cell responses and, hence, to progress (35). On the other hand,
Yoon et al. and Ling et al. suggest that high Foxp3 T-cell density is
a favorable prognostic factor in CRCs with low cytotoxic CD8+

infiltration (36, 37). This paradox is probably caused by dense
microbiological flora present in the large intestine. The colon is
constantly confronted with foreign antigens, which leads to
increased levels of Foxp3 T-cells even in a physiological state.
A high amount of Treg cells, suppressing microbially induced
inflammation, could act protectively not only by this prevention
of the inflammatory response that can potentially lead to the
development of cancer in the colorectal epithelium but also by
preventing tumor growth; this could make it an exception to the
rule of the poor prognostic role of high Foxp3+ expression
(37, 38).

PD-1 and PD-L1 are crucial checkpoints of the immune
system response. They provide negative feedback that inhibits
T helper 1 (Th1) cytotoxic immune responses, causing T-cell
exhaustion or tolerance (39). PD-L1 is constitutively expressed by
T and B cells, dendritic cells, and macrophages (40), as well as by
other cell types including endothelial, pancreatic, and muscle cells
(41). Expression of PD-L1 either in the tumor or in the infiltrating
immune cells has been verified (predominantly by
immunohistochemistry) in a variety of tumors, suggesting its
role as a prognostic trait and therapeutic target across multiple
types of tumors. The overexpressed PD-L1 on the surface of
cancer cells binds to the PD-1 on tumor-infiltrating lymphocytes
(TILs), which counteracts the TCR-signaling cascade by
phosphorylating SHP-2 and as a result, impairs T cell
activation (42). This process is an analogy to the interaction of
CD28 with the B7 molecules (CD80 or CD86) on professional
antigen-presenting cells (APC); the interruption of this signaling
pathway with CD28 antagonists can be typically considered a
positive effect inducing suppression of the pathological immune
response; in some cases, however, it can also negatively affect the
organism by inducing the antigen-specific tolerance (43).

Recent reports indicated that while PD-L1 expression on CRC
tumor cells was commonly associated with poor outcome or was
not prognostic, lymphocytic expression of PD-L1 and PD-1 in
CRC was associated with good clinical outcome, particularly in
certain colon locations (44, 45). PD-1 and PD-L1 expressions are
regulated by numerous factors, including inflammatory stimuli
(IFN, IL-6, TNF) and oncogenic pathways at transcription, post-
transcription, and post-translation (e.g., EGFR, MAPK, JAK-
STAT pathway) levels (46).

Inhibition of the PD-1/PD-L1 signaling is a feasible strategy
for normalizing the TME and up to now, this approach has been

used in the treatment of various cancers, such as melanoma, non-
small cell lung cancer, gastric cancer, renal cancer, liver cancer,
urothelial cancer, lymphoma, and all microsatellite instability-
high (MSI-H) cancers (47). Noh et al. hypothesized that PD-L1
overexpression in CRC tumor cells is associated with broader
activation of CD8+ T cells, which leads, among other things, to
enhanced local expression of supporting factors such as IFN-γ.
Enhanced CD8 recognition of CRC cells could be also linked to
increased or aberrant expression of normal proteins due to the
increased number of nonsynonymous, somatic mutations and
MSI in tumor cells (48, 49). Practically, the expression of PD-L1 is
primarily attributed to tumor-associated immune cells, most
prominent at the tumor-stroma interface along the invasive
margin. The true expression of PD-L1 by a tumor cell is a
rare event (50).

Clinicopathologically, PD-L1 positivity, as well as PD-1
density, tend to associate with proximal tumor location and
poor differentiation (51), and these features are commonly
seen in MSI-H CRCs. On the contrary, mismatch repair-
proficient tumors have usually high budding and show a low
PD-L1 and PD-1 positivity (52). Generally, the low number of
PD-L1 positive tumor samples may suggest that the PD-1/PD-
L1 checkpoint mechanism is not the major escape mechanism for
tumor cells in CRC, which could also explain the limited impact
of anti-PD-L1/PD-1 therapy in this type of cancer (53). Shen et al.
suggested that the expression of PD-L1 could be utilized as an
independent factor in judging the prognosis of CRC, and reported
that patients with advanced cancer or lymphatic invasion were
more likely to express PD-L1 (54).

According to recent resources, the expression of PD-L1 in
immune cells is significantly higher in MSI CRCs when compared
to non-MSI tumors (50), which is believed to be one of the
reasons for the better prognosis of these tumors (55). Ganesh et al.
suggest that PD-1 blocking therapy potentially benefits patients
with MMR/MSI subsets of CRCs (56). The reported overall
objective response rate was 36% (51). In 2017, the PD-1
inhibitor Pembrolizumab was approved by the US Food and
Drug Administration for treatment of metastatic solid MSI
tumors, including CRC (57). Nevertheless, it has been
speculated that with disease progression and development of
metastases, dMMR/MSI tumors evade host immune surveillance,
which is in turn associated with a loss of the prognostic
advantage. This is seen in stage IV CRCs with dMMR/MSI
where no prognostic advantage was found (58). Unfortunately,
as MSI tumors represent only about 15 % of CRCs, the
monotherapy with immune checkpoint inhibitors has shown
only limited efficacy when applied to the general CRC
population (53). All these facts indicate that the function of
PD-L1 is complicated and diverse. This, in turn, means that in
tumor-targeted therapy, the inhibition of either of these factors
(PD-L1 or PD-1) alone is likely to fail in the blocking of the full
PD-1/PD-L1 pathway and, hence, although it may act well in
patients at lower and not-generalized stages, it is unlikely to
universally help patients at all stages of the disease.

Chronic T cell activation, which may occur in persistent
infections or cancer following repeated exposures to antigens,
is also associated with an increased expression of inhibitory
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receptors such as PD-1 and CTLA-4, which leads to T cell
dysfunction compromising productive T cell responses (59,
60). Yassin et al. found in experimental mice that chronic
inflammation resulting in colitis-associated cancer
development leads to a massive PD-1 upregulation in
intraepithelial lymphocytes. This upregulation affects certain
CD4 and CD8 (CD8αβ+, CD8αα+; TCRγδ+, TCRαβ+) subsets
and may contribute to the reduced protective capacity of early
innate (TCRγδ+) and subsequent adaptive (TCRαβ+) T cell
systems (61). In addition, alterations of fecal and mucosal
microbiota with reduction of bacterial species diversity have
been reported in CRC patients at different cancer stages (62,
63). It follows that the immune processes themselves may be
affected not only by tumor cells but also by other events taking
place in adjacent areas of the tumor and which may also
(negatively or positively) affect the prognosis and course of
CRC. Therefore, we should not focus solely on examining the
tumor, but events taking place in its vicinity need to be studied
as well.

Other Immune Processes in Colorectal
Cancer Tumor Microenvironment
In addition to PD-1/PD-L1 signaling inhibition, immunotherapy
relying on the combination of multiple checkpoint targets is
another viable possibility for (not only) CRC treatment. Fiegle
et al. showed that the dual CTLA-4 and PD-L1 blockade exerts
synergistic inhibitory effects on the growth andmetastasis of CRC
in orthotopic mice by increasing the number of CD8+ and CD4+

T cells. This increase is associated with a Th1 response mediated
by CTLA-4 inhibition and by inducing a higher number of
M1 macrophages, which can mostly be ascribed to PD-L1
blockade (12). Kuwahara et al. showed that high CD4+ T-cell
density was associated with a positive CRC outcome and
constituted an independent prognostic factor in a multivariate
model of CRC prognosis; its prognostic value even exceeded those
of tumor invasion depth or positive lymph node metastasis (64).
Previous studies have also reported that in the absence of
modulation by CD4+ cells, specific CD8+ cells can become
lethargic and cannot transform into long-lived functional
effector cells (65, 66). However, several subsets of CD4+ TILs
differing in their anti/protumor action were identified. One such
subset, Th1 cells, activates CD8+ T cells, thus enhancing
antitumor immunity (67). On the other hand, another subset,
T helper 2 (Th2) cells, seem to suppress antitumor immunity via
the production of immunosuppressive cytokines such as
interleukin (IL)-10. A third subset, T helper 17 (Th17) cells, is
reported to have both positive (facilitating antitumor immune
response) and negative (increasing tumor growth by inducing
tumor neoangiogenesis) effects (11). Thus, CD4+ T cells have a
central role in managing and regulating the immune system
against tumor cells.

During T cell activation, PD-1 is expressed on the surface of
T cells as well as B cells and NK cells (68). Predominantly,
however, it affects CD8+ T cells as the first line of defense
against tumor cells and contributes to controlling T cell
exhaustion (69). These cells, such as TILs, form the first line

of the adaptive immune responses to a tumor (70). After arriving
in the TME, CD8+ T cells should encounter both intrinsic (CD28,
CTLA-4, PD-1/PD-L1, immunoglobulin-like transcript
receptors), and extrinsic (regulatory T cells and myeloid cells)
checkpoint regulators (71). High CD8+ T cell density is, therefore,
another good prognostic marker in CRC, indicating an
“immunologically hot” tumor microenvironment (20, 72).
Reissfelder et al. highlighted the importance of TNF-α as a
tissue marker of intratumoral cytotoxic T cell activity,
reporting a strong correlation between the up-regulation of
TNF-α expression in TILs and the total intratumoral TNF-α (73).

Also, intratumoral heterogeneity needs to be considered, in
particular the differences between the tumor center and tumor
margin. Kwak et al. demonstrated that the higher total number of
CD3+ and CD8+ T cells in the immune infiltrate are predictive of
survival. This is true for both the invasive margin and tumor
center; the presence of these T cells in both these parts of the
tumor further improves the prognosis (74). Miller et al. also
observed an association of higher densities of PD-L1+ dendritic
cells in the tumor margin with good survival (75). Dahlin et al. say
that the separate measurements of T cell infiltration in the tumor
margin, center, and intraepithelial compartment were closely
correlated and were all positively associated with cancer-
related survival (76). It follows that examining the tumor as a
whole and not taking its heterogeneity into account might fail to
provide us with satisfactory prognoses and results.

Some studies found that a high total lymphocyte score
predicted cancer-related survival more accurately than any of
the individual lymphocyte scores analyzed separately (16, 77).
Ling et al. reported significantly better prognosis of patients with
high levels of intraepithelial CD8+ T cells. Similarly, improved
prognosis was reported in patients with low levels of
intraepithelial CD8+ together with high concentration of
Foxp3+ cells at the tumor invasive margin and in the centre
(37). This observation was explained by the organ specific
contribution of Foxp3 T cells to blocking tumor promoting
inflammation stimulated by gastrointestinal bacteria, or
eventually by unique cytokine profile (IL-2 and IFN-γ) or
non-regulatory conventional function of at least some CRC-
infiltrating Foxp3 T cells. Huang et al. also reported,
compared with other subgroups, better survival outcomes in
the subgroup of patients with the combination of high CD8+

TIL infiltration and high PD-L1 expression in tumor cells (78).
Authors proposed that IFN-γ secreted by infiltrating cytotoxic
CD8+ T cells is required for PD-L1 induction, and overexpression
of PD-L1 within the tumor microenvironment acts as a negative
feedback compensating for CD8+ CTLs and IFN-γ.

There are, of course, also other immune cells with specialized
functions. NK cells are involved in the lysis of tumor cells that lose
MHC class I expression (79). TME infiltration by NK alongside
the CD8+ T cells has been also associated with improved
prognosis in CRC patients (80).

B cells can modulate immune responses through various
mechanisms, including inhibition of T cell responses (81).
Shimabakuro-Vornhagen et al. showed that compared with the
circulation of healthy individuals, the levels of highly activated
and memory B cells present in the circulation of CRC patients (as
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well as in their TME) were elevated (82). Toor et al. showed that
the total B cells levels were similar between tumor and normal
tissue but in the TME, B cells expressed significantly higher levels
of co-stimulatory immune checkpoints (83). This co-expression
of multiple immune checkpoints can have important implications
on tumor resistance to immunotherapy due to the overlap in their
pathways, which may promote tumor progression (84, 85) and
may be one of the reasons for the failure of immunotherapy even
in patients in whom success could be otherwise.

The Role of Innate Immune Cells
The innate immune components of the microenvironment
represent the first line of defense, providing rapid response to
foreign factors as well as anti-tumor activities (86). Macrophages,
a component of the mononuclear phagocytic system (MPS), play
a crucial role in maintaining the tissue homeostasis through
regulation of the innate immune as well as inflammatory
responses. Through specific differentiation, macrophages can
evolve into two distinct differentiation states: classically
activated M1 (proinflammatory) macrophages (87), which
could promote the Th1 response, absorb and kill tumor cells
(88), or alternatively, evolve into activated M2 (anti-
inflammatory) macrophages, which secret anti-inflammatory
cytokines such as interleukin-10 (IL-10), and promote
angiogenesis, tissue remodeling, injury repair, and tumor
initiation and progression (89). Upon stimulation,
macrophages recruit monocytes from the blood to the tumor
site and contribute to changing toward tumor-associated
macrophages (TAMs) (90). In the early stage of cancer, TAMs
are represented mainly by the proinflammatory
M1 macrophages, and they produce reactive oxygen and
nitrogen species (91); at this stage, they have antitumor effect.
Later, however, tumor cells use TAMs to support CRC and
(through multiple signaling pathways) convert them into anti-
inflammatory and cancer-promoting M2 phenotypes with
tumorigenic activity (92). The role of TAMs in CRC is,
therefore, highly complicated and their simple presence or
absence is not a clear indicator of the patient’s prognosis and
overall survival. It, however, appears that their presence in the
early stages of cancer is rather a positive prognostic marker while
in the later stages, it affects the prognosis negatively.

Dendritic cells (DCs) are professional antigen-presenting cells
and their interrupted development allows tumor cells to evade
immune recognition. To avoid immune surveillance, cancer cells
may suppress DCs through multiple mechanisms, including the
secretion of immunosuppressive TGF-β or IL-10 (93). It was
reported that these DCs secrete increased levels of
immunosuppressive IL-10 and decreased levels of
immunostimulatory IL-12 and TNF-α (94) or the chemokine
(C-X-C motif) ligand 1(CXCL1), which enhances tumor cell
migration (95). Several studies reported that the number and
functions of blood DC subsets were reduced in CRC patients,
demonstrating that the range of these effects correlated with the
disease stage and prognosis (94, 96). Another point of view is
offered by the work of Miller et al., which demonstrated that PD-
L1+ tumor-associated dendritic cells correlate with improved
survival in CRC patients, which may reflect an active T cells-

driven anti-tumor immune response (75). These observations are,
however, not mechanistically reliably explained yet and the
situation is similar to TAMs.

Mast cells (MCs) are multifunctional cells whose role is to
participate in allergic and infectious events. In cancers, their
presence has been described mainly at the tumor margins and at
peri-vascular regions. It was associated with increased blood
vessel density in the TME (97) and with poor prognosis (98).
According to Zhao et al., a lower frequency of circulating MCs
and their progenitors was found in patients with CRC than in
healthy patients; this was especially apparent in patients with
advanced disease. It turned out that this may reflect aggressive
CRC course (99).

Myeloid-derived suppressor cells (MDSC) represent a
heterogeneous population of granulocytes and monocytes that
rapidly expand during infection, inflammation, and cancer (100).
They have been reported to suppress T cell response through
reactive oxygen species (ROS) inducing antigen-specific tolerance
as well as through elevating inducible nitric oxide synthase
(iNOS), arginase-I (ARG1) and other suppressive cytokines
(101, 102). Their recruitment depends on various CRC-derived
mediators including chemokines, with chemokine (C-C motif)
ligand 2 (CCL2) being particularly relevant. MDSC recruited by
the CCL2-CCR2 (C-C chemokine receptor type 2) signaling
pathway in mice models were shown to support CRC growth
(103). Their relevance for predicting patient prognosis, however,
remains unknown. Innate immunity cells contribute to the
protection from tumor cells proliferation particularly at early
stage of tumor development. At the clinically manifested stage
their protective effect is substantially limited.

It follows that most of the immune cells may actually have a
dual activity—anti- and pro-tumor, depending on the signals
received from the TME. These signals may support anti-
tumorigenic functions or modulate immune cells into a
protumorigenic phenotype. This knowledge reflects the
potential and importance of the role of TME and the potential
of treatment approaches targeting TME for the treatment of CRC.
As an example, we can mention therapies blocking CTLA-4, PD-
1/PD-L1 pathways, those limiting monocyte infiltration,
reprogramming polarization of TAMs, blocking secretion of
immunosuppressive TGF-β or IL-10 by cancer cells, or
inhibiting the activity of MDSCs.

Tumor Microenvironment and Immune
Response to Colorectal Cancer
Various mechanisms have been proposed to explain how the
TME contributes to tumor progression, tumor invasion, and
metastasis. For instance, the following mechanisms were
proposed: 1) impacting the proliferation and survival of cancer
cells; 2) increasing their stem-like properties and favoring
epithelial-to-mesenchymal transition (EMT); (104–106), 3)
rewiring the tumor metabolism (107) and/or 4) stimulating
metastatic dissemination (108). EMT was shown to be a
pivotal driver of fibrosis development in embryonic tissues,
wound healing, tumorigenesis, and metastasis (109). It is a
dynamic process involving not only pure epithelial or
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TABLE 1 | Landmark studies indicating the value of different cell populations in predicting CRC prognosis.

Cell
population

Author Cancer
location

TNM
stage

Sample
size

Main results

CAF Akishima-Fukasawa
et al. (131)

I–III 110 PGP9.5 expression is an independent prognostic factor for overall and
recurrence-free survival.

CAF Glentis et al. (132) CRC and
adenoma

Not
defined

40 CAFs actively assist cancer cells to breach the basement membrane.

CAF Ren et al. (133) CRC Not
defined

not defined CAFs promote the stemness and chemoresistance of CRC by transferring
exosomal H19.

CAF Zhang et al. (134) CRC Not
defined

not defined Colorectal-cancer-CAFs-derived HGF induced up-regulation of CD44 which
mediated adhesion of CRC cells to endothelial cells, and subsequently resulted in
enhancement of metastasis of CRC.

CAF Miyazaki et al. (135) CRC and
breast cancer

Not
defined

not defined The direct interaction with CAFs, as well as environmental cytokines, contributes
to the collective invasion of cancers.

CAF Unterleuthner et al. (136) CRC Not
defined

not defined WNT2 has a pivotal role in sustaining an activated CAF phenotype, which is
associated with the maintenance of a pro-angiogenic secretome and contributes
to elevated tumor angiogenesis in CRC.

DC Bauer et al. (137) CRC (MSI-H
and MSS)

Not
defined

69 Impaired DC maturation may contribute to local immune evasion in CRC.

DC Gulubova et al. (138) CRC I - IV 145 The infiltration of colon cancer with DCs is related to tumor progression and
patient prognosis, suggesting a central role of DCs in controlling local tumor
immunity.

DC Hu et al. (139) CRC not
defined

19 Treatment with anti-PD-L1 may promote the maturation of Dcs and enhance the
functionality of DC1 subtype.

DC Miller et al. (75) CRC III 221 PD-L1-expressing DC in the tumor microenvironment are associated with
improved survival in stage III colon cancer and likely reflect an immunologically
“hot” tumor microenvironment.

B cells Berntsson et al. (140) CRC I–IV 557 Dense infiltration of CD20+ B-cells is an independent predictor of a favourable
clinical outcome.

B cells Edin et al. (141) CRC I–IV 316 There is a positive prognostic role of tumour-infiltrating CD20+ B lymphocytes in
CRC patients.

B cells Mullins et al. (142) CRC and
rectal cancer

III–IV 25 Tumor-infiltrating B cells can contribute to tumor control in a dula role of sole
antigen-presentation and additionally anti-tumoral Ig-production.

B cells Toor et al. (83) CRC I–IV 50 Decreased levels of B cells and selective IC-expressing CD8+ TILs are associated
with tumor progression. MSI-H tumors could show favorable prognosis/improved
response to cancer immunotherapy.

T cells Li et al. (51) CRC I–IV 356 Higher expressions of PD-1 and PD-L1 correlates with a better prognosis in CRC
patients.

T cells Berntsson et al. (143) CRC I–IV 557 A high density of cytotoxic T cells is an independent prognostic factor in right-
sided tumours and regulatory T cells predict longer survival only in patients with
rectal tumours.

T cells Digiacomo et al. (144) BRAF-mCRC IV 59 A simultaneous evaluation of MSI, CD8 T-cell content, and neuroendocrine
markers could allow for the identification of subsets of BRAF-mCRC with a
different prognosis and potential eligibility for specific treatments.

T cells Glaire et al. (145) CRC II–III 1804 The prognostic value of intratumoral CD8+ cell infiltration in stage II/III CRC varies
across tumour and nodal risk strata.

T cells Fiegle et al. (12) Mouse model
of CRC

25 Dual CTLA- and PD-L1 blockade exert synergistic inhibitory effects on growth and
metastasis of the orthotopic CT26 colon tumors by increasing CD8+ and CD4+

T cells.
T cells Kuwahara et al. (64) CRC I–IV 342 Intratumoral CD4+ T-cell density and combined CD4+ and FOXP3+ T-cell

densities were stronger prognostic factors than other clinicopathological features.
T cells Craig et al. (146) CRC II–IV 1724 Immune cold patients by assessment of CD3, CD4 and CD8 IHC are linked with

difficult-to-treat, poor prognosis hypoxic biology, which may be potentially
amenable to targeted therapy or monitoring for disease progression.

T cells Noh et al. (48) CRC I–IV 489 Tumours with PD-L1-positive tumour cells and high-CD8 TIL is associated with
the best prognosis, and show stronger CD8/PD-L1/Pd-1 signalling interaction
compared to the other types.

T cells Hartman et al. (147) CRC I–IV 259 The prognostic value of MMR protein deficiency is most likely attributed to
increased tumor-associated CD8-positive T cells and that automated quantitative
CD8 T-cell analysis is a better biomarker of patient prognosis.

T cells Fuchs et al. (148) CRC I–IV 1034 ITWG systém for assessing TILs is a powerful predictor of all-cause survival in
CRC independent of many prognostic factors and superior to the assessment of
intraepithelial lymphocytes using a traditional system.

(Continued on following page)
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mesenchymal cells but also “hybrid” cells (110). Previous studies
have suggested EMT activation in a number of malignant tumor
cells, resulting in the loss of typical characteristics of epithelial
cells (cell-cell junctions and apical basal polarity), and acquiring
properties of mesenchymal cells, which in turn promotes
migration and invasion-metastasis cascade (109, 111). Cancer
cells with mesenchymal phenotypes are also less susceptible to
cytotoxic lymphocyte-mediated lysis and NK cell attacks (112).
EMT is mediated by immune cells in the TME secreting
cytokines, inflammatory factors, and chemokines. Also, cancer
cells can crosstalk with immune cells to induce cell plasticity and
release immunosuppressive substances, thus creating an
immunosuppressive microenvironment that promotes invasion
and metastasis (113, 114).

Cancer-associated fibroblasts (CAFs), non-neoplastic cells
present in the tumor, are a major contributor to EMT. CAFs
produce desmoplastic reaction (DR), commonly observed in
invasive CRC. Desmoplasia is the rearrangement of organized,
anisotropic extracellular matrix fibers in a pathological
microenvironment associated with metastasis or poor patient
survival (115). Immature desmoplasia is characteristic of tumors
with keloid-like collagen or myxoid stroma, which have been
associated with poor survival in CRC patients (116). Periostin
(POSTN), as a product of CAFs, could be another key molecule
contributing to the malignant potential of CRC by modifying the
desmoplastic environment (117). CAFs in tumor tissue also
antagonize the T-cell antitumor activity and negatively
contribute to patients’ prognosis (118). Monitoring of
desmoplastic reactions, therefore, appears to be a potentially
promising prognostic parameter.

IMMUNOSCORING

Evaluation of the amount and type of TIL seems to be a suitable
complement to the standard TNM classification, especially when
deciding on adjuvant therapy. The immunoscore (IS)
methodology quantifies and detects various types of immune
cells in tumor tissue, and, besides, determines the density of their
infiltration and localization in the center and invasive margin. It
offers ratings from 0 (low immune system cell infiltration in both
areas) to 4 (high immune system cell infiltration in both areas).
There are two advantages to this examination: 1) IS appears to be
a strong prognostic factor for disease-free survival and overall
survival and 2) it has biological significance (adaptive and also an
innate immune response to the presence of tumor cells). It can,

therefore, be also used as a tool for the management of therapy,
including immunotherapy (22, 119–121). In addition, adaptive
cell therapy using TILs from patients, donors, or differentiated
from stem cells, is a highly promising immunotherapeutic
strategy in CRC patients. These immune cells are activated
and expanded in vitro (and, if need be, possibly subjected to
gene modifications) before finally being administered to the
patient (122). Beak and Kim obtained TILs from patients with
CRC and evaluated their potential as an immunotherapeutic
modality. They demonstrated that the ex vivo expanded TILs
contained mostly the effector memory T cell subset and elicited
anti-tumor response (123). Koelzer et al. have demonstrated
CD8+ and CD45RO + memory T cell infiltration in
preoperative biopsies to be reliable independent prognostic
markers associated with abundant biological behavior after
resection (independently of the TNM stage and postoperative
therapy) (Table 1). The high level of this infiltration predicts a
locally less advanced tumor along with an absence of nodal
metastases and lymphovascular invasion (124).

The predictive potential of IS has been reported in several
studies. For example, Morris et al. reported longer overall survival
in patients with TILs who received adjuvant chemotherapy based
on 5-fluorouracil (125). Similarly, the high density of CD3+,
CD8+ and granzyme B+ lymphocytes in the invasive margin
of hepatic CRC metastases was predictive of prolonged disease-
free survival in patients treated with conventional chemotherapy
or chemotherapy in combination with cetuximab or bevacizumab
(126). However, more studies and more patients will be needed
for validating and improving the IS sufficiently to be used in
routine clinical practice.

Consensus Molecular Subtypes
The analyses of the effects of the immune infiltrate in specific
subgroups of patients and their clinical outcome led to the
development of a new classification system based on the
consensus between different classification systems proposed by
various research groups. Thus, four “consensus molecular
subtypes” (CMSs) of CRC were defined (8): CMS1 is
characterized by MSI, mutations in CIMP and BRAF
pathways, a diffuse immune infiltrate, and strong activation of
immune evasion pathways. CMS2 tumors show high
chromosomal instability and activation of Wnt and MYC
pathways. CMS3 tumors exhibit frequent KRAS mutations and
disrupted metabolic pathways, and CMS4 tumors are
characterized by high expression of mesenchymal genes,
stromal infiltration, angiogenesis, and TGF-β activation.

TABLE 1 | (Continued) Landmark studies indicating the value of different cell populations in predicting CRC prognosis.

Cell
population

Author Cancer
location

TNM
stage

Sample
size

Main results

T cells Lalos et al. (149) CRC I–IV 613 The combination of high CD8+ T-cell density and expression of SDF-1 represents
an independent, favorable, prognostic condition in CRC, mostly in patients with
stage III disease.

T cells Al-Badran et al. (150) CRC I–III 773 Individual and combined high expression of TIM-3, LAG-3, and PD-1 on stromal
immune cells are associated with better colorectal cancer prognosis.
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CMS1 and CMS4 are tumors characterized by strong immune
infiltration while, on the contrary, CMS2 and CMS3 are tumors
without immune activation. Their prognoses also differ, with
CMS4 tumors displaying worse overall and relapse-free survivals
(8). This classification provides an interesting opportunity to
explore the heterogeneity of CRC. Understanding CMS is a
crucial step towards personalized medicine as it could
optimize the management of individual patients. For example,
it will allow defining the best first-line chemotherapy regimen
(poor efficiency of oxaliplatin in CMS1 and CMS4) or application
of immunotherapy for metastatic CRC in CMS4 patients (127).

The biological and prognostic associations of CMS in the
context of metastatic tumor heterogeneity is slightly more
complicated. Eide et al. performed exploratory analyses of a
dataset of 317 primary tumor samples and 295 liver metastasis
samples. Almost 90% of metastases belonged to CMS2 or
CMS4 subtypes, which is in line with the aforementioned
poorer prognosis of these two subtypes (128). These results
were further corroborated by Fontana et al. and Kamal et al.
(129, 130). The difference is caused by a combination of biological
intrinsic and extrinsic factors, including the reaction to treatment;
for example, metastatic tumors after chemotherapy have been
shown to tend towards CMS4 classification, even if the primary
tumor was another subtype with originally better prognosis (such
as CMS3) (130).

However, it must be considered that even within CMS groups,
there is high inter- and intratumor heterogeneity, which limits
universal application of the CMS classification in the clinical
practice as a predictive prognostic marker. In view of this, further
subclassification based, for example, on detailed gene expression
profiling methods like single-cell RNA sequencing and analyses
might refine this classification system and improve its clinical
usability.

CONCLUSION

This review shows us that despite the large amount of available
information and relatively detailed knowledge of the immune
mechanisms that take place inside the tumors and in their
vicinity, many factors and variables remain unclear, which
ultimately determine success of proposed therapy. The
immune contexture of each CRC is highly relevant for the
design and allocation of therapeutic approaches that depend
on anti-tumoral immune responses and include conventional

therapeutic options (chemo- and radiotherapy) as well as
immunotherapy. PD-L1+ positive tumor cells and CD8+ TIL
are, therefore, key prognostic biomarkers for locally advanced
CRC patients treated with neoadjuvant chemoradiotherapy.
Upregulation of immune response with immunotherapy has
been successful in a subset of patients with dMMR/MSI-H
CRC patients. Choosing the right combination of drugs and
the right therapeutic strategy for each individual patient
including those with metastasized CRC is the key to successful
therapy. These combinations and individualization will be crucial
aspects of a future clinical trial also at our department. Future
directions in the study of immunotherapy in CRC will include
identifying improved biomarkers in patients with pMMR/MSS,
and identifying novel immunotherapies with improved efficacy,
such as specific treatments targeting innate immune cells
supporting tumor growth.
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